Static Analysis: Symbolic Execution and Inductive Verification Methods TDDC90: Software Security

Ahmed Rezine

IDA, Linköpings Universitet

Hösttermin 2024

Outline

Overview

Symbolic Execution

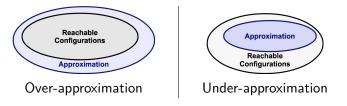
Hoare Triples and Deductive Reasoning

Static Program Analysis and Approximations

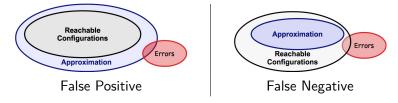
We want to answer whether the program is **safe** or not (i.e., has some erroneous reachable configurations or not):

Static Program Analysis and Approximations

The idea is then to come up with efficient approximations and algorithms to give correct answers in as many cases as possible.



- A sound analysis cannot give **false negatives**
- A complete analysis cannot give **false positives**



Two Lectures on Static Analysis

These two lectures on static program analysis briefly introduce different types of analysis:

- Previous lecture:
 - syntactic analysis: scalable but neither sound nor complete
 - abstract interpretation sound but not complete
- This lecture:
 - symbolic executions: complete but not sound
 - inductive methods: may require heavy human interaction in proving the program correct
- ▶ These two lectures are only appetizers:
 - More concepts and ideas are discussed in TDDE34 under VT2

First, What are SMT Solvers?

- Stands for *Satisfiability Modulo Theory*
- Intuitively, these are constraint solvers that extend SAT solvers to richer theories
- Many solvers exist (Yices, CVC, STP, OpenSMT, Princess, Z3, etc),
- You will be using Z3 https://github.com/Z3Prover/z3 in the lab z3
- SAT solvers find a satisfying assignment to a formula where all variables are booleans or establishes its unsatisfiability
- SMT solvers find satisfying assignments to first order formulas where some variables may range over other values than just booleans

Introduction

Originates from automating proof-search for first order logic.

- \blacktriangleright Variables: x, y, z, ...
- ▶ Constants: *a*, *b*, *c*, ...
- ▶ N-ary functions: f, g, h, ...
- ▶ N-ary predicates: *p*, *q*, *r*, ...
- Atoms: \bot , \top , $p(t_1, \ldots, t_n)$
- Literals: atoms or their negation
- A FOL formula is a literal, boolean combinations of formulas, or quantified (∃, ∀) formulas.

Evaluation of formula φ , with respect to interpretation I over non-empty (possibly infinite) domains for variables and constants gives true or false (resp. $I \models \varphi$ or $I \not\models \varphi$)

A formula φ is:

- **>** satisfiable if $I \models \varphi$ for **some** interpretation *I*
- ▶ valid if $I \models \varphi$ for **all** interpretations *I*

Satisfiability of FOL is undecidable. Instead, target decidable or domain-specific fragments.

Introduction

Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

- ► EUF: Equality over Uninterpreted functions
- Satisfiable?

Introduction

Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

$$\begin{array}{ll} \varphi & \triangleq & (x_1 \ge 0) \land (x_1 < 1) \\ & \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(P, x_2, x_3), x_2 + x_1) = x_3 + 1) \end{array}$$

Introduction

Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

$$\varphi \triangleq (x_1 \ge 0) \land (x_1 < 1) \\ \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(P, x_2, x_3), x_2 + x_1) = x_3 + 1)$$

Linear Integer Arithmetic (LIA)

Introduction

Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

- $\varphi \triangleq (x_1 \ge 0) \land (x_1 < 1) \\ \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(P, x_2, x_3), x_2 + x_1) = x_3 + 1)$
- Linear Integer Arithmetic (LIA)
- Equality over Uninterpreted functions (EUF)
- Arrays (A)

Introduction

- Sometimes more natural to express in logics other than propositional logic
- SMT decide satisfiablity of ground FO formulas wrt. background theories
- Many applications: Model checking, predicate abstraction, symbolic execution, scheduling, test generation, ...

