
On the Size of Reactive PlansPeter Jonsson and Christer B�ackstr�omDepartment of Computer and Information ScienceLink�oping University, S-581 83 Link�oping, Swedenfpetej,cbag@ida.liu.seAbstractOne of the most widespread approaches to reactiveplanning is Schoppers' universal plans. We proposea stricter de�nition of universal plans which guaran-tees a weak notion of soundness not present in theoriginal de�nition. Furthermore, we isolate three dif-ferent types of completeness which capture di�erentbehaviours exhibited by universal plans. We showthat universal plans which run in polynomial time andare of polynomial size cannot satisfy even the weakesttype of completeness unless the polynomial hierarchycollapses. However, by relaxing either the polynomialtime or the polynomial space requirement, the con-struction of universal plans satisfying the strongesttype of completeness becomes trivial.IntroductionIn recent years reactive planning has been proposedas an alternative to classical planning, especially inrapidly changing, dynamic domains. Although thisterm has been used for a number of more or less relatedapproaches, these have one thing in common: Thereis usually very little or no planning ahead. Ratherthe idea is centered around the stimulus-responseprinciple|prompt reaction to the input. One of themost well-known methods for reactive planning is theuniversal plans by Schoppers (1987). A universal planis a function from the set of states into the set of op-erators. Hence, a universal plan does not generate asequence of operators leading from the current stateto the goal state as a classical planner; it decides aftereach step what to do next based on the current state.Universal plans have been much discussed in theliterature. In a famous debate (Ginsberg 1989b;Schoppers 1989; Ginsberg 1989a; Schoppers 1994),Ginsberg criticised the approach while Schoppers de-fended it1. Based on a counting argument, Gins-berg claims that almost all (interesting) universal planstakes an infeasibly large amount of space. Schopper's1This list is not exhaustive. Other authors, such asChapman (1989), have joined the discussion. However, itseems that the main combatants have been Schoppers andGinsberg.

defence has, to a large extent, built on the observa-tion that planning problems are structured. Accord-ing to Schoppers, this structure can be exploited inorder to create small, e�ective universal plans. Werefrain from going into the details of this debate andmerely note that both authors have shown great in-genuity in their argumentation. However, from thestandpoint of formal rigour, these papers do not settlethe question. One of the few papers that treats uni-versal plans from a formal, complexity-theoretic pointof view is the paper by Selman (1994). He shows thatthe existence of small (polynomially-sized) universalplans with the ability to generate minimal plans im-plies a collapse of the polynomial hierarchy. Sincea collapse of the polynomial hierarchy is widely con-jectured to be false in the literature (Johnson 1990;Papadimitriou 1994), the existence of such universalplans seems highly unlikely. It should be noted thatthis result holds even for severely restricted problemssuch as the blocks-world.In our opinion, one of the problems with universalplans is the over-generality of the de�nition. This gen-erality makes formal analysis hard or even impossible.Therefore, we begin this paper by giving a stricter def-inition of universal plans, a de�nition that embodiesthe notion of soundness. In addition, we supply threedi�erent types of completeness. These notions of com-pleteness capture di�erent desirable properties of uni-versal plans. For example, A-completeness states thatif the problem has a solution, then the universal planwill �nd a solution in a �nite number of steps. Themain result of this paper is that universal plans whichrun in polynomial time and are of polynomial size can-not satisfy even this weakest type of completeness2.However, by relaxing either the polynomial time re-quirement or the polynomial space requirement, it be-comes trivial to construct universal plans that satisfythe strongest type of completeness. Also in this case,the result holds for severely restricted problems.The organisation of the paper is as follows: We beginby de�ning the basic Strips formalism and formally2Under the assumption that the polynomial hierarchydoes not collapse.



