
Static Analysis: Symbolic Execution and
Inductive Verification Methods

TDDC90: Software Security

Ahmed Rezine

IDA, Linköpings Universitet

Hösttermin 2024

Outline

Overview

Symbolic Execution

Hoare Triples and Deductive Reasoning

Static Program Analysis and Approximations

We want to answer whether the program is safe or not (i.e., has
some erroneous reachable configurations or not):

Safe Program Unsafe Program

Static Program Analysis and Approximations

I The idea is then to come up with efficient approximations and
algorithms to give correct answers in as many cases as
possible.

Over-approximation Under-approximation

Static Program Analysis and Approximations

I A sound analysis cannot give false negatives
I A complete analysis cannot give false positives

False Positive False Negative

Two Lectures on Static Analysis

These two lectures on static program analysis briefly introduce
different types of analysis:
I Previous lecture:

I syntactic analysis: scalable but neither sound nor complete
I abstract interpretation sound but not complete

I This lecture:
I symbolic executions: complete but not sound
I inductive methods: may require heavy human interaction in

proving the program correct
I These two lectures are only appetizers:

I More concepts and ideas are discussed in TDDE34 under VT2

First, What are SMT Solvers?

I Stands for Satisfiability Modulo Theory
I Intuitively, these are constraint solvers that extend SAT

solvers to richer theories
I Many solvers exist (Yices, CVC, STP, OpenSMT, Princess,

Z3, etc),
I You will be using Z3 https://github.com/Z3Prover/z3 in

the lab z3
I SAT solvers find a satisfying assignment to a formula where

all variables are booleans or establishes its unsatisfiability
I SMT solvers find satisfying assignments to first order formulas

where some variables may range over other values than just
booleans

Introduction

Originates from automating proof-search for first order logic.
I Variables: x ; y ; z ; :::
I Constants: a; b; c; :::
I N-ary functions: f ; g ; h; :::
I N-ary predicates: p; q; r ; :::
I Atoms: ?;>; p(t1; : : : ; tn)
I Literals: atoms or their negation
I A FOL formula is a literal, boolean combinations of formulas,

or quantified (9, 8) formulas.
Evaluation of formula ', with respect to interpretation I over
non-empty (possibly infinite) domains for variables and constants
gives true or false (resp. I j= ' or I 6j= ')

https://github.com/Z3Prover/z3

Satisfiability and Validity

A formula ' is:
I satisfiable if I j= ' for some interpretation I
I valid if I j= ' for all interpretations I

Satisfiability of FOL is undecidable. Instead, target decidable or
domain-specific fragments.

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , g(a) = c ^ (f (g(a)) 6= f (c) _ g(a) = d) ^ c 6= d

I EUF: Equality over Uninterpreted functions
I Satisfiable?

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

I Linear Integer Arithmetic (LIA)

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

I Linear Integer Arithmetic (LIA)
I Equality over Uninterpreted functions (EUF)
I Arrays (A)

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0))) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

I LIA: x1 = 0
I EUF: f (x1) = f (0)
I A: rd(wr(P; x2; x3); x2) = x3

I Bool: rd(wr(P; x2; x3); x2) = x3 + 1
I LIA: ?

Introduction

I Sometimes more natural to express in logics other than
propositional logic

I SMT decide satisfiablity of ground FO formulas wrt.
background theories

I Many applications: Model checking, predicate abstraction,
symbolic execution, scheduling, test generation, ...

Outline

Overview

Symbolic Execution

Hoare Triples and Deductive Reasoning

Testing

I Most common form of software validation
I Explores only one possible execution at a time
I For each new value, run a new test.
I On a 32 bit machine, if(i==2024) bug() would require 232

different values to make sure there is no bug.
I The idea in symbolic testing is to associate symbolic values

to the variables

Symbolic Testing

I Use symbolic values instead of concrete ones
I Along the path, maintain a Path Constraint (PC) and a

symbolic state (�)
I PC collects constraints on variables’ values along a path,
I � associates variables to symbolic expressions,
I We get concrete values if PC is satisfiable
I The program can be run on these values
I Negate a condition in the path constraint to get another path

Symbolic Execution: a simple example

I Can we get to the ERROR? explore using SSA forms.
I Useful to check array out of bounds, assertion violations, etc.

1 foo(int x,y,z){
2 x = y - z;
3 if(x==z){
4 z = z - 3;
5 if (4*z < x + y){
6 if (25 > x + y) {
7 ...
8 }
9 else {

10 ERROR ;
11 }
12 }
13 }
14 ...

PC1 = true
PC2 = PC1
PC3 = PC2 ^ x1 = y0 � z0
PC4 = PC3 ^ x1 = z0

PC5 = PC4 ^ z1 = z0 � 3
PC6 = PC5 ^ 4 � z1 < x1 + y0

PC10 = PC6 ^ :(25 > x1 + y0)

PC = (x1 = y0 � z0 ^ x1 = z0 ^ z1 = z0 � 3 ^ 4 � z1 < x1 + y0 ^ :(25 > x1 + y0))

Check satisfiability with a solver (e.g., Alt-Ergo, Boolector, CVC4,
MathSAT5, OpenSMT2, STP, Yices2, Z3)

