
Industrial perspective on static
analysis
by B A Wichmann, AA. Canning, D.L. Clutterbuck, L A Winsborrow,
N.J. Ward and D.W.R. Marsh

Static analysis within industrial applications
provides a means of gaining higher assurance
for critical software. This survey notes several
problems, such as the lack of adequate
standards, difficulty in assessing benefits,
validation of the model used and acceptance
by regulatory bodies. It concludes by outlining
potential solutions and future directions.

1 Introduction
Static analysis tools are gaining ground as a complemen-
tary technique to conventional dynamic testing in order to
obtain additional assurance on critical items of software.
Unfortunately, the exact benefits of static analysis are hard
to quantify. In addition, the absence of any effective stan-
dards in the area implies that there is no yardstick against
which to measure benefits.

Two major safety-critical software standards give support
for static analysis: the CJK Interim Defence Standard 00-55
[l], in which the support is detailed and specific, and the
international civil avionics standard in which design
analysis forms a key role 121. In the UK, 00-55 has had a
significant impact, not only on the defence area, but in
other related critical software, such as in the nuclear
sector.

For a UK Nuclear Power Plant 131, the responsibility for
demonstrating safety rests with the operator. Four main
elements are being used to justify new software-based
safety systems :

s the standard and quality of the design and production
processes.

independent assessments, including extensive static
analysis of the code.

a challenging dynamic test to give confidence on reli-
ability.
0 a one year trial before operation.

The analysis performed by Nuclear Electric for the Dunge-
ness 'B Single Channel Trip system and the Siiewell B
Primary Protection System provides a good illustration of
the current industrial application of static analysis tech-
niques (see Sections 2.2 and 2.4).

In other application areas, the examples given here
demonstrate that industry is increasingly using static

analysis for quality assurance purposes. However, the
encouragement of further adoption requires that the basic
issues and the benefits clearly justity the costs. In this
paper, we highlight the issues and indicate likely develop
ments.

2 Current experience
Static analysis has two essential characteristics which must
be bome in mind when studymg any specific application.
These two characteristic are

0 nature; this is the broad objecthe of the analysis
which could be portability against a language standard or
correctness of some aspect against a program specifi-
cation,

depth; this indicates the semantic depth of the
analysis. For example, analysis of program layout is very
shallow (and hardly worth even mentioning) whereas
program proof is very deep.

It is important to note that depth is not just a single dimen-
sional measure; the fact that an algorithm has been
proved to be mathematically correct does not guarantee
other properties which may be of interest such as main-
tainability, portability or efficiency.

We now consider some examples to illustrate current
practice.

2.1 Language code auditing
The idea that computer software should be used to
analyse source programs rather than compile them, has a
history of at least 25 years. The PFORT program was
designed to locate potential problems with the portability
of Fortran code. Vendors had distinct dialects, and normal
compilation did not indicate the program was correct
according to the standard.

All high-level language code is audited by at least one
compiler. In consequence, the requirement is to analyse
the code in ways the compiler does not such that signifi-
cant benefit is obtained.

This implies that the auditing that is useful depends on
the requirements of the corresponding language stan-
dards. Implicit declaration in Fortran can lead to unde-
tected program errors, and therefore a tool to list implicitly
declared variables can be useful (although this feature is

69 Software Engineering Journal March 1995

included with better quality compilers). On the other hand,
such analysis is not required with most other languages, as
declarations must be explicit.

The nature of several features of language auditing
tools varies as follows:

0 layout analysis and reformatting.
0 identification of language constructs known to be non-
portable.
0 error detection not performed by compilers.
0 flow-control analysis.
0 detection of the use of data before a value has been
assigned to it (an important special case of error
detection).

For the deeper analysis features, many commercial pro-
ducts use a common analysis phase after converting the
source into a standard form. This allows the tools to
support several languages, but may reduce their effec.
tiveness on aspects that are specific to just one language.
(An interesting example of a language-specific analysis is
that of exception propagation in Ada given elsewhere [4).

