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Static Program Analysis and Approximations

We want to answer whether the program is safe or not (i.e., has
some erroneous reachable configurations or not):

Safe Program Unsafe Program

Static Program Analysis and Approximations

I The idea is then to come up with efficient approximations and
algorithms to give correct answers in as many cases as
possible.

Over-approximation Under-approximation



Static Program Analysis and Approximations

I A sound analysis cannot give false negatives
I A complete analysis cannot give false positives

False Positive False Negative

Two Lectures on Static Analysis

These two lectures on static program analysis briefly introduce
different types of analysis:
I Previous lecture:

I syntactic analysis: scalable but neither sound nor complete
I abstract interpretation sound but not complete

I This lecture:
I symbolic executions: complete but not sound
I inductive methods: may require heavy human interaction in

proving the program correct
I These two lectures are only appetizers:

I More concepts and ideas are discussed in TDDE34 under VT2

First, What are SMT Solvers?

I Stands for Satisfiability Modulo Theory
I Intuitively, these are constraint solvers that extend SAT

solvers to richer theories
I Many solvers exist (Yices, CVC, STP, OpenSMT, Princess,

Z3, etc),
I You will be using Z3 https://github.com/Z3Prover/z3 in

the lab z3
I SAT solvers find a satisfying assignment to a formula where

all variables are booleans or establishes its unsatisfiability
I SMT solvers find satisfying assignments to first order formulas

where some variables may range over other values than just
booleans

Introduction

Originates from automating proof-search for first order logic.
I Variables: x ; y ; z ; :::
I Constants: a; b; c; :::
I N-ary functions: f ; g ; h; :::
I N-ary predicates: p; q; r ; :::
I Atoms: ?;>; p(t1; : : : ; tn)
I Literals: atoms or their negation
I A FOL formula is a literal, boolean combinations of formulas,

or quantified (9, 8) formulas.
Evaluation of formula ', with respect to interpretation I over
non-empty (possibly infinite) domains for variables and constants
gives true or false (resp. I j= ' or I 6j= ')

https://github.com/Z3Prover/z3


Satisfiability and Validity

A formula ' is:
I satisfiable if I j= ' for some interpretation I
I valid if I j= ' for all interpretations I

Satisfiability of FOL is undecidable. Instead, target decidable or
domain-specific fragments.

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , g(a) = c ^ (f (g(a)) 6= f (c) _ g(a) = d) ^ c 6= d

I EUF: Equality over Uninterpreted functions
I Satisfiable?
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Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0)) ) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

I Linear Integer Arithmetic (LIA)
I Equality over Uninterpreted functions (EUF)
I Arrays (A)

Introduction

Given a quantifier free FOL formula and a combination of theories,
is there an interpretation to the free variables that makes the
formula true?

' , (x1 � 0) ^ (x1 < 1)
^((f (x1) = f (0)) ) (rd(wr(P; x2; x3); x2 + x1) = x3 + 1)

I LIA: x1 = 0
I EUF: f (x1) = f (0)
I A: rd(wr(P; x2; x3); x2) = x3

I Bool: rd(wr(P; x2; x3); x2) = x3 + 1
I LIA: ?

Introduction

I Sometimes more natural to express in logics other than
propositional logic

I SMT decide satisfiablity of ground FO formulas wrt.
background theories

I Many applications: Model checking, predicate abstraction,
symbolic execution, scheduling, test generation, ...
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Testing

I Most common form of software validation
I Explores only one possible execution at a time
I For each new value, run a new test.
I On a 32 bit machine, if(i==2024) bug() would require 232

different values to make sure there is no bug.
I The idea in symbolic testing is to associate symbolic values

to the variables

Symbolic Testing

I Use symbolic values instead of concrete ones
I Along the path, maintain a Path Constraint (PC) and a

symbolic state (�)
I PC collects constraints on variables’ values along a path,
I � associates variables to symbolic expressions,
I We get concrete values if PC is satisfiable
I The program can be run on these values
I Negate a condition in the path constraint to get another path

Symbolic Execution: a simple example

I Can we get to the ERROR? explore using SSA forms.
I Useful to check array out of bounds, assertion violations, etc.

1 foo(int x,y,z){
2 x = y - z;
3 if(x==z){
4 z = z - 3;
5 if (4*z < x + y){
6 if (25 > x + y) {
7 ...
8 }
9 else {

10 ERROR ;
11 }
12 }
13 }
14 ...

PC1 = true
PC2 = PC1
PC3 = PC2 ^ x1 = y0 � z0
PC4 = PC3 ^ x1 = z0

PC5 = PC4 ^ z1 = z0 � 3
PC6 = PC5 ^ 4 � z1 < x1 + y0

PC10 = PC6 ^ :(25 > x1 + y0)

PC = (x1 = y0 � z0 ^ x1 = z0 ^ z1 = z0 � 3 ^ 4 � z1 < x1 + y0 ^ :(25 > x1 + y0))

Check satisfiability with a solver (e.g., Alt-Ergo, Boolector, CVC4,
MathSAT5, OpenSMT2, STP, Yices2, Z3)

Symbolic execution today

I Leverages on the impressive advancements of SMT solvers
I Modern symbolic execution frameworks are not purely

symbolic, and not necessarily purely static:
I They can follow a concrete execution while collecting

constraints along the way, or
I They can treat some of the variables concretely, and some

other symbolically
I This allows them to scale, to handle closed code or complex

queries
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Two Lectures on Static Analysis

