
Vieweg Advanced Studies
in Computer Science

New Approaches to
Code Generation,
Data Distribution, and
Performance Prediction

Christoph W. Kessler (Ed.)

Automatic
Parallelization

vieweg
ISBN 3-528-05401-8

FOREWORD

Distributed-memory multiprocessing systems (DMS), such as Intel’s hypercubes,
the Paragon, Thinking Machine’s CM-5, and the Meiko Computing Surface, have rapidly
gained user acceptance and promise to deliver the computing power required to solve the
grand challenge problems of Science and Engineering. These machines are relatively in-
expensive to build, and are potentially scalable to large numbers of processors.

However, they are difficult to program: the non-uniformity of the memory which
makes local accesses much faster than the transfer of non-local data via message-passing
operations implies that the locality of algorithms must be exploited in order to achieve
acceptable performance. The management of data, with the twin goals of both spreading
the computational workload and minimizing the delays caused when a processor has to
wait for non-local data, becomes of paramount importance.

When a code is parallelized by hand, the programmer must distribute the program’s
work and data to the processors which will execute it. One of the common approaches to
do so makes use of the regularity of most numerical computations. This is the so-called
Single Program Multiple Data (SPMD) or data parallel model of computation. With
this method, the data arrays in the original program are each distributed to the processors,
establishing an ownership relation, and computations defining a data item are performed
by the processors owning the data. Accesses to non-local data must be explicitly handled
by the programmer, who has to insert message passing communication constructs to send
and receive data at the appropriate positions in the code. The details of message passing
can become extremely complex; furthermore, the programmer must decide when it is
advantageous to replicate computations across processors, rather than send data.

A major characteristic of this style of programming is that the performance of the
resulting code depends to a very large extent on the data distribution selected. It deter-
mines not only where computation will take place, but is also the main factor in deciding
what communication is necessary. The communication statements as well as the data
distribution are hardcoded into the program. It will generally require a great deal of re-
programming if the user wants to try out different data distributions. This programming
style can be likened to assembly programming on a sequential machine – it is tedious,
time-consuming and error prone.

As a consequence, much research activity has been concentrated on providing high-
level languages and programming tools for DMS. The full potential of these systems can
only be exploited by a cooperative effort between the user and the language/compiler
system: there is a tradeoff between the amount of information provided by a user (inter-
actively or via language extensions in the program) and the effort that has to be spent
in the compiler for generating high-performance target code. This has led to a spectrum
of approaches to the problem of programming DMS. We mention some of the major
research directions below.

� Semi-automatic parallelization systems are based on extensions of conventional
languages such as Fortran or C which allow the explicit specification and manipula-
tion of data distributions. The compiler uses this information to generate an explic-
itly parallel program.
Such systems have been developed since the mid 1980’s, and a number of univer-
sity prototypes as well as commercial systems exist today. They are still limited in
their ability to translate “real” programs efficiently and sometimes need a significant
amount of user interaction.

� The experience with semi-automatic parallelization and the growing importance of
DMS resulted in increased efforts to standardize language features for data distribu-
tion. High Performance Fortran, based on languages such as CM Fortran, Vienna
Fortran, and Fortran D is the most prominent effort in this area. These new lan-
guages significantly surpass the capabilities of existing compilation systems, lead-
ing to new demands on compiler research for DMS.

� Fully automatic parallelization systems attempt to shift the full burden of parallel
program generation to the compiler. This includes in particular

– the automatic generation of data distributions from sequential programs, and

– the automatic determination of transformation sequences for converting se-
quential programs to highly efficient explicitly parallel programs.

For both problems – and a number of related issues – only limited solutions exist
today. Successful approaches will have to use a combination of knowledge-based
techniques and enhanced analysis methods, with a particular emphasis on perfor-
mance analysis.

This book presents a collection of articles which illustrate important research direc-
tions in all three of these and some related areas. It gives an insight into some successful
approaches, identifies a number of unsolved problems, and outlines promising future
developments.

It is my hope that the book will contribute to an understanding of the important issues
in this exciting and crucial area of current research.

Hans Zima

vii

Contents

1 Preface 1

2 The Weight Finder - An Advanced Profiler for Fortran Programs 8
by Thomas Fahringer8
2.1 Introduction . 8
2.2 Prerequisite . 11
2.3 The Weight Finder . 11

2.3.1 Choosing sequential program parameters 12
2.3.2 Instrumentation . 14
2.3.3 Optimization . 17
2.3.4 Compile and Execute . 20
2.3.5 Attribute and Visualize . 20

2.4 Adaptation of Profile Data . 20
2.4.1 Program transformations . 21
2.4.2 Problem Size . 25

2.5 Conclusion and Future Work . 26

3 Predicting Execution Times of Sequential Scientific Kernels 33
by Neil B. MacDonald33
3.1 Motivation . 33
3.2 Deriving time formulae for code fragments 34
3.3 Obtaining a platform model . 35
3.4 Examples . 38

3.4.1 Fragment A . 38
3.4.2 Fragment B . 39
3.4.3 Fragment C . 40
3.4.4 Fragment D . 41
3.4.5 Fragment E . 42
3.4.6 Fragment F . 43
3.4.7 Summary of results . 44

3.5 Discussion and Further Work . 44

4 Isolating the Reasons for the Performance of Parallel Machines on Numeri-
cal Programs 46
by Arno Formella, Silvia M. Müller, Wolfgang J. Paul, and Anke Bingert46
4.1 Introduction . 46
4.2 Micro Measurements . 47

4.2.1 Micro Measurements for a Node Processor 48
4.2.2 Micro Measurements for Communication Networks 53

4.3 Measurements . 57
4.3.1 Measurements of the Serial Kernels 57

viii Contents

4.3.2 Measurements of the Parallel Kernels 63
4.4 Algorithms . 68

4.4.1 CG–method . 68
4.4.2 PDE1–method . 70
4.4.3 PDE2–method . 71

4.5 Analysis of the Programs . 72
4.5.1 Serial Versions . 72
4.5.2 Parallel Versions . 74

4.6 Conclusion . 77

5 Targeting Transputer Systems, Past and Future 79
by Denis Nicole79
5.1 Introduction . 79
5.2 The T800 family . 80
5.3 The T9000 family . 82
5.4 The Chameleon family . 83

6 Adaptor: A Compilation System for Data Parallel Fortran Programs 85
by Thomas Brandes85
6.1 Introduction . 85
6.2 The Adaptor Compilation System . 86

6.2.1 Properties of Adaptor . 86
6.2.2 Overview of Adaptor . 87
6.2.3 The Input Language . 88
6.2.4 Programming Models for the Generated Programs 88
6.2.5 Interactive Source-to-Source Transformation 88
6.2.6 Realization of the Translation 89
6.2.7 Distributed Array Library . 90
6.2.8 Visualization of the Run Time Behavior 91
6.2.9 Availability . 91
6.2.10 Related Work . 91

