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Abstract. In many cases what matters is not whether a false discovery
is made or not but the expected proportion of false discoveries among
all the discoveries made, i.e. the so-called false discovery rate (FDR).
We present an algorithm aiming at controlling the FDR of edges when
learning Gaussian graphical models (GGMs). The algorithm is partic-
ularly suitable when dealing with more nodes than samples, e.g. when
learning GGMs of gene networks from gene expression data. We illustrate
this on the Rosetta compendium [8].

1 Introduction

Some models that have received increasing attention from the bioinformatics
community as a means to gain insight into gene networks are Gaussian graphical
models (GGMs) and variations thereof [4, 6, 9, 14, 25, 26, 29, 31, 32]. The GGM of
a gene network represents the network as a Gaussian distribution over a set of
random variables, each of them representing (the expression level of) a gene in
the network. Learning the GGM reduces to learning the independence structure
of the Gaussian distribution. This structure is represented as an undirected graph
such that if two sets of nodes are separated by a third set of nodes in the graph,
then (the expression level of) the corresponding sets of genes are independent
given (the expression level of) the third set of genes in the gene network. Gene
dependencies can also be read off a GGM [18]. A further advantage of GGMs
is that there already exists a wealth of algorithms for learning GGMs from
data. However, not all of them are applicable when the database contains fewer
samples than nodes (i.e. n < q),1 which is the case in most gene expression
databases. Of the algorithms that are applicable when n < q, only the one
proposed in [25] aims at controlling the false discovery rate (FDR), i.e. the
expected proportion of falsely discovered edges among all the edges discovered.
However, the correctness of this algorithm is neither proven nor fully supported
by the experiments reported, e.g. see the results for sample size 50 in Figure 6
in [25].

In this paper, we present a modification of the incremental association Markov
boundary (IAMB) algorithm [19, 28] aiming at controlling the FDR. Although
1 We denote the number of nodes (i.e. genes) by q though it is customary to use p for

this purpose. We reserve p to denote a probability distribution.



we have not yet succeeded in proving that the new algorithm controls the FDR,
the experiments reported in this paper support this conjecture. Furthermore,
the new algorithm is particulary suitable for those domains where n < q, which
makes it attractive for learning GGMs of gene networks from gene expression
data. We show that the new algorithm is indeed able to provide biologically
insightful models by running it on the Rosetta compendium [8].

2 Preliminaries

The definitions and results in the following two paragraphs are taken from [11,
15, 27, 30]. We use the juxtaposition XY to denote X ∪ Y, and X to denote
the singleton {X}. Let U denote a set of q random variables. Unless otherwise
stated, all the probability distributions and graphs in this paper are defined over
U. Let X, Y, Z and W denote four mutually disjoint subsets of U. We represent
that X is independent of Y given Z in a probability distribution p by X⊥Y|Z,
whereas we represent that X is dependent of Y given Z in p by X 6⊥ Y|Z.
Any probability distribution satisfies the following four properties: Symmetry
X ⊥ Y|Z ⇒ Y ⊥ X|Z, decomposition X ⊥ YW|Z ⇒ X ⊥ Y|Z, weak union
X ⊥YW|Z ⇒ X ⊥Y|ZW, and contraction X ⊥Y|ZW ∧ X ⊥W|Z ⇒ X ⊥
YW|Z. Any strictly positive probability distribution also satisfies intersection
X⊥Y|ZW∧X⊥W|ZY ⇒ X⊥YW|Z. Any Gaussian distribution also satisfies
composition X⊥Y|Z ∧X⊥W|Z ⇒ X⊥YW|Z.