Introduction

Given a quantifier free FOL formula and a combination of theories, is there an interpretation to the free variables that makes the formula true?

$$\varphi \triangleq (x_1 \ge 0) \land (x_1 < 1) \land ((f(x_1) = f(0)) \Rightarrow (rd(wr(P, x_2, x_3), x_2 + x_1) = x_3 + 1)$$

- ► LIA: $x_1 = 0$
- ▶ EUF: $f(x_1) = f(0)$
- A: $rd(wr(P, x_2, x_3), x_2) = x_3$
- Bool: $rd(wr(P, x_2, x_3), x_2) = x_3 + 1$
- ► LIA: ⊥

Outline

Overview

Symbolic Execution

Hoare Triples and Deductive Reasoning

Testing

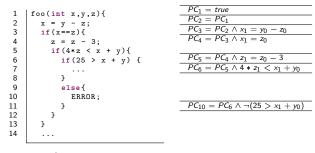
Symbolic Testing

- Most common form of software validation
- Explores only one possible execution at a time
- For each new value, run a new test.
- On a 32 bit machine, if (i==2024) bug() would require 2³² different values to make sure there is no bug.
- The idea in symbolic testing is to associate symbolic values to the variables

- Use symbolic values instead of concrete ones
- Along the path, maintain a Path Constraint (PC) and a symbolic state (σ)
- ▶ *PC* collects constraints on variables' values along a path,
- σ associates variables to symbolic expressions,
- We get concrete values if PC is satisfiable
- The program can be run on these values
- Negate a condition in the path constraint to get another path

Symbolic Execution: a simple example

- Can we get to the ERROR? explore using SSA forms.
- ▶ Useful to check array out of bounds, assertion violations, etc.



$$\begin{split} PC &= (x_1 = y_0 - z_0 \land x_1 = z_0 \land z_1 = z_0 - 3 \land 4 * z_1 < x_1 + y_0 \land \neg (25 > x_1 + y_0)) \\ \text{Check satisfiability with a solver (e.g., Alt-Ergo, Boolector, CVC4, MathSAT5, OpenSMT2, STP, Yices2, Z3)} \end{split}$$

Symbolic execution today

- Leverages on the impressive advancements of SMT solvers
- Modern symbolic execution frameworks are not purely symbolic, and not necessarily purely static:
 - They can follow a concrete execution while collecting constraints along the way, or
 - They can treat some of the variables concretely, and some other symbolically
- This allows them to scale, to handle closed code or complex queries

Overview

Symbolic Execution

Hoare Triples and Deductive Reasoning

Two Lectures on Static Analysis

These two lectures on static program analysis briefly introduce different types of analysis:

- Previous lecture:
 - syntactic analysis: scalable but neither sound nor complete
 - abstract interpretation sound but not complete
- This lecture:
 - symbolic executions: complete but not sound
 - inductive methods: may require heavy human interaction in proving the program correct
- These two lectures are only appetizers:
 - ▶ More concepts and ideas are discussed in TDDE34 under VT2

Function Specifications and Correctness

- Contract between the caller and the implementation. Total Correctness requires that:
 - ▶ if the pre-condition (-100 <= x && x <= 100) holds
 - then the implementation terminates,
 - after termination, the following post-condition holds
 (x>=0 && \result == x || x<0 && \result == -x)</pre>
- Partial Correctness does not require termination

```
/*@ requires -100 <= x && x <= 100;
1
       @ ensures x>=0 && \result == x || x<0 && \result == -x;
2
       */
3
4
       int abs(int x){
5
        if(x < 0){
6
           return -x;
7
        }
8
         return x;
9
      }
```

Hoare Triples and Partial Correctness

- ▶ a Hoare triple {*P*} *stmt* {*R*} consists in:
 - \blacktriangleright a predicate pre-condition P
 - ▶ an instruction *stmt*,
 - \blacktriangleright a predicate post-condition R
- intuitively, {P} stmt {R} holds if whenever P holds and stmt is executed and terminates (partial correctness), then R holds after stmt terminates.
- For example:
 - {*true*} $x := y \{(x = y)\}$
 - $\{(x = 1) \land (y = 2)\} \ x := y \ \{(x = 2)\}$
 - $\{(x \ge 1)\} \ y := 2 \ \{(x = 0) \lor (y \le 10)\}$
 - $\{(x \ge 1)\}$ (if(y == 2) then x := 0) $\{(x \ge 0)\}$
 - {*false*} x := 1 {(x = 2)}

