
Database Technology

Topic 10:
Concurrency Control
Olaf Hartig
olaf.hartig@liu.se

2
Database Technology
Topic 10: Transactions and Concurrency Control

Goal

● Preserve Isolation of the ACID properties

Transaction Processing Model

4
Database Technology
Topic 10: Transactions and Concurrency Control

Simple Database Model

● Database: simply, a collection of named items

● Granularity (size) of these data items is unimportant
– May be a field, a tuple, or a file block, etc
– Transaction processing concepts

are independent of granularity

5
Database Technology
Topic 10: Transactions and Concurrency Control

Basic Operations

● read_item(X): reads item X into a program variable
 (for simplicity, assume that the
 variable is also named X)

● write_item(X): write the value of program variable
 X into the database item named X

● These operations take some amount of time to execute
● Basic unit of data transfer between the disk

and the computer main memory is a file block/page

Memory
Buffers
(cache)

Database File

Disk

DBMS pages

6
Database Technology
Topic 10: Transactions and Concurrency Control

Steps of Read / Write Operations

● read_item(X) consists of the following steps:
1. Find address of the file block that contains item X
2. Copy the file block into a buffer in main memory

(if the block is not already in main memory)
3. Copy item X from the buffer to the program variable X

● write_item(X) consists of the following steps:
1. Find address of the file block that contains item X
2. Copy the file block into a buffer in main memory

(if the block is not already in main memory)
3. Copy item X from the program variable named X

into its correct location in the buffer
4. Store the updated block from the buffer back to disk

(either immediately or at some later point in time)

7
Database Technology
Topic 10: Transactions and Concurrency Control

Transaction Notation

● Focus on read and write operations
– For instance, w5(Z) means that

transaction 5 writes data item Z
● bi and ei specify transaction boundaries (begin and end)

– i specifies a unique transaction identifier (TID)
● Example:

– T1: b1, r1(X), w1(X), r1(Y), w1(Y), e1

– T2: b2, r2(X), w2(X), e2

Initial Concepts

9
Database Technology
Topic 10: Transactions and Concurrency Control

Schedule

● Sequence of interleaved operations from multiple TAs
● Example:

– S: b1, r1(s), b2, r2(c), w1(s), r1(c), w2(c), w1(c), e1, e2

at ATM window #1 at ATM window #2

1 read_item(savings);
2 savings = savings - $100;
3 read_item(checking);
4 write_item(savings);
5 read_item(checking);
6 checking = checking - $20;
7 write_item(checking);
8 checking = checking + $100;
9 write_item(checking);

10 dispense $20 to customer;

10
Database Technology
Topic 10: Transactions and Concurrency Control

Quiz

What can be concluded from the following schedule?

…, r3(EMPLOYEE), b4, w2(STUDENT), …

A: Some employee has read a student record.

B: A transaction has read some data and then written it back.

C: At least three transactions were running concurrently.

D: All of the above.

E: None of the above.

11
Database Technology
Topic 10: Transactions and Concurrency Control

Serial Schedules

● Definition: a schedule is serial if the operations of any
 TA are executed directly one after the other
– i.e., no interleaving of operations from different TAs

● Characteristics:
– Serial schedules trivially guarantee the isolation property
– For n transactions, there are n! serial schedules
– Each of them produces a correct result (assuming the

consistency preservation property)
– However, not all of them might produce the same result

• For instance, If two people try to reserve the last seat
on a plane, only one gets it. The serial order
determines which one. The two orderings have
different results, but either one is correct.

12
Database Technology
Topic 10: Transactions and Concurrency Control

Serial Schedules (cont'd)

Serial schedules are not feasible for performance reasons:
● Long transactions force other transactions to wait
● When a transaction is waiting for disk I/O or any other

event, system cannot switch to other transaction
● Solution: allow some interleaving

 (without sacrificing correctness!)

Acceptable Interleavings

(Serializability)

14
Database Technology
Topic 10: Transactions and Concurrency Control

Conflicts

● Executing some operations in a different
order causes a different outcome
– … r1(X), w2(X), … vs. … w2(X), r1(X), …

T1 will read a different value for X

– … w1(Y), w2(Y), … vs. … w2(Y), w1(Y), …
value for Y after both operations will be different

● Note that two read operations do not have this issue
– … r1(Z), r2(Z), … vs. … r2(Z), r1(Z), …

both TAs read the same value of Z

15
Database Technology
Topic 10: Transactions and Concurrency Control

Conflicts and Equivalence

Definition: Two operations conflict if
1. they access the same data item X,
2. they are from two different transactions, and
3. at least one of them is a write operation.

Definition: Two schedules are conflict equivalent if
the relative order of any two conflicting operations is
the same in both schedules.