6.3 Results of Benchmark Codes . 91
6.3.1 The Purdue Set . 92
6.3.2 Comparison of Sequential and Parallel Version 92
6.3.3 Efficiency and Scalability . 93
6.3.4 Adaptor vs. hand-coded message passing programs 94
6.3.5 Full vs. Loosely Synchronous Execution 94

6.4 Results of Application Codes . 96
6.4.1 HYDFLO: a CM Fortran Code for Fluid Dynamics 96
6.4.2 ESM: a Fortran 90 Code for Circulation 96
6.4.3 IFS: a Fortran 77 Code for Weather Prediction 96

6.5 Summary . 97

7 SNAP! Prototyping a Sequential and Numerical Application Parallelizer 100
by Rolf Hänisch100
7.1 Introduction . 100

ix

7.2 Compiler . 101
7.2.1 Front-End for FORTRAN . 101
7.2.2 Dependence Analysis . 102
7.2.3 Alignment analysis . 103
7.2.4 Parallelizer . 103
7.2.5 Code generation . 104

7.3 Conclusions . 109

8 Knowledge–Based Automatic Parallelization by Pattern Recognition 111
by Christoph W. Keßler111
8.1 Introduction and Overview . 111
8.2 Preprocessing the Source Code . 113
8.3 Which Patterns are Supported? . 116
8.4 Pattern Recognition: A Detailed View 117

8.4.1 Program Representation . 118
8.4.2 Pattern Hierarchy Graph . 119
8.4.3 The Matching Algorithm . 120
8.4.4 Standard Pattern Matching: A simple example 121
8.4.5 Removing redundant IF statements 122
8.4.6 Loop Rerolling . 123
8.4.7 Difference Stars . 126
8.4.8 Beyond standard matching: Identification of multigrid hierarchies 127

8.5 A Parallel Algorithm for each Pattern 128
8.6 Alignment and Partitioning . 129
8.7 Determining Cost Functions: Estimating and Benchmarking 131
8.8 Implementation and Future Extensions 131
8.9 Conclusions . 133

9 Automatic Data Layout for Distributed–Memory Machines in the D Pro-
gramming Environment 137
by Ulrich Kremer, John Mellor-Crummey, Ken Kennedy, and Alan Carle137
9.1 Introduction . 137
9.2 Compilation system . 138
9.3 Dynamic Data Layout: Two Examples 139
9.4 Towards Dynamic Data Layout . 141

9.4.1 Alignment Analysis . 144
9.4.2 Distribution Analysis . 144
9.4.3 Inter-Phase Decomposition Analysis 144

9.5 Related Work . 147
9.6 Summary and Future Work . 148

10 Subspace Optimizations 154
by Kathleen Knobe and William J. Dally154
10.1 Introduction . 154

10.1.1 Data Optimization . 155
10.1.2 Shapes . 156

x Contents

10.2 Subspaces . 158
10.3 Subspace Changes . 159

10.3.1 Scalars . 159
10.3.2 Control Expressions . 161
10.3.3 Array Sections . 162
10.3.4 Explicit Dimensions . 163
10.3.5 Reductions . 164

10.4 Subspace Optimizations . 164
10.4.1 Relative Costs . 166
10.4.2 Subspace Minimization . 167
10.4.3 Subspace Minimization with other Types of Expansion 170
10.4.4 Combining Multiple Expansions 171
10.4.5 Expansion Strength Reduction 173
10.4.6 Expansion Costs . 173
10.4.7 Reducing the Computation within Expansions 174

10.5 Subspaces Optimization Compared to Alignment 175
10.6 Summary . 176
10.7 Acknowledgments . 176

11 Data and Process Alignment in Modula-2* 179
by Michael Philippsen and Markus U. Mock179
11.1 Introduction . 179
11.2 Modula-2* . 180

11.2.1 FORALL statement . 181
11.2.2 Allocation of array data . 181

11.3 Alignment in Modula-2* . 182
11.3.1 Data Alignment . 183
11.3.2 Process Alignment . 184

11.4 Arrangement Graphs and Conflicts . 185
11.4.1 Type and Structure . 185
11.4.2 Conflicts . 186

11.5 Cost Considerations . 189
11.6 Example . 190
11.7 Conclusion . 191

12 Automatic Parallelization for Distributed Memory Multiprocessors 194
by Anne Dierstein, Roman Hayer, and Thomas Rauber194
12.1 Introduction . 194
12.2 Related Work . 195
12.3 Overview . 196
12.4 Parallelization Strategy . 197
12.5 Branch–and–Bound Algorithm . 201

12.5.1 Basic Approach . 201
12.5.2 Distribution Graph . 203
12.5.3 Redistribution during Program Execution 206

12.6 Performance Estimator . 207

xi

12.6.1 Transfer costs . 208
12.6.2 Combining the transfer costs 211
12.6.3 Data Transfer Graph . 212

12.7 Prototype Implementation and Results 214
12.7.1 Implementation . 214
12.7.2 Livermore Loops . 214
12.7.3 Gauss–Seidel Relaxation . 215
12.7.4 Jacobi Relaxation . 216

12.8 Conclusions and Further Research . 217
12.9 Acknowledgements . 218

A Trademarks 220

1

1 Preface

The present book emerged from the proceedings of the First International Workshop on
Automatic Distributed Memory Parallelization, Automatic Data Distribution and Au-
tomatic Parallel Performance Prediction (or short: AP’93) held at the University of
Saarbrücken, Germany, in March 1993. This volume contains 11 invited contributions
that were presented at the workshop.

Before going medias in res, we give a short survey of supercomputer architectures
and their impact on optimizing compilers technology. Because of the width of this area,
we will only enter into those issues that seem relevant to us in the framework of this
book. For a comprehensive survey of available parallel computing systems, we refer to
[3]. Then, we will motivate automatic parallelization, consider the state of the art and
raise the main problems that have been discussed at AP’93. To the novice reader, we
recommend [4] as an excellent textbook.

Why parallel computers? The demand for computational power from natural sciences,
engineering, medicine, ecology and other application areas, represented by the so–called
“grand challenge” applications, increases rapidly — faster than just technological im-
provements can fill this gap. As a solution to this dilemma, parallel processing offers
— theoretically — a technology–independent speed–up over single processor machines
scaled by the number of processors.

During the 1970s, a first step towards parallel processing has been made by develop-
ing pipelined vector processors (e.g. Cray 1, Fujitsu VP-100). They support the SIMD
(Single Instruction, Multiple Data) programming style. Since vector instructions (simple
concurrent operations on arrays) can be processed very fast, these computers are very
powerful compared to serial machines. However, they have severe limitations: they are
not scalable (i.e., the number of pipeline stages cannot be increased arbitrarily), they
are often not flexible enough, and they cannot be effectively used for irregular or non–
data–parallel programs. Systolic arrays of processors working in a lock–step manner are
also SIMD machines and, to some degree, also VLIW (Very Long Instruction Word)
architectures.