de�ne universal plans and various restrictions on them.We continue by showing that small, fast universal planscannot be complete even in a very weak sense. Thepaper is concluded with a brief discussion of the results.Basic FormalismWe base our work in this paper on the propositionalStrips formalismwith negative goals (Bylander 1994),which is equivalent to most other variants of proposi-tional Strips (B�ackstr�om 1995).De�nition 1 An instance of the PSN planning prob-lem is a quadruple � = hP;O; I;Gi where� P is a �nite set of atoms;� O is a �nite set of operators where o 2 O has theform Pre) Post where{ Pre is a satis�able conjunction of positive andnegative atoms in P, respectively called the posi-tive preconditions (pre+(o)) and the negative pre-conditions (pre�(o));{ Post is a satis�able conjunction of positive andnegative atoms in P, respectively called the posi-tive postconditions (add (o)) and the negative post-conditions (del(o));� I � P denotes the initial state;� and G = hG+;G�i denote the positive and negativegoal , respectively, satisfying G+;G� � P and G+ \G� = ?.A PSN structure is a tuple � = hP;Oi where P is aset of atoms and O is a set of operators over P.We denote the negation of an atom by overlining it.As an example, the operator o de�ned as p ) q; rsatis�es pre+(o) = ?, pre�(o) = fpg, add (o) = fqgand del(o) = frg.De�nition 2 Given a set of operators O, we de�nethe set of all operator sequences over O as Seqs(O) =fhig [ fhoi;!jo 2 O and ! 2 Seqs(O)g; where ; is thesequence concatenation operator.A sequence ho1; : : : ; oni 2 Seqs(O) of operators iscalled a PSN plan (or simply plan) over �. We cannow de�ne when a plan solves a planning instance.De�nition 3 The ternary relation Valid � Seqs(O)�2P � (2P � 2P) is de�ned s.t. for arbitraryho1; : : : ; oni 2 Seqs(O) and S; T+; T� � P,Valid(ho1; : : : ; oni; S; hT+; T�i) i� either1. n = 0, T+ � S and T� \ S = ? or2. n > 0, pre+(o1) � S, pre�(o1) \ S = ? andValid(ho2; : : : ; oni; (S�del(o1))[add(o1); hT+; T�i).A plan ho1; : : : ; oni 2 Seqs(O) is a solution to � i�Valid(ho1; : : : ; oni; I; hG+;G�i).We de�ne the planning problems that we will consideras follows.

De�nition 4 Let � = hP;O; I; hG+;G�ii be a givenPSN instance. The plan generation problem (PG) isto �nd some ! 2 Seqs(O) s.t. ! is a solution to �or answer that no such ! exists. The bounded plangeneration problem (BPG) takes an integer K � 0 asadditional parameter and the object is to �nd some! 2 Seqs(O) s.t. ! is a solution to � of length � K oranswer that no such ! exists.Universal PlansUniversal plans are de�ned as follows in the literature(Ginsberg 1989b).A universal plan is an arbitrary function from theset of possible situations S into the set of primitiveactions A.Using the terminology we have adopted in this paperresults in the following equivalent de�nition.De�nition 5 Given a PSN structure � = hP;Oi, auniversal plan is a function from the set of states 2Pinto the set of operators O.This very general notion of universal plans is di�cultto use as a basis for formal analyses. We would like,for example, to discuss the issuses of correctness andresource consumption. In the sequel, we will try toclassify universal plans in greater detail. For a givenPSN structure � = hP;Oi let S = 2P , S? = 2P [ f?gand O+ = O[fo?; o>g. Here ? is a new state denotingunde�nedness and o?; o> are two \special" operators.These operators are not to be considered as operatorsin the sense of De�nition 1 but rather as two com-pletely new symbols without internal structure. Thespecial operators will be used by the universal plansfor \communication with the environment". The fol-lowing de�nition is needed for de�ning soundness ofuniversal plans.De�nition 6 Let � = hP;Oi be a PSN structure.The update operator � : S? � O+ ! S? is de�ned asfollows: ?� o = ? for all o 2 O+. Let S 2 S. If o is astandard operator then S�o = (S�del(o))[add(o) i�pre+(o) � S^pre�(o)\S = ?. Otherwise, S�o = ?.If o is not a standard operator then S � o? = ? andS � o> = S. An operator o 2 O+ is admissible in astate S 2 S? i� S � o 6= ?.We can now re�ne our notion of universal plans.De�nition 7 Let � = hP;Oi be a PSN structure andlet G be a goal over P. A sound universal plan UG forthe goal G is a function that maps S? to O+ such that1. for every S 2 S?, if UG(S) = o 2 O then o is admis-sible in S;2. for every S 2 S?, UG(S) = o> i� S satis�es G;The �rst point in the de�nition says that if the univer-sal plan generates an operator, then this operator isexecutable in the current state. This restriction seemsto have been tacitly assumed in the literature. The