Several commercial products are available for the
analysis of C code. However, the weak type checking and
lack of dynamic checking in C implies that modest tools
are of benefit here. Such tools would not be useful for the
more strongly typed languages such as Pascal, Ada and
Modula.2; hence the importance of the choice of language
for critical systems choice [51. The fact that the primary
purpose of one tool for C code is to detect the overwriting
of the operating system indicates the difficulty of proving
the integrity of such code.

For languages with insecure compilation of com-
ponents, a very useful tool is one that checks whether the
components of a program, prior to their integration, are
compatible at the language level. This clearly requires
source text control of the components, and an appropriate
inter-procedural analysis. For C, make performs part of
this, but even with function prototypes in ANSI-C, the
analysis is far from complete. In contrast Ada and Modula-
2 require that this analysis is performed as part of the
compilation process. The impact of languages on
program quality is analysed in more detail elsewhere [6].

The industrial use of language source code auditing is
mixed. Use of tools to establish portability is very wide-
spread as users accept that testing on a large number of
different platforms is impossible. However, the use of static
analysis to establish the ‘quality’ of the source code is quite
rare. A major area of concem is that there seems to be
little appreciation of the differences in the strength of the
various tools on offer.

2.2 Sizewell code analysis

This example of static analysis is an overview of the work
undertaken to assess the conformity of a large PUM
program with i t s specification. Using the terminology
above, this analysis is quite deep. The software is the
Primary Protection System for the Sizewell Pressurized
Water Reactor. This Section has been summarised from
previous work [7].

The software contains about 100000 lines of PUM,
which were to be checked against an English specification.

It is therefore clear that the process could not be entirely
automatic. The primary analysis makes use of the
MALPAS tools, which were developed in the UK initially at
RSRE Malvem (now DRA) and then at TA Consultancy Ser-
vices Ltd. MALPAS is a tool kit which is capable of quite
deep analysis, including formal proof (the compliance
analyser).

The MALPAS tools require that the source code is trans-
lated into an intermediate code for subsequent analysis.
For Siewell, the analysis was undertaken bottom-up, start.
ing from those procedures which called no others. To
each procedure was added a specification of its input and
output parameters, which involved some information not
necessarily directly available from the source code. The
analysis then produced the output values as functions of
the input values for each procedure.

A number of problems were faced with this analysis.

0 There is no precise definition of the PUM language
which would have provided a better foundation for the
PUM to intermediate language translator.
0 MALPAS was unable to handle certain PUM construc-
ts directly, such as pointers (see below).
0 The complete system was too large to handle in one
analysis, and therefore the results from individual pro-
cedures had to be combined.
0 As the requirements were informally expressed,
manual analysis of the MALPAS results was required (with
some subjective judgement).

All deep analysis tools have problems with pointers, due to
the potential for aliasing. This problem is compounded
with PUN as references are used for parameter passing.
Fortunately, many such uses can be shown to involve the
input of a value or the output of a result However, a major
use of explicit references in the PUM source code is to
refer to large tables giving the configuration of the system.
These references can be handled by replacing the refer-
ences by the object being referenced (as they are
constant).

The first stage of the analysis involved the less deep
methods: control flow, data use and information flow
analyses. The first two are conventional and the last one
reveals those inputs that affect each given output

The deepest analysis is that for compliance against the
specifications. Here, manual input is required to provide
pre- and postconditions for procedures, and assert state-
ments to cut loops (i.e. provide loop invariants so that the
property of the loop can be verified).

Areas that have proved difficult to handle were double
length arithmetic and the use of shared memory. Natu-
rally, some areas were not been assessed with the
MALPAS tool, and hence have been addressed by other
means.

The validation required that all potential issues were
handled formally. No errors were found that would have
made the system unsafe, and only 6% of issues were cate-
gorised as a non-critical code change with the rest being
documentation anomalies.

2.3 Sizewell object code validation analysis

For some applications, total dependence on the compiler
is inappropriate. In such cases, some means must be

Software Engineering Journal March 1995 70

introduced to validate the object code produced by the
compiler. As compilers are known to contain errors, some
protection against these would appear to be a wise precau-
tion.

For the Sizewell Primary Protection System, an analysis
of the PROM contents was undertaken [8] against the cor.
responding source text (mainly PUM-86 code, as used in
Section 2.2). This summary provides information which will
be available shortly in a conference proceedings. Here, the
two sources of information (source file and PROM) were
unambiguous, and hence, at least potentially, the compari-
son could have been entirely automatic.