Since the early 1980’s, more and more parallel computers were introduced, at first
mostly shared memory multiprocessors (SMS) consisting of a small number of proces-
sors connected to a common main memory by a fast interconnection network (e.g. Cray
X-MP or Alliant FX/8). Each processor is able to run its own node program, so this
corresponds to the MIMD (Multiple Instructions, Multiple Data) programming style: in
addition of data parallelism, also task parallelism (parallel threads of program control
flow) can be exploited. SMS are handy to program since the global memory structure re-
sembles the sequential view of programming, and the user does not have to worry about
communication delays. However, classical SMS are not scalable because the network
constitutes a bottleneck that limits the realizable number of processors to an order of 32.

2 1 Preface

From the middle of the 1980’s until today, there is a remarkable trend towards scal-
able massively parallel architectures consisting of thousands of processing elements.
Currently, these are technically realizable only as (physically) distributed–memory ma-
chines (DMS), either in the form of homogeneous multiprocessors (for instance, Intel
iPSC/860, Intel Paragon, NCUBE-2, Thinking Machines CM5 or MasPar MP-2) or as
clusters of loosely–coupled workstations (e.g. IBM 9076 SP1). This architecture style
is influenced by scalable networks (e.g. hypercubes, trees or tori) connecting the pro-
cessors, by cheap memory and by cheap, mass–produced standard node processor chips
(e.g. Intel i860 or Inmos Transputers). Since there is no longer a global address space,
data (especially, arrays) and program code must be distributed over the local memory
modules of each processor. Accesses to non-local data must be handled by interproces-
sor communication, which, implemented as operating system calls, is a time-consuming
matter.

Two other architecture models are currently being explored to enhance scalability by
using distributed memory modules while maintaining a shared–memory programming
view for the user. The first one is the Virtual Shared Memory (VSM) approach which
simulates a global main memory by caching. If a processor needs access to data that is
not residing in its cache, the memory pages containing these data must be loaded into
the cache via the interconnection network. An example machine is the Kendall Square
Research KSR-1.

The second approach is still in research: the Parallel Random Access Machine (PRAM)
is based on random routing and latency hiding by a sophisticated (but scalable) pipelined
network that interconnects processors to memory modules. While the PRAM is really a
general–purpose parallel machine, its performance on numerical applications with high
locality is beaten by DMS of comparable technology. Both VSM and PRAM hide many
implementation details from the user and, unfortunately, also from the compiler. While
implicit parallelization is supported, explicit or automatic parallelization is rendered
more difficult.

Considering the development of these “supercomputers”, we can observe that the gap
between peak performance and sustained performance grows, and that it becomes harder
and harder to optimize the application towards the hardware.

Not only programming becomes more difficult. For current supercomputers, it is also
not easy to predict the performance of a nontrivial parallel program, due to — in general,
hardly documented — hardware features like caches, complex message protocols or
routing anomalies.

Most numerical applications contain a large amount of grid operations or linear al-
gebra routines. Loops indexing large arrays offer the greatest potential of (data) paral-
lelism. Extracting parallelism thus means converting serial loops to parallel loops with-
out changing the program’s semantics by violating data dependencies. For a detailed
discussion of data dependency theory, the reader is referred to [1].

Another important properties of grid operations and (most) linear algebra routines are
locality of array references and a low communication–to–computation ratio. A program
without these two properties will, in general, not run efficiently on current vector or
DMS supercomputers.

3

Suitable program transformations may facilitate data dependency analysis and thus
improve the potential for parallelism extraction. Although these transformations are
well–studied (e.g. [2]), automatic guidance in choosing the right sequence of transfor-
mations is an unsolved problem. The most sophisticated program transformation we can
imagine is locally replacing a complete (sequential) implementation by a parallel algo-
rithm with equal semantics. Many parallel algorithms have been devised within the last
decades, but in general, they do not just emanate from their sequential counterparts by
simple transformations and loop parallelization.

Parallel code generation for SMS is usually performed by decomposing the program
into tasks, scheduling these, and introducing barrier synchronization points to make sure
that always the desired version of data is referenced by each task. A good survey of
relevant compiler techniques for SMS can be found in [2]. The most important compiler
optimizations for SMS address load balancing by decomposing the program into tasks
of nearly equal size, and minimizing the number of synchronization points.

Distributed memory multiprocessors are more difficult to program. The decomposi-
tion of the program code over the processors is often handled by the SPMD (single
program, multiple data) programming paradigm where all processors have the same pro-
gram, but work on different data sections. Thus, data distribution induces code distri-
bution. An access to nonlocal data results in interprocessor communication. In general,
if data has to be transported from one processor’s local memory to that of another one,
this has to be programmed explicitly as pairs of SEND and RECEIVE instructions (mes-
sage passing). This tedious and error–prone task can be made easier for the user by two
different ways: by applying communication libraries for message passing, and by (semi–
)automatic parallelization. Message–passing libraries (like PVM, Express, PARMACS,
MPI, Linda) contain simple (SEND/RECEIVE) and more higher order (e.g. global collec-
tion of array elements) communication primitives. Usage of these libraries also increases
portability of the code. Nevertheless, parallelism has to be programmed explicitly by the
user, e.g. in the form of parallel loops.

An alternative is offered by semi–automatic parallelization: The user determines (man-
ually) how data should be distributed over the processor memories. This may technically
be realized either as commands in an interactive system (e.g. SUPERB) or as directives
or similar DISTRIBUTE statements in parallel programming languages (e.g. C*, HPF-
Fortran, Fortran D, Vienna Fortran, Modula-2*). Moreover, it is often advisable to apply
(manually) some suitable program optimizations (e.g. loop transformations, statement
reordering or even partial algorithm replacement) at this point to exploit hardware prop-
erties such as cache sizes or processor topology. Thereafter, the program is automatically
adapted by adding a mask to each instruction that assures that each processor updates
exactly those elements that reside in its own local memory (owner–computes rule). Fur-
thermore, insertion of the required SEND and RECEIVE instructions into the code is done
automatically. The program generated by this method is, in general, not efficient. It has
to be further tuned by improving the communication and by simplifying the masks. If the
node processors are vector processors themselves (e.g. at CM-5), the parallelized node
program should be vectorized to exploit this additional feature.