second point tells us that the special operator o> isgenerated if and only if the universal plan is appliedto a state satisfying the goal state. Thus, o> is usedby UG to report success. The reason for introducingthe operator o> is to avoid the generation of new op-erators when the current state satis�es the goal state.The special operator o?, on the other hand, indicatesthat the universal plan cannot handle the current state.This can, for instance, be due to the fact that the goalstate is not reachable from the current state. Observethat no operator is admissible in ? so UG must gener-ate o? whenever applied to ?. Henceforth, we will usethe term universal plan as an abbreviation for sounduniversal plan.We continue by de�ning four properties of universalplans. For a universal plan UG we use the notationUKG (S) to denote the operator UG(SK ) where S1 = Sand SK+1 = SK � UG(SK ).De�nition 8 A universal plan UG for a PSN structure� = hP;Oi isPT poly-time i� UG can be implemented as a deter-ministic algorithm that runs in polynomial time inthe size of �;PS poly-space i� UG can be implemented as a deter-ministic algorithm A satisfying1. the size of A is polynomially bounded by the size� and2. the size of the space used by A is polynomiallybounded by the size of �;A acceptance-complete i� for every S 2 S such thathP;O; S;Gi is solvable there exists an integer K suchthat UKG (S) = o>;R rejection-complete i� for every S 2 S such thathP;O; S;Gi is not solvable there exists an integerK such that UKG (S) = o?.Universal plans satisfying some subset of the restric-tions PT , PS , A and R are named by combining thecorresponding letters. For example, a PTAR universalplan is poly-time, acceptance-complete and rejection-complete. The de�nition of poly-time should be quiteclear while the de�nition of poly-space may need fur-ther explanation. The �rst part of the de�nition en-sures that UG can be stored in a polynomially-boundedmemory. The second part guarantees that any compu-tation will use only a polynomially-bounded amount ofauxiliary memory. Hence, we can both store and runthe algorithm in a memory whose size is bounded by apolynomial in the size of �. This restriction excludesalgorithms using extremely large �xed data structuresas well as algorithms building such structures duringrun-time.For the sake of brevity, we use the terms A-and R-completeness for acceptance- and rejection-completeness, respectively. A minimal requirement onuniversal plans is that they are A-complete so we areguaranteed to �nd a solution within a �nite number

of steps if there is one. Observe that if an A-completeuniversal plan is not R-complete then UKG (S) can dif-fer from o? for all K if G is not reachable from S.R-completeness is, thus, desirable but not always nec-essary. In domains such as the blocks-world, where weknow that a solution exists in advance, R-completenessis of minor interest. To have R-completeness withoutA-completeness is useless since we can trivially con-struct universal plans satisfying PT;SR for all prob-lems. Simply let UG(S) = o? for all S 2 S?. This R-complete universal plan can trivially be implementedas a poly-time and poly-space deterministic algorithm.In certain applications, we need a stronger form ofR-completeness.De�nition 9 A universal plan UG for a PSN structurehP;Oi is strongly rejection-complete (R+) i� for everyS 2 S such that hP;O; S;Gi is not solvable, UG(S) =o?.The motivation for introducing strong R-completenessis simple. If the universal plan outputs operators, wecannot know whether they will lead to a solution ornot. Executing such operators is not advisable, sincewe may wish to try planning for some alternative goalif there is no