The analysis used the same MALPAS tools, but in a
slightly different way. The PROM contents were analysed
by a number of tools to restore a near equivalent of
assembly language. This output contained the source
code names of locations, deduced from the assembler
tables produced with the PROM and checked independent.
ly by variable placement based on source code analysis.

The PUM and the assembler listings were separately
translated into MALPAS Intermediate Language (IL). These
forms of IL should be the 'same' when analysed by the
algebraic simplifier. However, the comparison had to be
undertaken at code segment level, which requires that
nodes in the code were marked as boundaries between
segments. The marking of nodes sometimes required
manual assistance, but the comparison of simpler pro-
cedures was entirely automatic.

This process was used on 100000 lines of PUM code
to reveal two 'bugs', in the sense that the PUM did not
match the object code. In both cases, the incorrect object
code would not have made the system unsafe. One of the
bugs was in register handling, a common cause of com-
piler bugs. The other bug was that the PUM compiler
accepted the comparison of two pointers (p t rl c p t 1-2).
even though this did not seem to be allowed according to
the user guide. Interestingly, this compiler bug would have
been detected by the conventional compiler validation ser-
vices used for Pascal or Ada. A number of aspects of the
code comparison needed to be carefully considered in the
context of critical systems. A successful comparison would
not guarantee that the object code was correct. For
example, the algebraic comparison did not model all fea-
tures of the finite arithmetic used in the actual code. Work
by Pavey and Winsborrow 181 should be consulted for
details of the modelling method and for a deeper under-
standing of the strength of the comparison.

2.4 Dungeness 'B' Single-Channel Trip System

The Single-Channel Trip System (SCTS) for the Dunge-
ness ' B Advanced Gas.cooled Reactors is a small
microprocessor-based protection system designed by AEA
Technology and based on the Inherently Safe Automatic
Trip (ISAT) concept [3, 91. Full static analysis including
compliance analysis (formal proof) was performed using
the MALPAS toolset by Rolls Royce G Associates under
the direction of Nuclear Electric. An informal specification
was available and it was necessary to derive a formal spe-
cification from this in order to proceed with full static
analysis.

In this paper, we are not considering the validation of
the formal specification itself, but the subsequent of

Software Engineering Journal March 1995

showing that the software conforms to the formal specifi-
cation. The software was coded in Intel 8086 and 6809
assembly language, with the advantage that static analysis
was performed at a level very close to the machine code
and the disadvantage that, because the code under
analysis was low-level, the modelling was necessarily
detailed and complex. No anomalies compromising safety
were found. A path in the code was revealed which would
have activated the SCTS trip if the cubicle temperature
had fallen below freezing. As the cubicles are kept warm
by the reactor, this would only have been a problem if the
reactor had been shut down for some while and start-up
was required on a very cold day. This error had already
been found independently by AEA Technology.

In addition, a full comparison was performed between
source code and PROM files using purpose-built source/
code comparison tools written by Nuclear Electric. This
was more straightforward than the source/code compari-
son on the Sizewell 'B PPS code described in the Section
2.3, as the mapping between source and code was one-to-
one.

The results of the static analysis described above were
incorporated as part of the safety case of the SCTS and
contributed to Nuclear Electric's successful submission to
the Nuclear Installation Inspectorate. The SCTS is now in
use; it is the first microprocessor-based protection system
to be licensed for use in one of Nuclear Electric's power
stations.

2.5 SPARK development tools

The SPARK system is designed to aid the development of
critical code in Ada 83. The main tool in the system is the
SPARK examiner, enforcing a small subset of Ada which
makes some forms of analysis much easier. The tool also
requires that some annotations are added to the program
text. These annotations provide a form of weak specifi-
cation of the functionality of each subprogram, but they
are also needed to allow important properties of the
SPARK subset to be checked by simple linear analysis, in
particular the absence of side-effects in functions and of
aliasing between parameters of a subprogram. Both alia-
sing and side-effects may cause Ada programs to be
erroneous without being detected by an Ada compiler.
Their absence is also a prerequisite for the validity of the
later stages of analysis performed by the SPARK Exam-
iner.