Although semiautomatic parallelization preserves the user from coding explicit mes-
sage passing, the user is left alone with the most intellectually demanding steps: deter-

4 1 Preface

mining the data distribution (a hard problem in terms of computational complexity) and
applying the suitable sequence of optimizing transformations to the code. Both items are
crucial for the efficiency of the generated parallel code. In the worst case, an unsuitable
data distribution results in a dramatical speed–down (!) of the parallelized program. If
the programmer has sufficient knowledge about his data structures and about the target
machine, and if he is willing to spend enough time to manually transform thousands of
lines of code, then this may be satisfactory for him. But in general, the typical super-
computer user is not a computer scientist and wants to focus on his primary research
issues instead of devoting much time to manually tuning a large application towards a
machine that may be obsolete a few years later. He just wants to feed in the sequential
program into the compiler and get out optimized parallel code. Furthermore, there is an
immense potential of dusty deck programs that could be ported to new generations of
supercomputers. Even for new programs, application programmers behave reserved to-
wards parallel programming languages since none of them has currently established as
the standard language.

Despite the fact that recent years have shown several interesting approaches to the
problem of automatically determining optimal data distributions and array alignments,
semiautomatic parallelization is still the state of the art. Fully automatic parallelization
is yet a dream, and some people believe it will remain so forever. There are a lot of hard
problems involved in it, e.g. obscure and undocumented behaviour of parallel machines,
strange properties of the source language, irregular computation structures, important
values (loop bounds) that are unknown at compile time, unresolvable alias or pointer
references, only exponential–time algorithms available for determining exact data flow
information or for computing optimal array alignment and distribution. As fast and com-
plete solutions to these problems seem to be far away, current research on compilers
for parallel architectures concentrates more on VSM and on compilers for parallel pro-
gramming languages — research on automatic methods appears rather at their border.
Nevertheless, automatic parallelization is a very important key technology for future use
of parallel computers: Real application programmers do not want to program in parallel
— they just want performance.

It has thus been a major goal of the AP’93 workshop to bring together researchers
working on true automatic parallelization and to focus on automatic methods rather than
on parallel programming languages. In particular, we would like to discuss the following
questions:

� Up to which degree is automatic parallelization for DMS possible today, and what
is expected to be possible in the near future?

� What are currently the most important problems for automatic parallelization?

� Which new ideas are there, what are their advantages and disadvantages?

� In which cases can knowledge–based methods help? Can they be used in practice?

� Are there promising methods for automatic data distribution and redistribution?
What is their computational complexity? Do genetic algorithms offer an alterna-
tive?

5

� Why is performance prediction problematic? What are the actual problems on com-
mercially available DMS machines and on their node processors?

As it is crucial to observe the impact of choosing a special data distribution, or of apply-
ing a special code transformation to the program, on the run time behaviour of the par-
allelized code, automatic parallelization must deal with automatic run time prediction.
Since supercomputer manufacturers hardly publish detailed data sheets of their architec-
ture design, performance prediction must be done indirectly by measuring run times of
suitable benchmark programs (e.g. the Livermore Loops). From their run times, one tries
to verify a simple architecture model for the target machine and to deduce characteristic
machine parameters, which, in turn, are the basis for run time prediction. If a compiler
and/or the operating system have been used, then also their quality is measured. Since
the simplified architecture model can not match the target machine exactly, run time
prediction by this method can not be exact either.

In the following survey, we shortly present the articles contained in this book. Their
order does not impose any precedence relation among them; it is just the order the talks
were scheduled at the workshop. In case of several authors, we only mention the name of
the speaker. The results of the discussions during the workshop have been incorporated
into the final versions of these contributions.

� T. Fahringer presents the Weight Finder, a tool that generates important profile data
that is required to predict the run time of parallelized codes in the framework of
the Vienna Fortran Compilation System. The derived run time estimates may also
be used to limit computationally expensive optimizations to time–critical regions of
the program.

� N. MacDonald measures the performance of several microprocessors typically used
as node processors in current DMS. It turns out that already predicting the run time
of the sequential node programs is a difficult task.

� A. Formella et al. present a set of kernels that are appropriate to explain hardware
properties of the parallel machine. They use these insights to predict parallel run
times of several well–known numerical algorithms with acceptable accuracy.

� D. Nicole reports on typical compilation problems with INMOS transputers that are
designed to be applied as node processors in current massively parallel systems. He
suggests optimizing code transformations that should provide better usage of the
transputer’s hardware properties.

� T. Brandes presents Adaptor, a tool that transforms Fortran programs written in
a data–parallel style with parallelization and distribution directives, into a parallel
program with explicit message passing that can be run on many current parallel
architectures.

� R. Hänisch suggests using genetic algorithms to address the problem of determining
good data distributions for DMS.

6 1 Preface

� C. Keßler works out the PARAMAT system that will be able to parallelize automat-
ically a broad class of sequential numerical application codes. It is based on pattern
recognition and on knowledge–based program transformations including local al-
gorithm exchange.

� U. Kremer et al. propose dynamic data distribution by allowing static data redistri-
bution. They embed their distribution algorithm into the Fortran D compiler envi-
ronment.

� K. Knobe et al. categorize shape–changing operations (scalar and array expansion)
on multidimensional arrays and show the impact of optimizing array reshaping on
the run time of the parallelized code.

� M. Philippsen et al. address the data alignment problem for the parallel program-
ming language Modula-2* with given directives for data distribution.

� T. Rauber et al. present a research prototype of an automatic parallelization system
which applies a branch–and–bound search to determine good data distributions.
They also contribute a comprehensive framework for parallel run time estimation.

Finally, we thank all AP’93 participants for their attendance, for their talks and discus-
sion contributions. The AP’93 workshop has been arranged by Graduiertenkolleg Infor-
matik at Saarbrücken University. We would like to thank its speaker, Prof. Dr. J. Buch-
mann, for his greatly appreciated support, and its secretary, Mrs. Monika Fromm, for
her assistance in preparing the workshop. We further want to thank our colleagues Arno
Formella and Thomas Rauber for taking note of the discussions during AP’93.

According to numerous utterances from all workshop participants, AP’93 has been
a great success. For this reason, there is already a successor workshop planned, namely
AP’94, in Edinburgh. It is our hope that the AP workshops will continue being a platform
to discuss new ideas in automatic parallelization and stimulating future research on this
highly interesting area.

Christoph W. Keßler

Saarbrücken, July 1993

References

[1] Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
1988.

[2] Constantine D. Polychronopoulos. Parallel Programming and Compilers. Kluwer Aca-
demic Publishers, 1988.

7

[3] Arthur Trew and Greg Wilson (Eds.). Past, Present, Parallel: A Survey of Available Parallel
Computing Systems. Springer-Verlag, 1991.

[4] Hans Zima and Barbara Chapman. Supercompilers for Parallel and Vector Computers.
ACM Press Frontier Series. Addison–Wesley, 1990.

8

2 The Weight Finder - An Advanced Profiler
for Fortran Programs

Thomas Fahringer
DEPARTMENT OF SOFTWARE TECHNOLOGY AND PARALLEL SYSTEMS

UNIVERSITY OF VIENNA, AUSTRIA

email: tf@par.univie.ac.at

Abstract: This paper introduces the Weight Finder, an advanced profiler for Fortran programs,
which is based on a von Neumann architecture. Existing Fortran codes are generally too large to
analyze fully in depth with respect to performance tuning. It is the responsibility of the Weight
Finder to detect the most important regions of code in the program, as far as execution time is
concerned. Program transformation systems, compilers and users may then subsequently con-
centrate their optimization efforts upon these areas in code.