solution for the �rst one. However, ex-ecuting the \invalid" operators may prevent us fromreaching the alternative goal.From a complexity-theoretic point of view, it can beargued that universal plans have to be both poly-timeand poly-space to be feasible in practice. This is a hardrestriction since by dropping any of the polynomial-ity requirements, constructing universal plans becomeeasy.Theorem 10 For every PSN structure � = hP;Oiand goal state G over P there exist universal plans UGand U 0G satisfying PTAR+ and PSAR+, respectively.Proof: Construction of UG : We de�ne a functionf : S? ! O+ as follows. For each K � 1 and S 2 Ssuch that hP;O; S;Gi has a shortest solution of lengthK, choose an o 2 O such that hP;O; S � o;Gi has ashortest solution of length K�1. Denote this operatoroS and letf(S) = ( o? if hP;O; S;Gi is not solvableo> S satis�es GoS otherwiseClearly, for every S 2 S there exists an integer Ksuch that if hP;O; S;Gi is solvable then UKG (S) = o>.Otherwise, UG(S) = o?. Consequently, f is both A-complete and strongly R-complete. The proposed con-struction of the function f is obviously of exponen-tial size. However, it can be arranged as a balanceddecision tree of depth jPj and, hence, be accessed inpolynomial time. Consequently, we have constructedUG .Construction of U 0G : Consider a forward-chainingPSN planning algorithmP that is sound, complete andgenerates shortest plans. We modify the algorithm to



output only the �rst operator of the plan that leadsfrom S to G. Since a plan might be of exponential sizethis cannot necessarily be implemented in polynomialspace. However, we can guess the plan one operatorat a time and compute the resulting state after eachaction, using only polynomial space. Hence, this modi-�ed planner can be represented by a non-deterministicalgorithm using polynomial space. Thus, by Savitch'stheorem (Savitch 1970), it can also be represented bya deterministic algorithm that uses polynomial space.This modi�ed planner can be the same for all prob-lems simply by giving the PSN structure � and thegoal state G as additional inputs. Hence, it is of con-stant size, i.e its size does not depend on the size of thegiven PSN structure. Consequently, we can disregardthe size of the planner and we have constructed a poly-space universal plan. (Observe that the soundness ofP implies soundness of U 0G if we modify U 0G to generateo> whenever the current state satis�es the goal state.)The planner P is complete and generates minimalplans. Hence, if the shortest plan from the currentstate S to the goal state G is of length L, the lengthof the shortest plan from S � U 0G(S) to G is L � 1.By this observation and the fact that P is complete,A-completeness of U 0G follows.Finally, if there is no plan from the current state tothe goal state, the planner will fail to generate eventhe �rst operator. In this case we simply output o?and strong R-completeness follows. 2It is crucial that the planner used in the previous the-orem generates shortest plans. Otherwise, we cannotguarantee A-completeness. We illustrate this with asmall, contrived example.Example 11 Consider the following PSN structure� = hP;Oi = hfp; qg; fp+; q+; q�gi where the oper-ators are de�ned as follows: p+ = (p) p), q� = (q)q) and q+ = (q ) q).Let I1 = fqg, I2 = ?, G = hfpg;?i, �1 =hP;O; I1;Gi and �2 = hP;O; I2;Gi. The shortestplan for both �1 and �2 is hp+i. Assume a planningalgorithm A that generates the plan !1 = hq�; p+ifor �1 and !2 = hq+; p+i for �2. A universal planUG based on A would then satisfy UG(I1) = q+ andUG (I2) = q�. Consequently, UKG (I1) = q+ for oddK and UG(I1) = q� for even K. In other words, theuniversal plan will toggle q forever. Hence, UG is notA-complete.For planning problems such that BPG3 can be solvedin polynomial-time, we can construct universal planssatisfying PT;SAR+ by Theorem 10. For planningproblems such that PG is polynomial but BPG isnot, the theorem does not apply. This method forconstructing universal plans is pointed out by Sel-man (1994) but he does not explicitly state that gen-3Recall that BPG and PG denote the bounded andunbounded plan generation problem respectively.