Let sep(X,Y|Z) denote that X is separated from Y given Z in an undirected
graph (UG) G, i.e. every path in G between X and Y contains some Z ∈ Z. G is
an undirected independence map of a probability distribution p when X⊥Y|Z
if sep(X,Y|Z). G is a minimal undirected independence (MUI) map of p when
removing any edge from G makes it cease to be an independence map of p. MUI
maps are also called Markov networks. Furthermore, p is faithful to G when
X ⊥ Y|Z iff sep(X,Y|Z). A Markov boundary of X ∈ U in p is any subset
MB(X) of U \X such that (i) X⊥U \MB(X) \X|MB(X), and (ii) no proper
subset of MB(X) satisfies (i). If p satisfies the intersection property, then (i)
MB(X) is unique for each X ∈ U, (ii) the MUI map G of p is unique, and
(iii) two nodes X and Y are adjacent in G iff X ∈ MB(Y ) iff Y ∈ MB(X) iff
X 6⊥Y |U\(XY ). The MUI map of a Gaussian distribution p is usually called the
Gaussian graphical model (GGM) of p. GGMs are also called covariance selection
models. In a Gaussian distribution Normal(µ,Σ), X ⊥ Y |Z iff ρXY |Z = 0,

where ρXY |Z = −((ΣXY Z)−1)XY√
((ΣXY Z)−1)XX((ΣXY Z)−1)Y Y

is the population partial correlation

between X and Y given Z.
Assume that a sample of size n from a Gaussian distribution Normal(µ,Σ)

is available. Let rXY |Z denote the sample partial correlation between X and Y
given Z, which is calculated as ρXY |Z but replacing ΣXY Z by its maximum like-
lihood estimate based on the sample. Under the null hypothesis that ρXY |Z = 0,
the test statistic 1

2 log 1+rXY |Z
1−rXY |Z

has an asymptotic Normal(0, 1√
n−3−|Z| ) distri-

bution [2]. Moreover, this hypothesis test is consistent [10]. We call this test



Fisher’s z-test. Under the null hypothesis that ρXY |Z = 0, the test statistic√
n−2−|Z|·rXY |Z√

1−r2
XY |Z

has an exact Student’s t distribution with n − 2 − |Z| degrees

of freedom [2]. We call this test Fisher’s t-test. Note that Fisher’s z-test and
t-test are applicable only when n > |XY Z|: These tests require rXY |Z which
in turn requires the maximum likelihood estimate of ΣXY Z, and this exists iff
n > |XY Z| [11].

In many problems what matters is not whether a false discovery is made or
not but the expected proportion of false discoveries among all the discoveries
made. False discovery rate (FDR) control aims at controlling this proportion.
Moreover, FDR control tends to have more power than familywise error rate con-
trol, which aims at controlling the probability of making some false discovery [3].
Consider testing m null hypotheses H1

0 , . . . ,Hm
0 . The FDR is formally defined

as the expected proportion of true null hypotheses among the null hypotheses
rejected, i.e. FDR = E[|F |/|D|] where |D| is the number of null hypotheses re-
jected (i.e. discoveries) and |F | is the number of true null hypotheses rejected (i.e.
false discoveries). Let p1, . . . , pm denote p-values corresponding to H1

0 , . . . ,Hm
0 .

Moreover, let p(i) denote the i-th smallest p-value and H
(i)
0 its corresponding hy-

pothesis. The following procedure controls the FDR at level α (i.e. FDR ≤ α)
[3]: Reject H

(1)
0 , . . . ,H

(j)
0 where j is the largest i for which p(i) · m

i ·
∑m

k=1
1
k ≤ α.

We call this procedure BY.

3 Learning GGMs

In this section, we present three algorithms for learning GGMs from data. The
third one is the main contribution of this paper, as it aims at learning GGMs
with FDR control when n < q. Hereinafter, we assume that the GGM to learn is
sparse, i.e. it contains only a small fraction of all the q(q − 1)/2 possible edges.
This assumption is widely accepted in bioinformatics for the GGM of a gene
network.

3.1 EE Algorithm

One of the simplest algorithms for learning the GGM G of a Gaussian distri-
bution p consists in making use of the fact that an edge X − Y is in G iff
X 6⊥Y |U \ (XY ). We call this algorithm edge exclusion (EE), as the algorithm
can be seen as starting from the complete graph and, then, excluding from it all
the edges X − Y for which X⊥Y |U \ (XY ). Since EE performs a finite number
of hypothesis tests, EE is consistent when the hypothesis tests are so. Recall
from Section 2 that consistent hypothesis tests exist. Note that EE with Fisher’s
z-test or t-test is applicable only when n > q, since these tests are applicable
only in this case (recall Section 2).

