Title: | Combining Inductive Logic Programming, Active Learning and Robotics to Discover the Function of Genes. |
Authors: | C.H. Bryant, S.H. Muggleton, S.G. Oliver, D.B. Kell, P. Reiser, and R.D. King |
Series: | Linköping Electronic
Articles in Computer and Information Science ISSN 1401-9841 |
Issue: | Vol. 6(2001): nr 012 |
URL: | http://www.ep.liu.se/ea/cis/2001/012/ |
Abstract: |
We aim to partially automate some aspects of scientific
work, namely the processes of forming hypotheses, devising trials to
discriminate between these competing hypotheses, physically performing
these trials and then using the results of these trials to converge
upon an accurate hypothesis. We have developed ASE-Progol, an Active
Learning system which uses Inductive Logic Programming to construct
hypothesised first-order theories and uses a CART-like algorithm to
select trials for eliminating ILP derived hypotheses. We have
developed a novel form of learning curve, which in contrast to the
form of learning curve normally used in Active Learning, allows one to
compare the costs incurred by different leaning strategies.
We plan to combine ASE-Progol with a standard laboratory robot to create a general automated approach to Functional Genomics. As a first step towards this goal, we are using ASE-Progol to rediscover how genes participate in the aromatic amino acid pathway of Saccharomyces cerevisiae. Our approach involves auxotrophic mutant trials. To date, ASE-Progol has conducted such trials in silico. However we describe how they will be performed automatically in vitro by a standard laboratory robot designed for these sorts of liquid handling tasks, namely the Beckman/Coulter Biomek 2000. Although our work to date has been limited to trials conducted in silico, the results have been encouraging. Parts of the model were removed and the ability of ASE-Progol to efficiently recover the performance of the model was measured. The cost of the chemicals consumed in converging upon a hypothesis with an accuracy in the range 46-88% was reduced if trials were selected by ASE-Progol rather than if they were sampled at random (without replacement). To reach an accuracy in the range 46-80%, ASE-Progol incurs five orders of magnitude less experimental costs than random sampling. ASE-Progol requires less time to converge upon a hypothesis with an accuracy in the range 74-87% than if trials are sampled at random (without replacement) or selected using the naive strategy of always choosing the cheapest trial from the set of candidate trials. For example to reach an accuracy of 80%, ASE-Progol requires 4 days while random sampling requires 6 days and the naive strategy requires 10 days. |
---|---|
Keywords: |
Intended publication 2001-08-30 |
Postscript Checksum |
---|---|
Info from authors | |
Third-party information |
Editor-in-chief: editor@ep.liu.se Webmaster: webmaster@ep.liu.se | ~ |