erating the shortest plan is necessary. The questionwhether we can construct PT;SAR+ universal plans forproblems where PG is polynomial but BPG is not re-mains open.Non-Existence of PT;SA Universal PlansIn order to show that PT;SA universal plans do not ex-ist for all PSN planning problems, we will use advice-taking Turing machines (Johnson 1990). Advice-taking TMs are an alternative way of describing non-uniform circuits, which is the approach adopted by Sel-man (1994).De�nition 12 An advice-taking Turing machine is aTM T that has associated with it a special \advice or-acle" A, which is a (not necessarily computable) func-tion. Let x be an arbitrary input string and let jxjdenote the size of x. When T is applied to x, a spe-cial \advice tape" is automatically loaded with A(jxj)and from then on the computation proceeds as normal,based on the two inputs, x and A(jxj). An advice-taking Turing machine uses polynomial advice i� itsadvice oracle satis�es jA(n)j � p(n) for some �xedpolynomial p and all nonnegative integers n. The classP/poly is the set of languages de�ned by polynomial-time advice-taking TMs with polynomial advice.Advice-taking TMs are very powerful. They can, forinstance, compute certain undecidable functions. De-spite their apparent power, it is highly unlikely that allproblems in NP can be solved by P/poly TMs.Theorem 13 (Karp & Lipton 1982) If NP � P/polythen the polynomial hierarchy collapses into �p2.�p2 is a complexity class in the second level of the poly-nomial hierarchy (Johnson 1990). Collapse of the poly-nomial hierarchy is widely conjectured to be false in theliterature (Johnson 1990; Papadimitriou 1994). Ourproofs rely on the following construction.Lemma 14 Let Fn be the set of all 3SAT (Garey &Johnson 1979) instances with n variables. For everyn, there is a PSN structure �n = hP;Oi and a goalstate Gn such that for every F 2 Fn, there exists an IFwith the following property: �F = hP;O; IF ;Gni is aplanning instance which is solvable i� F is satis�able.Furthermore, any solution to �F must have a lengthless than or equal to 8n3 + 2n.Proof: Let U = fu1; : : : ; ung be the set of vari-ables used by the formulae in Fn. Observe that therecan only be (2n)3 di�erent clauses in any formulain Fn. Let C = fC1; : : : ; C8n3g be an enumerationof the possible clauses over the variable set U . LetP = fT (i); F (i); C(j)j1 � i � n; 1 � j � 8n3g. Theatoms will have the following meanings: T (i) is true i�the variable ui is true, F (i) is true i� the variable ui isfalse and C(j) is true i� the clause Cj is satis�ed. Foreach variable ui, two operators are needed:� T (i); F (i)) T (i),



� T (i); F (i)) F (i).That is, T (i) can be made true i� F (i) is false and viceversa. In this fashion, only one of T (i) and F (i) can betrue. For each case where a clause C(j) 2 C containsa variable ui, the �rst operator below is needed: for anegated variable :ui, the second operator is needed:� T (i); C(j)) C(j),� F (i); C(j)) C(j).We specify the goal such that Gn = hG+n ;G�n i =hfC1; : : : ; C8n3g;?i. Let F 2 F . We want to constructan initial state IF such that � = hP;O; IF ;Gni is solv-able i� F is satis�able. Let IF = fC(j)jC(j) 62 Fg.Clearly, every C(j) can be made true i� a satisfying as-signment for F can be found. Finally, it is easy to seethat any solution to �F must be of length � 8n3 + 2nsince we have exactly 8n3 + 2n atoms and each atomcan be made true at most once. 2Lemma 15 If, for every integer n � 1, there exists apolynomial advice function that allows us to solve �Ffor all F 2 Fn in polynomial time, then the polynomialhierarchy collapses into �p2.Proof: Suppose �F is solvable i� F has a satisfyingtruth assignment, then NP � P/poly so, by Theorem13, the polynomial hierarchy collapses into �p2. 2We can now prove our main theorem.Theorem 16 If there exists a universal plan UGn sat-isfying PT;SA for �n, n � 1, then the polynomial hi-erarchy collapses into �p2.Proof: Assume UGn to be a PT;SA universal planfor �n. Consider the algorithm A in Figure 1. UGn issound so it must generate an operator that is admissi-ble in the given state or generate one of the special op-erators o?; o>. Hence, by Lemma 14, the repeat loopcan iterate at most 8n3+2n times before o equals eithero? or o>. We have assumed that UGn is a polynomial-time algorithm so algorithmA runs in polynomial time.We show that algorithm A accepts i� F has a satisfy-ing truth assignment. The if-part is trivial by notingthat if F has a satisfying truth assignment then thealgorithm accepts by A-completeness. For the only-ifpart, assume that the algorithmaccepts. Then UGn hasreturned the operator o> when applied to some stateS. By De�nition 7, UGn (S) = o> i� S satis�es Gn.Consequently, F is satis�able by Lemma 14. Hence,the algorithm accepts i� F is satis�able and rejects i�F is not satis�able. Furthermore, UGn is a polynomialadvice function since we have restricted UGn to be ofpolynomial size and the theorem follows by Lemma 15.2The generality of this theorem has to be emphasized.Recall that an advice is an arbitrary function from thesize of the input. This function does not even have tobe computable. Hence, there does not exist any mech-anism whatsoever that is of polynomial size and can beaccessed in polynomial time with the ability to solve