In essence, the objective with SPARK is to allow proper-
ties of programs to be composed from the properties of
the constituent subprograms. For details of SPARK, see
work by Carre [lo, 1 I] and for an appraisal of some
aspects of the language, work by Wichmann [121.

SPARK has been quite widely used in the UK, almost
entirely on safety systems. The benefits are that the less
deep forms of static analysis are an automatic conse-
quence of the subset Hence access to an unassigned vari-
able is impossible. In particular, control flow analysis is no
longer required (it is subsumed into the grammar), and
data and information have simple recursive formulations
allowing them to be performed as the language is parsed.
(In fa* data flow is subsumed into information flow [13D.
The most important property which is needed From a
SPARK program, although not a consequence of the

71

subset, is that of being exception-free (i.e. not dynamically
breaking certain language rules).

Proving that a SPARK program is exception-free would
be possible with a tool being developed for SPARK [14],
but this could require additional annotations, and may be
expensive to undertake. An existing tool can be used to
verify properties of SPARK code [I 51.

As SPARK is an Ada subset, a conventional Ada com-
piler can be used for code generation. Indeed, SPARK
does provide some escape mechanisms so that a com-
plete system does not need to be written in the subset.
One potential problem arises if a design tool is used to
produce some of the Ada, which then does not fit within
the subset
To summarise, SPARK Examiner is very much a

forward engineering tool (i.e. for program development
rather than validation after development), and hence
cannot be applied to arbitrary Ada code. However, the inte-
gration of the automatic forms of static analysis into the
development process is claimed both to increase their
benefit and reduce their cost.

2.6 Assembly code proof in avionics

A deep analysis of assembly code subroutines has been
carried out for a civil aviation manufacturer seeking com-
pliance to DO-178B. The subroutines, part of an engine
control unit (FADEC), have been proved to implement a
specification written in predicate logic using an approach
essentially similar to Hoare logic. This work, and other
similar analyses, has been carried out using the SPADE
tools, developed in the UK initially at Southampton Uni-
versity and then at Program Validation Ltd. O'Neill et al.
[161 describe the application and the process in detail.

The steps of this form of analysis are as follows.

2.6. I : The assembly code subroutine is translated into the
formal description language (FDL) accepted by the
SPADE tool, either using a translator specific to the
assembly code (in this case Zilog 28000) or by hand. (All
the other steps are independent of the particular assembly
code.)

The basis of this translation is a formal model of the
assembly code specified in FDL. Only a subset of the
assembly language can be accepted, for two reasons.
First, some instructions, such as those dealing with inter-
rupts, cannot be modelled using this approach. Secondly,
rules must be introduced which allow both the control flow
of the subroutine and the data variables used by it to be
identified statically. For example, data may only be referred
to using symbolic addresses; an annotation may be
required to describe the properties of the data variable cor-
responding to each symbol. As these rules are similar to a
typical 'code of practice' for writing assembly code, their
adoption is easier than might be imagined; indeed the
advantages of a tool to check adherence to the code of
practice are readily accepted.

Clearly, assembly code programs cannot be written
without explicit manipulation of memory addresses; this is
accommodated by requiring an annotation to identify the
'array' (i.e. a contiguous region of memory) accessed by
each instruction which uses indirect addressing; the cor-

72

rectness of these annotations are checked during the final
stage of the process.

2.6.2: Analysis of the control, data and information flow of
the subroutine is then carried out on the FDL model of the
subroutine, using the SPADE flow analysers. This step is
important for two reasons: first, flow anawls is largely
automatic and so provides an inexpensive way to reject
code with gross errors at an early stage. Secondly, the later
(deeper) steps of the analysis may not be valid in the pres-
ence of certain forms of flow error.

2.6.3: The functionality of the routine can now be speci-
fied using a precondition and postcondition written in a
formal notation (essentially a first-order predicate logic with
a simple type system). Typically, these formal specifi-
cations must be derived from informally written functional
specifications, which may require some dialogue with the
originator of the code. Until formal specification is more
widely practised as part of the development process, the
difficulty of this step limits the applicability of this form of
analysis.