Furthermore program unknowns, such as loop iteration counts, true ratios and frequency infor-
mation, are derived. Analysis and prediction systems require concrete values for these unknowns
in order to provide reasonable accurate results.

Animation, simulation, debugging and trace based tools may use the profile data as being
derived by the Weight Finder in order to detect program parts which are never executed, simulate
the program’s control flow, etc.

This tool is based on an optimized instrumented profile run. Several optimizations are shown
which eliminate large portions of the instrumentation code, thus decreasing profile run-time and
memory requirements, and improving the measurement accuracy. It is shown how the profile data
can be adapted for program transformations to the original Fortran program without redoing the
profile run.

The Weight Finder is a 10000 line software package which is fully integrated under the Vienna
Fortran Compilation System.

2.1 Introduction

The Weight Finder, an advanced profiler for Fortran77 programs based on a von Neu-
mann architecture, is introduced. The principle aim of this performance analysis tool
is to obtain concrete profile data for program unknowns and to find the run-time inten-
sive program portions based on a concrete Fortran77 program for a characteristic set of
program input data. The derived profile data provide helpful information about the un-
derlying program to compiler, performance estimation, post-animation, debugging, and
trace based tools.

The Weight Finder is an integrated tool of the VFCS (Vienna Fortran Compilation
System) ([4, 26, 7, 27, 6, 5]), which handles the optimization and parallelization of se-
quential programs. The Weight Finder attributes the internal representation (syntax tree)

2.1 Introduction 9

of a Fortran77 program under the VFCS with the profile data. Consequently, if the pro-
gram is subsequently parallelized, the profile data, which are valid for both the sequential
and the parallel program, can be automatically transferred to the parallel program�.

The profile data as derived by the Weight Finder are useful for following purposes:

� Consider the time consuming and complex task of optimizing either a sequential or a
parallel program. There exist well over 100 different program transformations ([28,
5, 18, 24]). For both sequential and parallel programs: statement reordering, scalar
forward substitution, loop interchange, loop distribution, constant propagation, etc.
For parallel programs only: communication vectorization, communication fusion,
loop iteration elimination, optimizing data distribution strategies, etc. The compiler
and the user is concerned about what kind of transformation sequences to apply on
which portions of the program. The consequence is an enormous search tree for
these transformation sequences. Existing Fortran codes are generally too large to
analyze fully in depth with respect to all those different transformation sequences.
It is the task of the Weight Finder to locate the run-time intensive program portions
in the program. Experience indicates that these portions are likely to be from 5
to 10 percent of the original code, leading to a significant reduction in the overall
workload for the program optimization process.

� State-of-the-art performance prediction systems — such as theP �T Parameter based
Performance Prediction Tool ([11, 8]) and others ([10, 21, 23]) — which stati-
cally predict the performance behavior of parallel programs, are faced with pro-
gram unknowns, for which concrete values are needed to provide reasonable accu-
rate performance estimates. Mainly loop iteration counts, true-ratios for conditional
statements, and frequency information is required by performance estimation tools.
The Weight Finder obtains concrete values for all of these unknowns. The obtained
Weight Finder profile data are transferred to a parallel program as indicated above.
A performance prediction tool might then use the attributed parallel program to
derive estimated performance values based on the parallel program. The P �T is
integrated with the Weight Finder and successfully derives accurate performance
estimates based on the Weight Finder derived profile data (cf. [11]).

� Animation tools might use frequency information and the concrete outcome of IF-
expressions specific to a statement instantiation� in order to post-visualize the con-
trol flow of a program.

� Debugging and trace based tools ([15]) might require frequency information and/or
true ratios of program branches in order to detect program portions which are never
executed.

Existing profilers ([14, 22, 3, 13, 20]) could not be used for following reasons:

�In this paper parallel programs are referred to Single Program Multiple Data parallel programs only
�A statement instantiation corresponds to a single statement execution.

10 2 The Weight Finder - An Advanced Profiler for Fortran Programs

� Most of the existing profilers produce a single output file containing both the origi-
nal program and the profile data. In order to relate the profile data to specific state-
ments, this file would have to be reparsed. Because both Weight Finder and the
VFCS use the same program representation (syntax tree), the profile data naturally
can be associated to the instrumented program statements.

� Previous compilers have only very limited support to selectively profile parts of
the underlying program for specific data of interest. Conventional profilers derive a
vast amount of profile information neglecting the varying needs of different users
and tools. This induces unnecessarily long profile times and high profile memory
requirements.

� They do not provide any support to transfer the profile data – derived from a For-
tran77 program – to a parallel program.

� The profile data required (see below) is usually not supported by existing profilers.

Therefore it was necessary to build the Weight Finder, a new and more enhanced pro-
filer, which is based on following design: The original Fortran77 program for which
a profile run has to be done, is run through the VFCS frontend. This includes exten-
sive intra- and interprocedural analysis and program normalization and standardization�

([12, 25, 28, 26]). The user selectively chooses from a set of sequential program pa-
rameters: frequency information, true-ratios, loop iteration counts, dynamic outcome of
IF-expressions, and timing information for specific program portions or the entire pro-
gram. The Weight Finder then instruments the program according to the chosen parame-
ters, optimizes the instrumented program, compiles and executes it. As instrumentation
code may obviously induce a severe overhead in the profile run and, as a consequence,
also influence the accuracy of profiled times, strong emphasis was paid to optimize the
instrumented program. Three optimization techniques are presented which improve the
profile run in terms of instrumentation code, profile memory, and run-time. The obtained
sequential program parameters are then visualized together with the original Fortran77
program in a Motif/X11 window. The internal data structures of the program – syntax
tree and control flow graph – are attributed with these parameter values.

Program changes, which are induced by applying program transformations, may in-
validate the obtained parameter values. In order to prevent re-doing profile runs of a
specific program over and over again, it is shown how to adapt the obtained parameter
values, in particular for frequency information, true ratios, and loop iteration counts. A
single profile for a Fortran77 program is therefore sufficient, even if subsequent program
changes are applied.

The paper is organized as follows. First, the sequential program parameters are defined
and prerequisites are presented. The next section describes the Weight Finder phases,
outlines how to use this tool, explains three optimization techniques which decrease the
profiling overhead, and shows a sample session of the Weight Finder under the Mo-
tif/X11 user-interface. Section 2.4 shows how to adapt the profile data for a variety of
program transformations, which prevent redoing the profile run for different program
changes. Conclusions and future work are presented in Section 2.5.

�This strongly alleviates subsequent compiler analysis

2.2 Prerequisite 11

2.2 Prerequisite

The VFCS is the underlying compilation system of the described profiler. It handles
the optimization of both sequential and parallel Fortran programs. The Weight Finder
requires the VFCS’s frontend for Fortran77 programs.