Since EE can be seen as performing simultaneous hypothesis tests, BY can
be embedded in EE to control the FDR. Note that Fisher’s z-test relies on the
asymptotic probability distribution of the test statistic and, thus, may not return



Table 1. IAMB(X) and IAMBFDR(X).

IAMB(X)

1 MB = ∅
2 for i in 1..q − 1 do
3 pi = pvalue(X⊥Yi|MB \ Yi)
4 for i in q − 1..1 do
5 if Y(i) ∈ MB then
6 if p(i) > α then
7 MB = MB \ Y(i)
8 go to line 2
9 for i in 1..q − 1 do

10 if Y(i) /∈ MB then
11 if p(i) ≤ α then
12 MB = MB ∪ Y(i)
13 go to line 2
14 return MB

IAMBFDR(X)

1 MB = ∅
2 for i in 1..q − 1 do
3 pi = pvalue(X⊥Yi|MB \ Yi)
4 for i in q − 1..1 do
5 if Y(i) ∈ MB then

6 if p(i) · q−1
i ·

∑q−1

k=1
1
k > α then

7 MB = MB \ Y(i)
8 go to line 2
9 for i in 1..q − 1 do

10 if Y(i) /∈ MB then

11 if p(i) · q−1
i ·

∑q−1

k=1
1
k ≤ α then

12 MB = MB ∪ Y(i)
13 go to line 2
14 return MB

p-values but approximate p-values. This may cause that the FDR is controlled
only approximately. Fisher’s t-test, on the other hand, returns p-values and,
thus, should be preferred in practice.

3.2 IAMB Algorithm

EE is based on the characterization of the GGM of a Gaussian distribution p as
the UG G where an edge X − Y is in G iff X 6⊥Y |U \ (XY ). As a consequence,
we have seen above that EE is applicable only when n > q. We now describe an
algorithm that can be applied when n < q under the sparsity assumption. The
algorithm is based on the characterization in which an edge X − Y is in G iff
Y ∈ MB(X). Therefore, we first introduce in Table 1 an algorithm for learning
MBs that we call IAMB(X), because it is a modification of the incremental
association Markov boundary algorithm studied in [19, 28]. IAMB(X) receives
the target node X as input and returns an estimate of MB(X) in MB as output.
IAMB(X) first computes p-values for the null hypotheses X⊥Yi|MB \ Yi with
Yi ∈ U \ X. In the table, p(i) denotes the i-th smallest p-value and Y(i) the
corresponding node. Then, IAMB(X) iterates two steps. The first step aims at
removing false discoveries from MB by removing the node with the largest p-
value if this is larger than α. The second step is run when the first step cannot
remove any node from MB, and it aims at adding true discoveries to MB by
adding the node with the smallest p-value if this is smaller than α. Note that
after each node removal or addition, the p-values are recomputed. The original
IAMB(X) executes step 2 while possible and only then executes step 1. This
delay in removing nodes from MB may harm performance as the larger MB gets
the less reliable the hypothesis tests tend to be. The modified version proposed
here avoids this problem by keeping MB as small as possible at all times. We
prove in [19] that the original IAMB(X) is consistent, i.e. its output converges in
probability to a MB of X, if the hypothesis tests are consistent. The proof also
applies to the modified version presented here. The proof relies on the fact that
any Gaussian distribution satisfies the composition property. It is this property



what allows IAMB(X) to run forward, i.e. starting with MB = ∅. Recall from
Section 2 that consistent hypothesis tests exist.

IAMB(X) immediately leads to an algorithm for learning the GGM G of p,
which we just call IAMB: Run IAMB(X) for each X ∈ U and, then, link X and
Y in G iff X is in the output of IAMB(Y ) or Y is in the output of IAMB(X).
Note that, in theory, X is in the output of IAMB(Y ) iff Y is in the output of
IAMB(X). However, in practice, this may not always be true, particulary when
working in high-dimensional domains. That is why IAMB only requires one of
the two statements to be true for linking X and Y in G. Obviously, IAMB is
consistent under the same assumptions as IAMB(X), namely that the hypothesis
tests are consistent.