Example:
S1: b1, r1(s), b2, r2(c), w1(s), r1(c), w2(c), w1(c), e1, e2

S2: b1, r1(s), r1(c), b2, r2(c), w1(s), w2(c), w1(c), e2, e1

16
Database Technology
Topic 10: Transactions and Concurrency Control

Serializability

Definition: A schedule with n transactions is serializable
 if it is conflict equivalent to some serial schedule of
 the same n transactions.

● Serializable schedule “correct” because
equivalent to some serial schedule, and
any serial schedule acceptable
– Transactions see data as if they were executed serially
– Transactions leave DB state as if they were executed

serially (hence, serializable schedules will leave the
database in a consistent state)

● Efficiency achievable through interleaving
and concurrent execution

17
Database Technology
Topic 10: Transactions and Concurrency Control

Testing Serializability

● Construct a serialization graph for the schedule
– Node for each transaction in the schedule
– Direct edge from Ti to Tj if some read or write operation

in Ti appears before a conflicting operation in Tj

● A schedule is serializable if and only if
its serialization graph has no cycles

18
Database Technology
Topic 10: Transactions and Concurrency Control

Example

● Consider the following schedule

S: b1, r1(X), b2, r2(Y), w1(X), b3, w2(Y), e2, r1(Y), r3(X), e3, w1(Y), e1

● Serialization graph of S:

● No cycles! Hence, S is serializable.
– Equivalent to the following serial schedule:

S': b2, r2(Y), w2(Y), e2, b1, r1(X), w1(X), r1(Y), w1(Y), e1, b3, r3(X), e3

T1 T3

T2

T1T2 T3

19
Database Technology
Topic 10: Transactions and Concurrency Control

Quiz

● If the initial value of checking is $500, what value does it
have after the following interleaved execution completes?

A: $480 B: $500 C: $580 D: $600

at ATM window #1 at ATM window #2

1 read_item(savings);
2 savings = savings - $100;
3 read_item(checking);
4 write_item(savings);
5 read_item(checking);
6 checking = checking - $20;
7 write_item(checking);
8 checking = checking + $100;
9 write_item(checking);

10 dispense $20 to customer;

Remember

– S: b1, r1(s), b2, r2(c), w1(s), r1(c), w2(c), w1(c), e1, e2

20
Database Technology
Topic 10: Transactions and Concurrency Control

Key Question

Can we make sure that we only get serializable schedules?

Locking Techniques
for Concurrency Control

22
Database Technology
Topic 10: Transactions and Concurrency Control

Database Locks

● Locks can be used to ensure that
conflicting operations cannot occur

● Exclusive lock for writing, shared lock for reading
– Transaction cannot read item without first

getting a shared or an exclusive lock on it
– Transaction cannot write item without first

getting exclusive lock on it

23
Database Technology
Topic 10: Transactions and Concurrency Control

Database Locks (cont'd)

● Request for lock may cause transaction to
block (wait) because write lock is exclusive
– Any lock on X (read or write) cannot be granted

if some other transaction holds write lock on X
– Write lock on X cannot be granted if some

other transaction holds any lock on X

● Blocked transactions are unblocked
and granted the requested lock
when conflicting transaction(s)
release their lock(s)

24
Database Technology
Topic 10: Transactions and Concurrency Control

Two-Phase Locking (2PL)

Definition: A transaction follows the two-phase locking
(2PL) protocol if all of its read_lock() and write_lock()
operations come before its first unlock() operation.

● A transaction that follows the 2PL protocol has
an expansion phase and a shrinking phase

● If all transactions in a schedule follow the 2PL
protocol, then the schedule is serializable

25
Database Technology
Topic 10: Transactions and Concurrency Control

Deadlock

● Two or more transactions wait for one
another to unlock some data item
– Ti waits for Tj waits for … waits for Tn waits for Ti

● Deadlock prevention:
– Conservative 2PL protocol: Wait until you

can lock all the data to be used beforehand
– Wait-die
– Wound-wait
– No waiting
– Cautious waiting

● Deadlock detection:
– Wait-for graph
– timeouts

26
Database Technology
Topic 10: Transactions and Concurrency Control

Starvation

● A transaction is not executed for an indefinite period
of time while other transactions are executed normally
– e.g., T waits for write lock and other TAs repeatedly

grab read locks before all read locks are released

● Starvation prevention:
– First-come-first-served waiting scheme
– Wait-die
– Wound-wait
– etc.

Summary

28
Database Technology
Topic 10: Transactions and Concurrency Control

Summary

● Characterizing schedules based on serializability
– Serial and non-serial schedules
– Conflict equivalence of schedules
– Serialization graph

● Two-phase locking
– Guarantees conflict serializability
– Possible problems: deadlocks and starvation

www.liu.se