2.6.4: The SPADE Verification Condition Generator is
then used to generate the theorems, which must be
proved to show that the routine correctly implements the
specification. If the routine includes loops, invariant predi-
cates must first be added using annotations. This step
differs from the previous one because these invariants
form the first stage of the correctness proof rather than
being part of the specification of the routine.

2.6.5: A complete machinechecked proof of each cor-
rectness theorem is then constructed interactively, using
the SPADE Proof Checker.

So far applications of these techniques have analysed only
single subroutines without subroutine calls. There is
nothing preventing their application to multiple levels of
subroutine except the point already noted; the difficulty of
formally specifying pre-existing programs.

The validity of the analysis relies on a precise under-
standing of the semantics of the particular processor; as
manufacturers do not het) publish formal descriptions of
bnctionality, the formal model has to be derived from
informal documentation.

Even more critically, the analysis relies on the definition
of the subset the enforcement of its rules and the accu-
racy of its model. For example, it is well known that the
standard rules of a Hoare logic are not valid in the pres-
ence of aliasing (i.e. the use of multiple names for the
same variable). As not all the assumptions of the model
can be enforced automatically, a rigorous process with
appropriate review is a vital component of the analysis.

Similar forms of analysis have also been carried out on
industrial software for Motorola 68020 and other pro-
cessors. A somewhat more formal approach, using the
Boyer-Moore theorem prover, is described elsewhere [171.

2.7 Accredited testing

There is a key question posed by potential users: 'is the
software appropriate for this critical context?' The context
for the most critical software, for which static analysis is

Software Engineering Journal March 1995

often used, is either safety or security. To provide any basis
for the answer to such a question requires a deep under-
standing of the software and the context of its use. Inevita.
bly, the answer must be a matter of professional
judgement. However, if major features of the software can
be determined by objective testing, then the subjective
nature of the final judgement will be easier to justify and
defend (which could involve the courts in the case of sig-
nificant damages for safety systems).

International standards for the accreditation of testing
involve assessment of the operations of testing labor-
atories, according to IS0 Guide 25, or EN45001 (or
NAMASIMIO in the UK). These standards ensure that
testing (or measurement) is carried out in an objective,
repeatable fashion, which therefore allows other
(accredited) laboratories to compete without jeopardising
the quality of the work

NAMAS has recently awarded ERA Technology the first
accreditation for testing safety-critical software. Five of the
procedures used by ERA fulfil the requirements of NAMAS
for objectivity, although none of them are defined in exist.
ing standards. Laboratories may test products to in-house
procedures when suitable standards do not exist.

Four of the five procedures within the scope of the ERA
accreditation involve static analysis as follows:

0 identification of unstructured constructs.
0 static analysis of data use.
0 determination of worst case execution times.
0 static analysis of module calling.
0 dynamic testing, not relevant to this survey.

In the ERA case, there are relationships between the prc-
cedures in use. Hence the data analysis depends on the
absence of unstructured constructs and having analysed
the module calling structure. In addition, the information
gained from the static analysis is used in the dynamic
testing. The methods used involve much manual analysis
and therefore are complex to administer for larger items of
software. Nevertheless, there is scope for automation using
simple techniques which can themselves be checked rigor-
ously.

Clearly, other procedures, which are likely to be more
subjective, are needed to determine the suitability of an
item of software for a safety-critical application. If pro-
cedures such as these could be standardised, then regula-
toly agencies would have a better foundation for the
certification of systems, or authorising their use. In the
context of the Single Market, a European scheme is
needed, which should build on the widely recognised
Germany scheme based on VDE801.

For the systems provider, testing undertaken by an
accredited, independent testing laboratory has the advan-
tage of providing third party assessment of the testing
process, which must afford a degree of legal protection.

3 Problems and future trends

The absence of adequate standards or definitions for static
analysis is a barrier to any comparison of the effectiveness
of its use in producing critical systems. Unfortunately,
producing an accurate, effective standard would not be

easy. To illustrate this, consider a basic question on which
much subsequent analysis can depend:

7s the control flow of the program well defined?’