The advantage of IAMB over EE is that it can be applied when n < q,
because the largest dimension of the covariance matrix for which the maximum
likelihood estimate is computed is not q × q but s× s, where s− 2 is the size of
the largest MB at line 3 of IAMB(X). We expect that s ¿ q under the sparsity
assumption. It goes without saying that there are cases when n < q where IAMB
is not applicable either, namely those where n < s.

3.3 IAMBFDR Algorithm

Unfortunately, IAMB(X) cannot be seen as performing simultaneous hypothesis
tests and, thus, BY cannot be embedded in IAMB(X) to control the FDR. In this
section, we present a modification of IAMB(X) aiming at controlling the FDR.
The modification is based on redefining MB(X) as the set of nodes such that Y ∈
MB(X) iff X 6⊥Y |MB(X) \ Y . We now prove that his redefinition is equivalent
to the original definition given in Section 2. If Y ∈ MB(X), then let us assume to
the contrary X⊥Y |MB(X)\Y . This together with X⊥U\MB(X)\X|MB(X)
implies X⊥ (U \MB(X) \X)Y |MB(X) \ Y by contraction, which contradicts
the minimality property of MB(X). On the other hand, if Y /∈ MB(X) then
X⊥U \MB(X) \X|MB(X) implies X⊥Y |MB(X) \ Y by decomposition.

Specifically, we modify IAMB(X) so that the nodes in the output MB are
exactly those whose corresponding null hypotheses are rejected when running
BY at level α with respect to the null hypotheses X ⊥ Y |MB \ Y . In other
words, Y ∈ MB iff X ⊥ Y |MB \ Y according to BY at level α. To implement
this modification, we modify the lines 6 and 11 of IAMB(X) as indicated in
Table 1. Therefore, the two steps the modified IAMB(X), which we hereinafter
call IAMBFDR(X), iterates are as follows. The first step removes from MB the
node with the largest p-value if its corresponding null hypothesis is not rejected
by BY at level α. The second step is run when the null hypotheses corresponding
to all the nodes in MB are rejected by BY at level α, and it adds to MB the node
with the smallest p-value among the nodes whose corresponding null hypotheses
are rejected by BY at level α.

Finally, we can replace IAMB(X) by IAMBFDR(X) in IAMB and so obtain
an algorithm for learning the GGM G of p. We call this algorithm IAMBFDR.
It is easy to see that the proof of consistency of IAMB(X) also applies to



IAMBFDR(X) and, thus, IAMBFDR is consistent under the same assump-
tions as IAMB, namely that the hypothesis tests are consistent. Unfortunately,
IAMBFDR does not control the FDR: If the true GGM is the empty graph,
then the FDR gets arbitrarily close to 1 as q increases, as any edge discovered
by IAMBFDR is a false discovery and the probability that IAMBFDR discovers
some edge increases with q. However, if we redefine the FDR of IAMBFDR as
the expected FDR of IAMBFDR(X) for X ∈ U, then IAMBFDR does control
the FDR if IAMBFDR(X) controls the FDR: If FDRX denotes the FDR of
IAMBFDR(X), then E[FDRX ] =

∑
X∈U

1
q FDRX ≤ q

q · α. Although we have
not yet succeeded in proving that IAMBFDR(X) controls the FDR, the ex-
periments reported in the next section support the conjecture that IAMBFDR
controls the FDR in the latter sense.

4 Evaluation

In this section, we evaluate the performance of EE, IAMB and IAMBFDR on
both simulated and gene expression data.

4.1 Simulated Data

We consider databases sampled from random GGMs. Specifically, we consider
100 databases with 50, 100, 500 and 1000 instances sampled from random GGMs
with 300 nodes. To produce each of these 400 databases, we do not really sam-
ple a random GGM but a random Gaussian network (GN) [7]. The probability
distribution so sampled is with probability one faithful to a GGM whose UG
is the moral graph of the GN sampled [13]. So, this is a valid procedure for
sampling random GGMs. Each GN sampled contains only 1 % of all the pos-
sible edges in order to model sparsity. The edges link uniformly drawn pairs of
nodes. Each node follows a Gaussian distribution whose mean depends linearly
on the value of its parents. For each node, the unconditional mean, the parental
linear coefficients and the conditional standard deviation are uniformly drawn
from [-3, 3], [-3, 3] and [1, 3], respectively. We do not claim that the databases
sampled resemble gene expression databases, apart from some sample sizes and
the sparsity of the models sampled. However, they make it possible to compute
performance measures such as the power and FDR. This will provide us with
some insight into the performance of the algorithms in the evaluation before we
turn our attention to gene expression data in the next section.