These two lectures on static program analysis briefly introduce
different types of analysis:
I Previous lecture:

I syntactic analysis: scalable but neither sound nor complete
I abstract interpretation sound but not complete

I This lecture:
I symbolic executions: complete but not sound
I inductive methods: may require heavy human interaction in

proving the program correct
I These two lectures are only appetizers:

I More concepts and ideas are discussed in TDDE34 under VT2

Function Specifications and Correctness

I Contract between the caller and the implementation. Total
Correctness requires that:
I if the pre-condition (-100 <= x && x <= 100) holds
I then the implementation terminates,
I after termination, the following post-condition holds

(x>=0 && \result == x || x<0 && \result == -x)
I Partial Correctness does not require termination

1 /*@ requires -100 <= x && x <= 100;
2 @ ensures x >=0 && \ result == x || x <0 && \ result == -x;
3 */
4 int abs(int x){
5 if(x < 0){
6 return -x;
7 }
8 return x;
9 }

Hoare Triples and Partial Correctness

I a Hoare triple fPg stmt fRg consists in:
I a predicate pre-condition P
I an instruction stmt,
I a predicate post-condition R

I intuitively, fPg stmt fRg holds if whenever P holds and stmt
is executed and terminates (partial correctness), then R
holds after stmt terminates.

I For example:
I ftrueg x := y f(x = y)g
I f(x = 1) ^ (y = 2)g x := y f(x = 2)g
I f(x � 1)g y := 2 f(x = 0) _ (y � 10)g
I f(x � 1)g (if(y == 2) then x := 0) f(x � 0)g
I ffalseg x := 1 f(x = 2)g



Weakest Precondition

I if fPg stmt fRg and P 0 ) P for any P 0 s.t. fP 0g stmt fRg,
then P is the weakest precondition of R wrt. stmt, written
wp(stmt;R)

I wp(x := x + 1; x � 1) = (x � 0).
(x � 5); (x = 6); (x � 0 ^ y = 8) are all valid preconditions,
but they are not weaker than x � 0.

I Intuitively wp(stmt;R) is the weakest predicate P for which
fPg stmt fRg holds

Weakest Precondition of assignments

I wp(x = E ;R) = R[x=E ], i.e., replace each occurrence of x in
R by E .

I For instance:
I wp(x := 3; x == 5) = (x == 5)[x=3] = (3 == 5) = false
I wp(x := 3; x >= 0) = (x >= 0)[x=3] = (3 >= 0) = true
I wp(x := y + 5; x >= 0) = (x >= 0)[x=y + 5] = (y + 5 >= 0)
I wp(x := 5 � y + 2 � z ; x + y >= 0) = (x + y >=

0)[x=5 � y + 2 � z ] = (6 � y + 2 � z >= 0)

Weakest Precondition of sequences

I Assume a sequence of two instructions stmt; stmt 0;, for
example x := 2 � y ; y := x + 3 � y ;

I the the weakest precondition is given by:
wp(stmt; stmt 0;R) = wp(stmt;wp(stmt 0;R)),

I

wp(x := 2 � y ; y := x + 3 � y ; y > 10)
= wp(x := 2 � y ;wp(y := x + 3 � y ; y > 10))
= wp(x := 2 � y ; (y > 10)[y=x + 3 � y ])
= wp(x := 2 � y ; x + 3 � y > 10)
= (x + 3 � y > 10)[x=2 � y ]
= (2 � y + 3 � y > 10)
= y > 2

Weakest Precondition of conditionals

I Assume a conditional (if(B) then stmt else stmt 0), for
example (if(x > y) then z := x else z := y)

I The weakest precondition is given by: 
wp((if(B) then stmt else stmt 0);R)

= (B ) wp(stmt;R))&&(!B ) wp(stmt 0;R))

!

I For example,
wp((if(x > y) then z := x else z := y); z <= 10)

= (x > y ) wp(z := x ; z <= 10))
&&(x <= y ) wp(z := y ; z <= 10))

= (x > y ) x <= 10)&&(x <= y ) y <= 10)

,



Hoare Triples for Loops, Partial Correctness

I In order to establish fPg (while(B)dofstmtg) fRg, you will
need to find an invariant Inv such that:
I P ) Inv
I fInv&&Bg stmt fInvg
I (Inv&&!B))R

I For example fi == j == 0g (while(i < 10)dofi :=
i + 1; j := j + 1g) fj == 10g, we need to find Inv such that:
I (i == j == 0) ) Inv
I fInv&&(i < 10)g i = i + 1; j = j + 1 fInvg
I (Inv&&i >= 10))j == 10

Hoare Triples for Loops, Total Correctness

I fPg (while(B)dofstmtg) fRg
I Partial correctness: if we start from P and

(while(B)dofstmtg) terminates, then R terminates.
I P ) Inv
I fInv&&Bg stmt fInvg
I (Inv&&!B))R

I Total correctness: the loop does terminate: find a variant
function v such that:
I (Inv&&B) ) (v > 0)
I fInv&&B&&v = v0g stmt fv < v0g

I For example (while(i < 10)dofi := i + 1; j := j + 1g) can be
shown to terminate with v = (10� i) and Inv = (i <= 10)
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