Weakest Precondition

- if {P} stmt {R} and P' ⇒ P for any P' s.t. {P'} stmt {R}, then P is the weakest precondition of R wrt. stmt, written wp(stmt, R)
- ▶ $wp(x := x + 1, x \ge 1) = (x \ge 0)$. ($x \ge 5$), (x = 6), ($x \ge 0 \land y = 8$) are all valid preconditions, but they are not weaker than $x \ge 0$.
- Intuitively wp(stmt, R) is the weakest predicate P for which {P} stmt {R} holds

Weakest Precondition of assignments

- wp(x = E, R) = R[x/E], i.e., replace each occurrence of x in R by E.
- ► For instance:
 - wp(x := 3, x == 5) = (x == 5)[x/3] = (3 == 5) = false
 - $wp(x := 3, x \ge 0) = (x \ge 0)[x/3] = (3 \ge 0) = true$
 - ▶ wp(x := y + 5, x >= 0) = (x >= 0)[x/y + 5] = (y + 5 >= 0)
 - wp(x := 5 * y + 2 * z, x + y >= 0) = (x + y >= 0)[x/5 * y + 2 * z] = (6 * y + 2 * z >= 0)

Weakest Precondition of sequences

- Assume a sequence of two instructions stmt; stmt';, for example x := 2 * y; y := x + 3 * y;
- the the weakest precondition is given by: wp(stmt; stmt', R) = wp(stmt, wp(stmt', R)),

$$wp(x := 2 * y; y := x + 3 * y, y > 10)$$

= $wp(x := 2 * y, wp(y := x + 3 * y, y > 10))$

$$= wp(x := 2 * y, (y > 10)[y/x + 3 * y])$$

$$= wp(x := 2 * y, x + 3 * y > 10)$$

$$= (x + 3 * y > 10)[x/2 * y]$$

$$= (2 * y + 3 * y > 10)$$

$$= y > 2$$

Weakest Precondition of conditionals

- Assume a conditional (if(B) then stmt else stmt'), for example (if(x > y) then z := x else z := y)
- ► The weakest precondition is given by: $\begin{pmatrix} wp((if(B) \text{ then } stmt \text{ else } stmt'), R) \\ = (B \Rightarrow wp(stmt, R))\&\&(!B \Rightarrow wp(stmt', R)) \end{pmatrix}$
- For example,

$$wp((if(x > y) then z := x else z := y), z <= 10)$$

= (x > y \Rightarrow wp(z := x, z <= 10))
&&(x <= y \Rightarrow wp(z := y, z <= 10))
= (x > y \Rightarrow x <= 10)&&(x <= y \Rightarrow y <= 10)

Hoare Triples for Loops, Partial Correctness

- In order to establish {P} (while(B)do{stmt}) {R}, you will need to find an invariant Inv such that:
 - $\blacktriangleright P \Rightarrow Inv$
 - {Inv&&B} stmt {Inv}
 - Inv&&!B)⇒R
- For example {i == j == 0} (while(i < 10)do{i := i + 1; j := j + 1}) {j == 10}, we need to find *Inv* such that:
 - $(i == j == 0) \Rightarrow Inv$
 - {Inv&&(i < 10)} i = i + 1; j = j + 1 {Inv}
 - (Inv&&i >= 10) $\Rightarrow j == 10$

- {P} (while(B)do{stmt}) {R}
- Partial correctness: if we start from P and (while(B)do{stmt}) terminates, then R terminates.
 - $\blacktriangleright P \Rightarrow Inv$
 - {Inv&&B} stmt {Inv}
 - $(Inv\&\&!B) \Rightarrow R$
- Total correctness: the loop does terminate: find a variant function v such that:
 - $\blacktriangleright (Inv\&\&B) \Rightarrow (v > 0)$
 - { $Inv\&\&B\&\&v = v_0$ } stmt { $v < v_0$ }
- For example (while(i < 10)do{i := i + 1; j := j + 1}) can be shown to terminate with v = (10 i) and Inv = (i <= 10)