Table 2 summarizes the results of our experiments with Fisher’s t-test and
α = 0.01, 0.05. Each entry in the table is the average of 100 databases sam-
pled from 100 GGMs randomly generated as indicated above. We do not report
standard deviation values because they are very small. For EE, power is the
fraction of edges in the GGM sampled that are in G, whereas FDR is the
fraction of edges in G that are not in the GGM sampled. For IAMB(X) and
IAMBFDR(X), powerX is the fraction of nodes in MB(X) that are in the out-
put MB of IAMB(X) or IAMBFDR(X), FDRX,1 is the fraction of nodes in



Table 2. Performance of the algorithms on simulated data.

α = 0.01 α = 0.05

n algorithm sec. power FDR power FDR1 FDR2 sec. power FDR power FDR1 FDR2
50 IAMB 4 0.49 – 0.45 0.53 0.19 4 – – – – –

IAMBFDR 1 0.36 – 0.35 0.05 0.00 1 0.39 – 0.37 0.05 0.00
100 IAMB 4 0.59 – 0.52 0.46 0.19 42 0.65 – 0.57 0.82 0.37

IAMBFDR 2 0.47 – 0.43 0.04 0.00 2 0.49 – 0.44 0.04 0.00
500 EE 0 0.46 0.00 0.52 – – 0 0.49 0.00 0.55 – –

IAMB 9 0.78 – 0.68 0.37 0.22 24 0.83 – 0.73 0.70 0.44
IAMBFDR 6 0.68 – 0.59 0.02 0.00 7 0.70 – 0.60 0.02 0.00

1000 EE 0 0.68 0.00 0.70 – – 0 0.70 0.00 0.73 – –
IAMB 14 0.84 – 0.74 0.35 0.23 27 0.88 – 0.78 0.68 0.46
IAMBFDR 10 0.76 – 0.66 0.02 0.00 11 0.77 – 0.67 0.02 0.00

MB that are not in MB(X), and FDRX,2 is the fraction of nodes Y in MB
such that X⊥Y |MB \ Y . For IAMB and IAMBFDR, we report power, FDR1

and FDR2 which denote the average of powerX , FDRX,1 and FDRX,2 over all
X ∈ U. As discussed in Section 3, EE controls FDR, whereas IAMBFDR aims
at controlling FDR2. We also report EE’s power for IAMB and IAMBFDR as
well as power for EE, in order to assess the relative performance of the algo-
rithms. Finally, we also report the runtimes of the algorithms in seconds (sec.).
The runtimes correspond to C++ implementations of the algorithms run on a
Pentium 2.0 GHz, 1 GB RAM and Windows XP.2 We draw the following con-
clusions from the results in the table:

– As discussed above, EE is applicable only when n > q which, as we will see
in the next section, renders EE useless for learning GGMs of gene networks
from most gene expression databases.

– In the cases where EE is applicable, EE controls FDR. This was expected
as BY has been proven to control the FDR [3].

– IAMBFDR controls FDR2, though we currently lack a proof for this fact.
IAMBFDR does not control FDR1, though it keeps it pretty low. The rea-
son why IAMBFDR does not control FDR1 is in its iterative nature: If
IAMBFDR fails to discover a node in MB(X), then a node Y /∈ MB(X) may
appear in the output MB of IAMB(X) or IAMBFDR(X). We think that
this is a positive feature, as Y is informative about X because X 6⊥Y |MB\Y
for Y to be included in MB. The average fraction of nodes in MB such that
Y /∈ MB(X) but X 6⊥Y |MB \ Y is FDR1 − FDR2.