For the very simplest programs, this question can be
answered with modest analysis. Now consider the Pascal
fragment:

v a r
B Boo lean ;

. . .
c a s e B o f
true: . . .
f a l s e : . . .

end ;

This example can cause some systems to crash due to a
flow control problem. The reason is that if B has not been
assigned a value and the bit-pattern is neither true nor
false, the program counter for the case statement makes
an uncontrolled jump. An inspection of the code gener.
ated by the compiler would reveal this problem but that is
not the natural method of resolving such issues. This
example shows that analysis of control flow can depend on
data flow.

The above example raises the issue of analysis at differ-
ent levels, in this case, at programming language level or
machine code level. Compilers often insert code that is not
actually required in an application, because the compiler
does not have the information needed to remove i t Static
analysis may then reveal the unnecessaly code, which can
cause a conflict if the programming rules require that no
such code is present [2]. Some compilation systems are
specifically designed to exclude unnecessary code [le].

Program analysis will depend on the semantics of the
language and, as noted above, the strength of the analysis
may well depend on subtle features of the language. Even
apart from the language, the strength of static analysis
tools varies considerably. Hence even a means of quantify-
ing the depth would be helpful.

From the perspective of the application, the concerns
are different For example, design and development
methods could be rigorous enough to avoid the use of a
conventional language, as with the B-Methodology 1191.
Some safety and security standards do have requirements
on languages; details are to be found elsewhere (201.

3.1 Ada 9X safety and security annex

The production of the Ada 9X Safety and Security Annex
[21] required a study of how static analysis could be made
more effective. First, some of the known insecurities in Ada
83 were simply removed in Ada 9X [22]. Secondly, fea-
tures were added to the Annex to aid validation:

0 The user can state that certain language features are
not being used in the entire program. This aids static
analysis and also provides the compiler with information to
avoid including unwanted machine code.
0 A requirement to provide transparency between the
Ada 9X source code and the actual machine code has

Software Engineering Journal March 1995 73

been added. It is then easier to relate an analysis at one
level to the program at the other level.

3.2 Effective formal definition of programming
languages

Accurate static analysis of a program text depends on a
precise definition of the programming language in ques-
tion. Unfortunately, interpreting the semantics of all current
programming language standards depends, to a certain
extent on subjective judgement. This can create uncer-
tainty which can make static analysis less effective, or
worse, mean that the software does not have a well defined
behaviour. You can produce a description of a language
just for the purpose of program validation [23], but such a
description should be part of the standard or at least
widely reviewed. Currently, a formal definition (241 of the
SPARK subset of Ada 83 is being developed specifically
with the aim of overcoming such problems.

3.3 Objective assessment of validity of analysis

Many forms of analysis, especially the deeper types, are
carried out on a model of the program, intended to r ep
resent only the properties required for the analysis. For
example, all binary arithmetic operators can generally be
considered equivalent for flow analysis. We need to be able
to assess objectively the adequacy of this model for the
intended anatysis.

Aliasing of variables, which can serve as an example of
the difficulties which must be faced, occurs when two vari-
ables refer to the same area of memory (either wholly or
partly) and therefore behave as a single variable. Aliasing
does not affect the validity of control flow analysis;
however, as a modification to a variable changes the
values of all its aliases as well, data flow analysis is
affected. Two basic approaches tackle this difficulty:

0 take account of aliasing in the calculation of data
usage
0 show that aliasing does not occur as part of the com.
plete analysis.

We cannot argue the superiority of one approach against
the other for all forms of analysis and situations in which it
may be applied; however, returning to the example, it is
clear that data flow analysis is not rigorous unless it allows
for aliasing or excludes i t

A precise definition of the conditions required to ensure
the validity of an analysis is complicated because many
sources of difficulty are specific to different languages. Alia-
sing, for example, can arise from COMMON blocks in
Fortran, from multiple forms of addressing (e.g. numeric,
symbolic, relative) in assembly code and from variant
records in Pascal.

Even when it is chosen to exclude a potential difficulty
from the program under analysis, it may not be possible to
do so in a fully automatic way; this means that a precise
understanding of the limits of the analysis is required by all
involved.

4 Conclusions

Our conclusions are as follows.