For a specific Fortran77 program Q, which has gone through the VFCS frontend, the
Weight Finder may selectively derive – by incorporating a profile run – the following
sequential program parameters:

� The loop iteration count of a DO-loop L is specified by the number of times the
DO-loop body of L is executed for a single instantiation of L. This is defined by a
function iter � D � N�, where D is the set of DO-loops in Q and N� the set of
positive integer numbers including zero.

� The frequency information of a statement S � S, where S is the set of statements in
Q, specifies how many times S is executed during a single program run of Q. This
is defined by a function freq � S � N�

� The true ratio for a conditional statement S � Scond, where Scond is the set of condi-
tional statements in Q, determines the probability that the condition of S evaluates
to TRUE. This is defined by a function tr � Scond � ������, with ������ a closed in-
terval of real numbers. tr�S� � � (tr�S� � �) means that the conditional expression
of S never (always) evaluates to TRUE.

� The dynamic outcome of the IF-expression C of a conditional statement S � Scond,
determines whether C evaluates to TRUE or FALSE for a specific instantiation of
S during the program run of Q. This is defined by a function dyn � Scond ��S �
fTRUE,FALSEg, where �S is the set of instantiations for statement S and Scond
the set of conditional statements in Q. dyn�S� i� �TRUE means that statement S
evaluates to TRUE for statement instantiation i.

� The measured time, also denoted as profiled time� for a set of program statements U ,
is defined by a function ptime � U � R�

� , where U may be a DO-loop, a procedure,
or the overall program, and R�

� is the set of positive real numbers including zero.

Note that all but the last parameter are machine independent. All sequential parameters
depend on the user provided set of input data for Q.

2.3 The Weight Finder

In the following, an overview of the six processing phases for a single profile run of the
Weight Finder as an integrated tool of the VFCS is provided. Thereafter, each of these
phases are explained in detail.

�The time required to do the profile is denoted as profile run-time

12 2 The Weight Finder - An Advanced Profiler for Fortran Programs

1. Front End Processing
In the first phase, the original Fortran77 program Q� is run through the VFCS fron-
tend. This includes extensive intra- and interprocedural analysis, normalization and
standardization of Q�, which yields program Q�. A copy of Q�, which is further
processed in phase-6, is stored.

2. Choosing Sequential Program Parameters
The user selectively chooses the sequential program parameters as described in Sec-
tion 2.2.

3. Instrumentation
The Weight Finder instruments Q� based on the chosen sequential program param-
eters of phase-2, which yields Q�.

4. Optimization
A series of optimizations are applied on Q� in order to reduce the instrumentation
overhead in terms of instrumentation code, profile run-time, and memory require-
ments. Q� is the optimized instrumented program.

5. Compile and Execute
Q� is then compiled and executed on a von Neumann architecture. The derived
profile data for the chosen sequential program parameters are written into a set of
profile files, one for each different sequential program parameter as chosen in phase-
2.

6. Attribute and Visualize
The profile data is read from the profile files and the internal data structures of a
copy of Q� – as created in phase-1 – are attributed with these values. In addition,
the derived sequential program parameters are visualized together with Q� in a Mo-
tif/X11 window.

The user may use the Weight Finder in both blocking and non-blocking mode. The
non-blocking mode allows the user to work on the optimization of a different program
under VFCS during the profile run.

Another facility of the Weight Finder enables the user to terminate a profile run be-
fore it is finished. The profile run is therefore fully controlled under the X11/Motif user
interface of the VFCS.

2.3.1 Choosing sequential program parameters

Based on program Q� the user may selectively choose different sequential program pa-
rameters to be obtained by the subsequent profile run. Following parameters can be se-
lected:

� Restricted Frequencies: Measure the frequency of all procedure calls and all DO-
loops. For perfectly nested DO-loops only the outermost loop is measured.

2.3 The Weight Finder 13

� All Frequencies: Measure the frequency of all basic blocks�, procedure calls and
DO-loops. All loops of a perfectly nested DO-loop are measured.

� True Ratios: For all conditional statements the overall true ratio is obtained.

� Dynamic IF-expressions: Obtain the dynamic outcome of the IF-expression for
every conditional statement with respect to all statement instantiations.

� DO-loop parameters: Derive the average values for DO-loop upper and lower bounds
for all DO-loops. This is only done for non-constant loop bounds.

� Time measurement (DO-loops): Acquire the accumulated execution time for every
DO-loop. For perfectly nested DO-loops only the outermost loop is considered.

� Time measurement (Procedures): Measure the accumulated execution time for every
procedure call.

There is an additional option which decreases the amount of instrumentation code and
the profile run-time.

� Loop parameter check: Instrumentation code is inserted to verify whether or not
the loop upper bound is larger than its matching loop lower bound. In such a case,
a different instrumentation strategy has to be applied which is more complex and
induces higher profile costs in terms of instrumentation code, profile run-time and
memory requirements. If the user can guarantee that for all loops in Q� the loop
upper bound is always larger than its matching lower bound, then a considerable
less complex instrumentation policy is utilized by the Weight Finder . This option
is critical, as instrumentation code inside of nested loops may induce a high profile
overhead.

Fig. 2.1 shows a screen snapshot of the Weight Finder under VFCS during this phase.
The main window shows the main program of the Jacobi relaxation code ([19]) after the
VFCS frontend. By selecting the menu item “Information�Weight Finder�Sequential
Program Parameters”, a selection box (“Select Sequential Program Parameters”) allows
to choose the sequential program parameters as described above.

For the next Weight Finder release it is planned to allow the above parameter selection
also on a per statement base. The user will then be able to turn profiling on and off with
respect to a specific sequential program parameter for arbitrary statements.

The parameter selection is stored every time the user terminates a session under VFCS.
After re-starting, the set of parameters chosen at the most recent Weight Finder session
is pre-selected by the system per default.

Note that choosing sequential program parameters does not immediately trigger a pro-
file run. After this phase the Weight Finder knows which parameters have to be obtained
for what program portions.

�As a consequence, the frequency of all statements is available

14 2 The Weight Finder - An Advanced Profiler for Fortran Programs

2.3.2 Instrumentation

This section describes the instrumentation policies incorporated in phase-3 of the Weight
Finder processing phases.

The following terminology is used to describe the instrumentation phase. If, for a spe-
cific statement S, a sequential program parameter is to be derived, then S is called the in-
strumented statement. In general, one or several instrumentation statements are inserted
in Q� for every instrumented statement. An instrumentation statement assigns values for
sequential program parameters to so-called instrumentation variables during the profile
run. For all instrumentation code examples, instrumentation variables are prefixed with
the $ sign. For the sake of simplicity, instrumentation variables are illustrated as scalar
variables. However, in the real implementation, arrays are used instead. This is done to
reduce the number of VFCS symbol table entries and to alleviate the administration of
instrumentation variables under the Weight Finder .