– IAMB controls neither FDR1 nor FDR2. As a matter of fact, the number
of false discoveries made by IAMB(X) may get so large that the size of MB
at line 3 exceeds n− 3, which implies that the hypothesis tests at that line
cannot be run since the maximum likelihood estimates of the correspond-
ing covariance matrices do not exist (recall Section 2). When this problem
occurred, we aborted IAMB(X) and IAMB. With α = 0.05, this problem
occurred in the 100 databases with 50 samples, and in 26 databases with
100 samples. This problem also occurred when we applied IAMB to learn a

2 These implementations are available at www.ifm.liu.se/∼jmp.



GGM of a gene network from gene expression data (see next section), which
compromises the use of IAMB for such a task.

– IAMBFDR outperforms EE in terms of power whereas there is no clear
winner in terms of power. That IAMB outperforms the other two algo-
rithms in terms of power and power is rather irrelevant, as it controls neither
FDR1 nor FDR2. IAMBFDR is actually more powerful than what power
and power indicate, as none of these measures takes into account the nodes
Y ∈ MB such that Y /∈ MB(X) but X 6⊥ Y |MB \ Y which, as discussed,
above are informative about X.

In the light of the observations above, we conclude that IAMBFDR should
be preferred to EE and IAMB: IAMBFDR offers FDR control while IAMB
does not, moreover EE can only be run when n > q in which case IAMBFDR
is more powerful. Furthermore, the runtimes reported in Table 2 suggest that
IAMBFDR scales to high-dimensional databases such as, for instance, gene ex-
pression databases. The next section confirms it. This is due to the fact that
IAMBFDR exploits the composition property of Gaussian distributions to run
forward, i.e. starting from the empty graph.

Finally, it is worth mentioning that we repeated all the experiments above
with the unconditional means and the parental linear coefficients being uniformly
drawn from [-1, 1], and the conditional standard deviations being equal to 1. The
results obtained led us to the same conclusions as those above. As a sanity check,
we also repeated all the experiments above with the sampled GGMs containing
no edge. The results obtained confirmed that EE and IAMBFDR control the
FDR even in such an extreme scenario whereas IAMB does not.

4.2 Rosetta Compendium

The Rosetta compendium [8] consists of 300 expression profiles of the yeast Sac-
charomyces cerevisiae, each containing expression levels for 6316 genes. Since for
this database n < q, EE could not be run. Furthermore, the run of IAMB had to
be aborted, since the problem discussed in the previous section occurred. There-
fore, IAMBFDR was the only algorithm among those studied in this paper that
could be run on the Rosetta compendium. Running IAMBFDR with Fisher’s
t-test and α = 0.01 took 7.4 hours on a Pentium 2.4 GHz, 512 MB RAM and
Windows 2000 (C++ implementation). The output contains 32641 edges, that
is 0.16 % of all the possible edges.

In order to illustrate that the GGM learnt by IAMBFDR provides biological
insight into the yeast gene network, we focus on the iron homeostasis pathway.
Iron is an essential nutrient for virtually every organism, but it is also potentially
toxic to cells. The iron homeostasis pathway regulates the uptake, storage, and
utilization of iron so as to keep it at a non-toxic level. According to [12, 20, 21,
23, 24], yeast can use two different high-affinity mechanisms, reductive and non-
reductive, to take up iron from the extracellular medium. The former mechanism
is composed of the genes in the FRE family, responsible for iron reduction, and
the iron transporters FTR1 and FET3, while the latter mechanisms consist of
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Fig. 1. Subgraph of GGM learnt by IAMBFDR that is induced by the genes that are
adjacent to the four genes (square-shaped) involved in the non-reductive mechanism
for iron uptake. Double-lined genes are related to iron homeostasis.

the iron transporters ARN1, ARN2, ARN3 and ARN4. The iron homeostasis
pathway in yeast has been previously used in [16, 17] to evaluate different algo-
rithms for learning gene network models from gene expression data. These two
papers conclude that their algorithms provide biologically plausible models of
the iron homeostasis pathway after finding that many genes from that pathway
are connected to ARN1 through a path of length one or two. We here take a
similar approach to validate the GGM learnt.