0 Static analysis is effective and complementary to
dynamic testing. Hence its use is to be recommended in
the context of the majority of critical software. The less
deep analysis methods which do not require extensive
design information could be used for almost all software.
0 There are no appropriate standards. This implies that
the specification of the static analysis to be performed
requires care and effort. Equally, the potential benefits
from such analysis cannot always be readily appreciated.
0 The depth and nature of an analysis need to be speci-
fied. To say that static analysis has been undertaken is just
as meaningless as saying that the software has been
tested. Hence at least these two issues (of depth and
nature) need to be specified to some extent The prerequi-
sites for the validity of different forms of analysis must be
recognised, in order to allow an objective assessment of
the validity of a particular application of an analysis tech.
nique.
0 The input language influences the depth of the static
analysis that can be undertaken easily. Languages that are
essentially dynamic, like C, are more difficult to analyse
than languages, like Ada, that include strong typing and
range constraints. Hence, the nature of the input language
needs to be taken into account in the specification of the
static analysis to be undertaken. The use of more rigorous
‘software engineering’ languages and appropriate subsets
can allow the less deep forms of analysis to be subsumed
into the rules of the language. Just as type checking is an
integral part of a modern language, so we should expect
that separate steps of control and data flow analysis
should no longer be required.
0 Problems of scale: unlike compilation, some of the
deeper static analysis methods are essentially polynomial
in time (or space). This implies that the effort (both human
and computer) to analyse a large program can become
significant; the effort expended on the Sizewell ‘8’ PPS
demonstrates this.

Reverse engineering versus forward engineering: the
deeper analysis methods typically require additional infor-
mation. Such information gives details of the design not
immediately apparent from the source, and for the deeper
forms of analysis, will include the specification. This can be
planned in advance with tools aimed at supporting devel-
opment or produced during analysis with tools that use
reverse engineering. This choice must be made very early
in development
0 Ability to exploit design information: an analysis tool
should be able to check whether functions have side-
effects as their presence may make further analysis impos-
sible. Hence, conflicts can arise between the actual code
and the ability of a specific tool. Such conflicts must be
resolved very early in the lifecycle. Increased integration of
certain forms of analysis into the development process is
required to reduce their cost and increase their benefit. In
particular, it is widely agreed that the deeper forms of func-
tional correctness analysis using proof cannot be fully
exploited retrospectively.
0 The provision of the program specification in an
unambiguous machine-processable form is useful. Deep

74 Software Engineering Journal March 1995

static analysis can verify aspects of the program specifi-
cation, but can only be undertaken with reasonable effort if
the program specification is available in a suitable form.
0 Objective testing versus assessment: the user often
pose to a question like 'is it safe to use this signalling soft-
ware?' The conventional method of assessment is based
on professional judgement a s well as testing (and static
analysis). Subjective judgement cannot be avoided, but
more use could be made of objective testing, preferably by
accredited testing laboratories.

5 Acknowledgments

The authors would like to thank Mr. R. Scowen, Dr. P.
Vaswani (NAMAS) and Mr. N. North (NPL) for their useful
comments on an earlier drafts of this paper; and the refer-
ees whose comments have improved the clarity signifi-
cantly.

6 References

[I] Interim Defence Standard 00.55: 'The procurement of
safety critical software in defence equipment', Ministry of
Defence, (Part 1 : Requirements: Part 2: Guidance), April
1991

[2] Requirements and Technical Concepts for Aviation
(document RTCA SC167/Do-l78B); European Organiz-
ation for Gvil Aviation Electronics (EUROCAE document
D l Z B)

131 HUGHES, G., and BOETTCHER. D.B.: 'Developments in
digital instrumentation for Nuclear Electric's (UK) power
plant', NuclearEnergy, 1993, 32, (l), pp. 41-52

[4] SCHAEFER, C.F.. and BUNDY, G.N.: 'Static analysis of
exception handling in Ada', Softw. Pract. Exp., 28, (IO), pp.