Frequency instrumentation is done based on basic blocks with a single entry and single
exit statement as defined in [1].

Instrumentation 2.3.1 (Frequency)
Let B � B, where B is the set of basic blocks in Q�.

INPUT: Non-instrumented Basic Block B

B

OUTPUT: Instrumented Basic Block B

S: $Bfreq = $Bfreq + 1
B

S is an instrumentation statement as inserted by the Weight Finder . If – before instru-
mentation – B is a labeled statement, then the label of B is moved to S. $Bfreq is set to
zero at the beginning of the profile run.

freq�B� is then defined by value�	Bfreq�, the value of variable 	Bfreq at the end of
the profile run.

Instrumentation 2.3.2 (DO-loop parameters)
Let L � D, where D is the set of DO-loops in Q�, and B � B the predecessor basic
block of L.

INPUT: Non-instrumented loop

B
L: DO I1=LB,UB

2.3 The Weight Finder 15

OUTPUT: Instrumented loop

B
S1: $LB1 = LB
S2: $UB1 = UB
S3: �Slb = �Slb + $LB1
S4: �Sub = �Sub + $UB1
L: DO I1=$LB1,$UB1

S�� � � � � S
 are instrumentation statements. In order to prevent side-effects, it is im-
portant to assign the loop bound expressions to instrumentation variables. For the sake
of simplicity it is assumed that B is the only predecessor basic block of L and L does
not have a label.

The average loop iteration count of L is computed by

iter�L� �
value�	Slb�� value�	Sub� � �

freq�B�
�

Note that L is assumed to be executed only once for a single instantiation of this
statement, rather than once for all of its loop iterations.

In the following, the true ratio instrumentation, which is done for conditional state-
ments, is defined.

Instrumentation 2.3.3 (True Ratio)
Let S � Scond and S belongs to a basic block B � B, then the instrumentation for S is
done as following:

INPUT: Non-instrumented statement

IF (C) Sb

where C is an IF-expression and Sb a statement.

OUTPUT: Instrumented statement

IF (C) THEN
$Sfreq � �Sfreq � �
Sb

ENDIF

true�S� is then defined by value��Sfreq	

freq�B	
, with value�	Sfreq�, the value of $Sfreq at the

end of the profile run, and freq�B�, the frequency of basic block B. $Sfreq is set to zero
at the beginning of the profile run.

Instrumentation 2.3.4 (Dynamic IF-expression outcome)
Let S � Scond and S belongs to a basic block B � B, then the instrumentation for S is
done as following:

INPUT: Non-instrumented statement

S: IF (C) Sb

16 2 The Weight Finder - An Advanced Profiler for Fortran Programs

where C is an IF-expression and Sb a statement.

OUTPUT: Instrumented statement

S1: $Sfreq � �Sfreq � �
S2: $C� = C
S3: IF ($C� .NE. $C�old) THEN
S4: call buffer($Sfreq , $C�)
S5: $C�old � �C�

ENDIF
S6: IF ($C�) Sb

S� is the frequency instrumentation statement for basic block B. $C� and $C�old are
instrumentation variables of type boolean.

As the value of C is used in several different statements (S�� � � � � S), side-effects
must be prevented by assigning the boolean value of C to an instrumentation variable
$C�, which is done in S�.

In S� the current value of C� is compared to the value of $C�old. $C�old contains the
boolean value of C after it changed from TRUE to FALSE or vice versa the last time
during the profile run. If the current value of $C� is different from $C�old, then in a non-
optimized profile run, the current value of C� and the current statement instantiation
value of S� (which is uniquely defined by $Sfreq, the current value of the frequency
variable of B) are written to a profile file. The Weight Finder, however, optimizes this
instrumentation by buffering the data to be written to a profile file. This is done in a
subroutine with the name buffer. In this subroutine the data to be written is buffered in a
buffer array. If this array is full, then a write operation to a profile file is executed and the
buffer array is considered to be empty again by initializing a buffer pointer. This saves
expensive I/O operations during the profile run.

Note that instead of storing the boolean value of C for every instantiation of S, a store
operation is launched only when C changes from TRUE to FALSE or vice versa.

Time measurement instrumentation incorporates the insertion of machine independent
time measurement calls in Q� which are replaced by machine dependent time measure-
ment calls in the backend of the VFCS.

Instrumentation 2.3.5 (Time measurement)
Let L � U , where U is the set of all DO-loops, procedure calls, and procedures in Q�,
and Q� itself.

INPUT: Non-instrumented statement

L

OUTPUT: Instrumented statement

S1: $Ltime� = mtime()
L

S2: $Ltime� = $Ltime� + mtime() - $Ltime�

2.3 The Weight Finder 17

S�, S� are instrumentation statements as inserted by the Weight Finder. mtime�� is a
machine independent time measurement call. If, before instrumentation, L is a labeled
statement, then the label of L is moved to the instrumentation statement S�. ptime�L� is
then defined by value�	Ltime�), which contains the accumulated time of L at the end of
the profile run. An approximate value for a single instantiation of the computation time
of L can then be computed by ptime�L��freq�L�.

2.3.3 Optimization

An instrumented profile run induces overhead with respect to profile memory and profile
run-time requirements, which in addition worsens the measurement accuracy of profiled
times.

The main objective of the Weight Finder ’s optimization phase is to reduce the profiling
overhead and its associated inaccurate profiled times.

In the following, three different possibilities for such optimizing transformations are
described:

2.3.3.1 Equal frequencies beyond basic blocks

Equal frequencies of basic blocks before and after loops may induce the elimination of
frequency instrumentation code.

Let B� and B� be two basic blocks and L a loop nest, where B� is the only predeces-
sor and B� the only successor basic block of L, respectively. If for all loops, in which
B� is contained, also B� is contained, and vice versa, then B� and B� have the same
frequency.

If the above condition is fulfilled for two basic blocks, then only one of them has to
be instrumented for frequency information. In the following, a code fragment of the Fast
Fourier Transformation ([19]) is shown:

Example 2.3.1

S1: WRK(1)=0.e0
WRK(N+1) = 0.e0
W(1)=0.e0

S2: E(1) = 0.e0
DO 100 J=2,N

WRK(J)= (J-1.e0)/sqrt((2.e0*J-1.e0)*(2.e0*J-3.e0))
WRK(J+N)=0.e0
E(J) = WRK(J)
W(J) = 0.e0

100 CONTINUE
S3: MATZ = 1

INDX = 2*N+1
S4: NP1=N+1

18 2 The Weight Finder - An Advanced Profiler for Fortran Programs

Let basic block B� (B�) contain all statements between S� and S� (S� and S
). Both
basic blocks are separated by a DO-loop. It can be easily seen that basic block B� has
the same frequency as B�. Instead of inserting frequency instrumentation code for both
B� and B� only one of these basic blocks has to be instrumented. The same optimization
can be frequently done for forward and backward GOTO loops. For further information
refer to [9].