Figure 1 depicts the subgraph of the GGM learnt that is induced by the
genes that are adjacent to the four genes in the non-reductive mechanism for
iron uptake, i.e. ARN1, ARN2, ARN3 and ARN4. These four genes are square-
shaped in the figure. In addition to these, the figure contains many other genes
related to iron homeostasis. These genes are double-lined in the figure. We now
elaborate on these genes. As discussed above, FRE1, FRE2, FRE3, FRE6, FTR1
and FET3 are involved in the reductive mechanism for iron uptake. According
to the Gene Ontology search engine AmiGO [1], FET5, MRS4 and SMF3 are
iron transporters, FIT2 and FIT3 facilitate iron transport, PCA1 is involved in
iron homeostasis, and ATX1 and CCC2 are involved in copper transport and
are required by FET3, which is part of the reductive mechanism. According to



[24], BIO2 is involved in biotin synthesis which is regulated by iron, GLT1 and
ODC1 are involved in glutamate synthesis which is regulated by iron too, LIP5
is involved in lipoic acid synthesis and regulated by iron, and HEM15 is involved
in heme synthesis and regulated by iron too. Also according to [24], TIS11 and
the biotin transporter VHT1 are regulated by AFT1, the major iron-dependant
transcription factor in yeast. Though AFT1 is not depicted in the subgraph in
Figure 1, it is noteworthy that it is a neighbor of FET3 in the GGM learnt. The
relation of the zinc transporter ZRT3 to iron homeostasis is documented in [23].
Finally, [5] provides statistical evidence that the following genes are related to
iron homeostasis: LEU1, AKR1, HCR1, CTT1, ERG3 and YER156C. Besides,
the paper confirms the relation of the first two genes through miniarray and
quantitative PCR.

In summary, we have found evidence supporting the relation to iron home-
ostasis of 32 of the 64 genes in Figure 1. This means that, of the 60 genes
that IAMBFDR linked to the four genes that we decided to study, 28 are re-
lated to iron homeostasis, which is a substantial fraction. Further evidence of
the accuracy of the GGM learnt comes from the fact that these 60 genes are,
according to the annotation tool g:Profiler [22], significantly enriched for sev-
eral Gene Ontology terms that are related to iron homeostasis: GO:0055072 iron
ion homeostasis (p-value < 10−5), GO:0006825 copper ion transport (p-value
< 10−7), GO:0015891 siderophore transport (p-value < 10−4), GO:0006826 iron
ion transport (p-value < 10−14), GO:0005506 iron ion binding (p-value < 10−19),
GO:0005507 copper ion binding (p-value < 10−6), GO:0000293 ferric-chelate re-
ductase activity (p-value < 10−6), GO:0005375 copper ion transmembrane trans-
porter activity (p-value < 10−4), GO:0005381 iron ion transmembrane trans-
porter activity (p-value < 10−5), and GO:0043682 copper-transporting ATPase
activity (p-value = 10−4).

We think that the conclusions drawn in this section, together with those
drawn in the previous section, prove that IAMBFDR is scalable and reliable for
inferring GGMs of gene networks when n < q. Moreover, recall that neither EE
nor IAMB could be run on the database used in this section.

5 Discussion

In this paper, we have proposed IAMBFDR, an algorithm for controlling the
FDR when learning GGMs and n < q. We have shown that the algorithm works
well in practice and scales to high-dimensional domains. In particulary, we have
shown that IAMBFDR is able to provide biological insight in domains with thou-
sands of genes but many fewer samples. Other works that propose algorithms
for controlling the FDR when learning GGMs and n < q are [25, 26]. However,
the correctness of the algorithm proposed in the first paper is neither proven
nor fully supported by the experiments reported (e.g. see the results for sample
size 50 in Figure 6 in [25]), whereas the algorithm in the second paper does not
really aim at controlling the FDR but the closely related local FDR. IAMBFDR
resembles the algorithms proposed in [6, 14] in the sense that they all learn the



GGM of a gene network by learning the MB of each node. Specifically, [6] takes a
Bayesian approach that combines elements from regression and graphical mod-
els whereas [14] uses the lasso method. However, the main difference between
our algorithm and theirs is that the latter do not aim at controlling the FDR.
For the algorithm proposed in [14], this can clearly be seen in the experimental
results reported in Table 1 in that work and in Figure 3 in [26].
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