1 Algorithm A.2 Input: A 3SAT formula F with n variables.3 S  IF4 repeat5 o UGn(S)6 S  S � o7 until o 2 fo?; o>g8 if o = o> then accept9 else rejectFigure 1: The algorithm used in the proof of Theorem16.problems like those exhibited in the previous theorem.Methods that have been proposed to reduce the sizeof universal plans, such as the variables introduced bySchoppers (1994), cannot change this fact.Moreover, observe that Theorem 16 applies even to aclass of severely restricted PSN structures. The restric-tions are, among others, that all delete-lists are emptyand each operator has at most two preconditions. Sincethe delete-lists are empty, this restricted class is inNP (Bylander 1994). Consequently, it is a class withconsiderably less expressive power than the generalPSN planning problem which is Pspace-complete (un-der the plausible assumption that NP6=Pspace). Yet,PT;SA universal plans do not exist for this class ofplanning problems. Note that this is not caused by theexistence of exponentially-size minimal plans since allminimal plans in this class are polynomially bounded.Finally, we would like to compare Theorem 16 witha negative result by Selman (1994).Theorem 17 Unless NP�P/poly, there exists ablocks-world planning goal for which there is no PT;SAuniversal plan for generating the minimal sequence ofoperators leading to the goal.It is important to note the di�erence between this theo-rem and Theorem 16. Where Selman shows that PT;SAuniversal plans cannot generate minimal plans undercertain conditions, we show that there are cases whenthey cannot generate any plans at all.DiscussionThe results in this paper should not be interpreted toonegatively. What they tell us is that na��ve approachesto universal planning will not work. In particular, wecannot hope for e�cient universal plans solving arbi-trary planning problems. However, we question onlythe e�ciency of universal plans. We do not claim uni-versal plans to be inferior to classical planners in allaspects. It is, for instance, highly probable that uni-versal planning can o�er great advantages over classicalplanning in rapidly changing, dynamic domains. Thus,one of the challenges for the future is to characterizewhich planning problems can be e�ciently solved byuniversal plans. We have seen that if a problem canbe solved optimally in polynomial time, then there is



an e�cient universal plan solving it. Almost certainly,there are other interesting classes of planning problemsthat can be solved by small, fast universal plans.Another question to be answered in the future ishow to make universal planning more powerful. Sev-eral approaches are conceivable. One would be to giveuniversal plans access to random sources|thus makinguniversal planning probabilistic. Recent research hasshown that probabilistic algorithms can be surprisinglye�cient for certain types of problems. To mention oneexample, the probabilistic GSAT algorithm (Selman,Levesque, & Mitchell 1992) for satis�ability testing ofpropositional formulae has shown good performance inempirical studies. Another extension would be to allowuniversal plans to have an internal state; that is, theoutput of the universal plan is not only dependent onthe current state, but also on previous states. Univer-sal plans with internal states have been studied brie
yby Selman (1994). The results are unfortunately notencouraging.Universal planning should also be compared withincremental planning (Ambros-Ingerson & Steel 1988;Jonsson & B�ackstr�om 1995). The idea behind incre-mental planning is to have a planner that can outputvalid pre�xes of the �nal plan before it has �nishedplanning. It has been argued that this method couldconsiderably bring down the time lost in planning, es-pecially in dynamic domains, where replanning has tooccur frequently. This motivation is almost exactly thesame as the motivation for introducing universal plans(or reactive planning in general). Here we have a spec-trum of di�erent approaches to planning ranging fromclassical planning which �rst computes the completeplan and then executes it, via incremental planning,where chunks of the plan are generated and executedin an interleaved fashion, to universal planning, wherejust one operator at a time is generated and immedi-ately executed. ConclusionsWe have proposed a stricter de�nition of universalplans which guarantees a weak notion of soundnessnot present in the original de�nition. In addition, wehave identi�ed three di�erent types of completenesswhich capture di�erent behaviours exhibited by uni-versal plans. A-completeness guarantees that if thereexists a plan from the current state to the goal state,then the universal plan will �nd a solution in a �nitenumber of steps. R-completeness is the converse of A-completeness, i.e. if there does not exist a plan fromthe current state to the goal state, then the univer-sal plan will report this after a �nite number of ap-plications. R+-completeness is a stronger version ofR-completeness, stating that if there does not exist aplan from the current state to the goal state, then theuniversal plan will report this after one application.We show that universal plans which run in polynomialtime and are of polynomial size cannot be A-complete
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