151 CULLYER, W.J., GOODENOUGH, S.J., and WICHMA",
BA: 'The choice of computer languages in safetycritical
systems', Soffw. Eng. J., 1991,6, (2), pp. 51-58

[6] WICHMA", BA: 'The con~bution of standard pro-
gramming languages to software quality', Softw. Eng. J.,
1994, pp. 3-12

[7] WARD, NJ.: 'The rigorous retrospective static analysis of the
Siewell ' B primary protection system software'. SafeComp
'93

[a] PAW, D.J., and WINSBORROW, L A : 'Demonstrating
equivalence of source code and PROM contents', Computer

[9] SMITH, I.C., and WALL, D.N.: 'Programmable electronic
systems for reactor safety', Atom, 1989, 395, pp. 10-13

[IO] CARE., BA, JENNINGS, T.J.. MACLENNAN, F.J.,
FARROW, P.F., and GARNSWORTHY, J.R.: 'SPARK - the
SPADE Ada kernel'. Version 3.1. Program Validation Ltd.,

Ill] W e BA, GARNSWORTHY, J.. and MARSH, W.:
'SPARK: a safety-related Ada subset: Ada in transition' in
TAYLOR, WJ. (Ed.) (10s Press, 1992)

1157-1174

J.. 1993,36, (7). pp. 654-667

May 1992

[I21 WICHMA", BA: 'Strategy on the use of SPARK'. NPL
Report DITC 227/94. June 1994

1131 BERGERFlTI. J.F., and &, BA: 'Information-flow and
data-flow analysis of while-programs', ACM Trans Pros
Lang., 1985,7, pp. 37-61

[14] GARNSWORTHY, J., ONEILL, I., and &, B.: 'Aut@
matic proof of the absence of run-time errors. Ada: towards
maturity'. COLLINGBOURNE, L (Ed.) (10s Press, 1993) pp.
108-122

(151 Generation of Path Functions and Verification Conditions for
SPARK Programs, Edition 1.lb. Program Validation Ltd.,
January 1992

1161 ONEILL, IN, CLUTTERBUCK, D.L, FARROW, P.F..
SCIMMERS, P.G., and D O W , W.C.: 'The formal verifica-
tion of safetycritical assembly code. safety of computer
control systems' (Pergamon Press, 1988) pp. 115-120

[171 BOYER, RS., and YUAN, Y. : 'Automated correctness proofs
of machine code for a commercial microprocessor:
automated deduction', Lect. Nofes Artif. htell.. 1992, 607

[I81 BRYGIER, J., and RICHARDFOY, M: 'Ada run time system
ceriification for avionics applications.' Ada-Europe Conf..
June 1993

1191 CARNOT, M, DA SILVA C.. DEHBONEI. B., and Mwlq F.:
'Error-free software development for critical systems using
the B-methodology'. Third IEEE Int Conf. on Software Reli-
ability, October 1992, pp. 274-281

[201 WICHMA", BA: 'Requirements for programming lan-
guages in safety and security software standards', Cornput.
Stand. Interfaces., 1992, 14, pp. 433-441

(211 WICHMA", BA: 'Programming critical systems - the
Ada 9X solution', Comput. Bull., 1993

[22] WICHMA". BA: 'Insecurities in the Ada programming lan-
guage'. NPL report 137/89, January 1989, p. 54. NTlS ref:
PB89.193627MrFT. (summary with Daws. S. J.: Ada User,
1990, 11, (1). pp. 21-26)

[23] BOYER, R.S., and MOORE, J.S.: 'A verification condition
generator for FORTRAN : the correctness problem in com-
puter science' (Academic Press, 1981)

1241 Formal Semantics of SPARK. Program Validation Ltd.,
Version 1.1. April 1993
IEC 880:86: 'Software for computers in the safety systems
of nuclear power stations'. 1986
IEUSC65A/(Secretariat 122): 'Software for computers in the
application of industrial safety-related systems'. Draft
December 199 1

0 IEE: 1995

The paper was first received 21 July 1994 and in revised form on
27 January 1995.

BA Wichmann is with the National Physical Laboratory, Tedding
ton, Middlesex, W 1 1 OLW, UK; A A Canning and D.W.R. Marsh
are with ERA Technology, Leatherhead, KT22 7% UK; D.L
Qutterbuck is with Program Validation Ltd, Southampton, SO1
1BQ UK; LA Winsburrow is with Nuclear Elecbic, Barnwood,
Gloucester, GL4 7RS, UK; N.J. Ward was previously with TA Con-
sultancy Services Ltd, Farnham, GU9 7TB. UK.

Software Engineering Journal March 1995 75