Symbolic execution today

I Leverages on the impressive advancements of SMT solvers
I Modern symbolic execution frameworks are not purely

symbolic, and not necessarily purely static:
I They can follow a concrete execution while collecting

constraints along the way, or
I They can treat some of the variables concretely, and some

other symbolically
I This allows them to scale, to handle closed code or complex

queries

Outline

Overview

Symbolic Execution

Hoare Triples and Deductive Reasoning

Two Lectures on Static Analysis

These two lectures on static program analysis briefly introduce
different types of analysis:
I Previous lecture:

I syntactic analysis: scalable but neither sound nor complete
I abstract interpretation sound but not complete

I This lecture:
I symbolic executions: complete but not sound
I inductive methods: may require heavy human interaction in

proving the program correct
I These two lectures are only appetizers:

I More concepts and ideas are discussed in TDDE34 under VT2

Function Specifications and Correctness

I Contract between the caller and the implementation. Total
Correctness requires that:
I if the pre-condition (-100 <= x && x <= 100) holds
I then the implementation terminates,
I after termination, the following post-condition holds

(x>=0 && \result == x || x<0 && \result == -x)
I Partial Correctness does not require termination

1 /*@ requires -100 <= x && x <= 100;
2 @ ensures x >=0 && \ result == x || x <0 && \ result == -x;
3 */
4 int abs(int x){
5 if(x < 0){
6 return -x;
7 }
8 return x;
9 }

Hoare Triples and Partial Correctness

I a Hoare triple fPg stmt fRg consists in:
I a predicate pre-condition P
I an instruction stmt,
I a predicate post-condition R

I intuitively, fPg stmt fRg holds if whenever P holds and stmt
is executed and terminates (partial correctness), then R
holds after stmt terminates.

I For example:
I ftrueg x := y f(x = y)g
I f(x = 1) ^ (y = 2)g x := y f(x = 2)g
I f(x � 1)g y := 2 f(x = 0) _ (y � 10)g
I f(x � 1)g (if(y == 2) then x := 0) f(x � 0)g
I ffalseg x := 1 f(x = 2)g

Weakest Precondition

I if fPg stmt fRg and P 0) P for any P 0 s.t. fP 0g stmt fRg,
then P is the weakest precondition of R wrt. stmt, written
wp(stmt;R)

I wp(x := x + 1; x � 1) = (x � 0).
(x � 5); (x = 6); (x � 0 ^ y = 8) are all valid preconditions,
but they are not weaker than x � 0.

I Intuitively wp(stmt;R) is the weakest predicate P for which
fPg stmt fRg holds

Weakest Precondition of assignments

I wp(x = E ;R) = R[x=E], i.e., replace each occurrence of x in
R by E .

I For instance:
I wp(x := 3; x == 5) = (x == 5)[x=3] = (3 == 5) = false
I wp(x := 3; x >= 0) = (x >= 0)[x=3] = (3 >= 0) = true
I wp(x := y + 5; x >= 0) = (x >= 0)[x=y + 5] = (y + 5 >= 0)
I wp(x := 5 � y + 2 � z ; x + y >= 0) = (x + y >=

0)[x=5 � y + 2 � z] = (6 � y + 2 � z >= 0)

Weakest Precondition of sequences

I Assume a sequence of two instructions stmt; stmt 0;, for
example x := 2 � y ; y := x + 3 � y ;

I the the weakest precondition is given by:
wp(stmt; stmt 0;R) = wp(stmt;wp(stmt 0;R)),

I

wp(x := 2 � y ; y := x + 3 � y ; y > 10)
= wp(x := 2 � y ;wp(y := x + 3 � y ; y > 10))
= wp(x := 2 � y ; (y > 10)[y=x + 3 � y])
= wp(x := 2 � y ; x + 3 � y > 10)
= (x + 3 � y > 10)[x=2 � y]
= (2 � y + 3 � y > 10)
= y > 2

Weakest Precondition of conditionals

I Assume a conditional (if(B) then stmt else stmt 0), for
example (if(x > y) then z := x else z := y)

I The weakest precondition is given by:
wp((if(B) then stmt else stmt 0);R)

= (B) wp(stmt;R))&&(!B) wp(stmt 0;R))

!

I For example,
wp((if(x > y) then z := x else z := y); z <= 10)

= (x > y) wp(z := x ; z <= 10))
&&(x <= y) wp(z := y ; z <= 10))

= (x > y) x <= 10)&&(x <= y) y <= 10)

,

Hoare Triples for Loops, Partial Correctness

I In order to establish fPg (while(B)dofstmtg) fRg, you will
need to find an invariant Inv such that:
I P) Inv
I fInv&&Bg stmt fInvg
I (Inv&&!B))R

I For example fi == j == 0g (while(i < 10)dofi :=
i + 1; j := j + 1g) fj == 10g, we need to find Inv such that:
I (i == j == 0)) Inv
I fInv&&(i < 10)g i = i + 1; j = j + 1 fInvg
I (Inv&&i >= 10))j == 10

Hoare Triples for Loops, Total Correctness

I fPg (while(B)dofstmtg) fRg
I Partial correctness: if we start from P and

(while(B)dofstmtg) terminates, then R terminates.
I P) Inv
I fInv&&Bg stmt fInvg
I (Inv&&!B))R

I Total correctness: the loop does terminate: find a variant
function v such that:
I (Inv&&B)) (v > 0)
I fInv&&B&&v = v0g stmt fv < v0g

I For example (while(i < 10)dofi := i + 1; j := j + 1g) can be
shown to terminate with v = (10� i) and Inv = (i <= 10)

	Overview
	Symbolic Execution
	Hoare Triples and Deductive Reasoning