2.3.3.2 Hoisting out frequency instrumentation

Hoisting out frequency instrumentation code of nested DO loops is in particular critical,
because the execution frequency of statements inside of loop nests is very high, which
of course also accounts for instrumentation statements. Hoisting out those instrumenta-
tion statements significantly reduces the profile run-time and improves the accuracy for
profiled times.

The following example illustrates the general policy for a basic block B inside of
a loop nest to be frequency instrumented. An instrumentation statement S� is inserted
immediately before B, which increments a frequency variable 	Bfreq by one.

Example 2.3.2 General frequency instrumentation

DO I� = LB1, UB1
DO I� � LB2, UB2

DO I� � LB3, UB3
S� � �Bfreq � �Bfreq � �

B

LB1, LB2, LB3, UB1, UB2, and UB3 are constants
.
If a basic block B � B inside of a nested loop has to be instrumented for frequency

information, instrumentation code does not necessarily have to be inserted immediately
before B. If none of the loop bounds are written inside of the loop nest, then it is possible
to hoist instrumentation code out of the loop nest, which can be seen in Ex. 2.3.3. If some
of the loop bounds are written inside the loop nest, then only part of the instrumentation
code can be hoisted out. For more details on the conditions and algorithms for hoist-
ing out instrumentation code see [9]. In both cases the efficiency of such instrumented
program is superior as compared to the general instrumentation policy.

Example 2.3.3 Hoisting instrumentation code

S�: $b� � LB1
S�: $e� � UB1
S�: $b� � LB2

�The actual implementation considers loop lower and upper bounds as linearly dependent on all en-
closing loop variables.

2.3 The Weight Finder 19

S�: $e� � UB2
S�: $b� � LB3
S	: $e� � UB3
S
: $iter� � �e� � �b� � �
S�: $iter� � �e� � �b� � �
S�: $iter� � �e� � �b� � �
S�: $Bfreq � �Bfreq � �iter� � �iter� � �iter�
L�: DO I� = $b�, $e�
L�: DO I� = $b�,$e�
L�: DO I� = $b�,$e�

B

Note that S�� � � � � S in Ex. 2.3.3 are necessary to prevent side effects of execut-
ing loop lower and upper bounds more than once. The $iter instrumentation variables
evaluate the number of loop iterations for a specific loop header statement. In S�� the
frequency of basic block B is computed outside of the loop nest. This optimized instru-
mentation does not contain any instrumentation code inside of the loop nest.

Hoisting instrumentation code out of a loop nest commonly induces more instrumen-
tation code, but depending on the loop iteration count these instrumentation statements
are executed only once for every loop nest instance. This is in contrary to the general
instrumentation policy, where instrumentation statements are executed for every single
loop iteration.

2.3.3.3 Equal true ratios

Recognizing equal true ratios of different conditional statements is important for many
compilers, because they normalize and standardize the original input program. This is
e.g. done by replacing RETURN, alternate GOTO, arithmetic GOTO, ENTRY state-
ments, etc. by logical IF statements.

If two different conditional statements S� and S� have the same IF-expression and
none of the variables in the IF-expression is written between any possible path between
S� and S�, and whenever S� is executed also S� is executed and vice versa, then for
only one of them, true ratio instrumentation code has to be inserted.

In Ex. 2.3.4 instead of all four statements, only S� and S
 have to be instrumented
for true ratios. Statements S� and S� refer to S� with respect to their true ratio. It is also
recognized that the true ratio of S� is the negated true ratio value of S�, thus tr�S�� �
� � tr�S��. In S� variable A might be written. Therefore for S
, whose IF-expression
contains variableA, a separate true ratio instrumentation is initiated by the Weight Finder
.

Example 2.3.4

S1: IF (A .AND. B) C = C + 1
S2: IF (A .AND. B) D = D + 1
S3: IF (.NOT. (A .AND. B)) A = C + D
S4: IF (A .AND. B) D = D - C + A

20 2 The Weight Finder - An Advanced Profiler for Fortran Programs

The optimization phase yields program Q�.

2.3.4 Compile and Execute

In this phase the Weight Finder compiles and executes Q� on a sequential processor ma-
chine. For every different sequential program parameter as chosen in phase-2, a unique
profile file containing the profile data is created. The profile data for the dynamic out-
come of IF-expressions is written to a unique profile file during — for all other sequential
program parameters, at the end of — the profile run.

Fig. 2.2 shows a screen snapshot of the Weight Finder after this phase. The main
window shows Q�. A Motif information box appears on the screen, which informs the
user that the profile run is finished.

The user has the possibility to terminate the profile run by a separate Weight Finder
option.

2.3.5 Attribute and Visualize

In order to visualize the derived sequential program parameter values, the Weight Finder
is loading a copy of Q� as stored in phase-1. Then it reads the profile data from the set
of profile files, analyzes these data and, if necessary, computes the final values for the
sequential program parameters. These values are then visualized together with Q� in a
Motif/X11 program window. They are shown in the program window at the right hand
side of every specific statement for which instrumentation was done.

In addition, the internal data structures of Q� (syntax tree and control flow graph) are
attributed with sequential program parameters. Thus it is possible for other tools, e.g.
performance estimators, to access them.

Fig. 2.3 shows a screen snapshot of the Weight Finder after this phase. The sequen-
tial program parameters are visualized at the right hand side of each statement of Q�

for which instrumentation was done in phase-3. FR denotes the frequency parameter,
T specifies profiled times in seconds, TR the true ratio and LP the loop parameters.
LP � ��� ����� means that only the loop upper bound was instrumented for the loop
parameters. The average value for the loop upper bound is ����. The loop lower bound
was not instrumented because it was recognized as a constant.

2.4 Adaptation of Profile Data

In this section the influence of program transformations and different problem sizes on
the sequential program parameters, in particular for true ratios, frequencies and loop it-
eration counts, are analyzed. Profiled times are ignored, as this parameter is used only at
the beginning of a program transformation process. Once the performance intensive pro-
gram parts are detected by the original profiled time values, the transformation process
focuses on these parts without reusing profile times again.

2.4 Adaptation of Profile Data 21

2.4.1 Program transformations

For a specific program version Q the user might be interested to apply a series of pro-
gram transformations ([28, 18, 24, 16]), e.g. loop distribution, interchange, fusion, tiling,
skewing, peeling, unrolling and jamming, statement reordering, scalar expansion, con-
stant propagation, etc. A major question arises:

Do program transformations change the outcome of the sequential program
parameters, in particular freq� iter, and tr ?

In the following, a variety of examples are illustrated which show, that many trans-
formations have only a minor influence on these parameters. For most others, the new
parameter value can be re-computed based on the parameter value before applying a
transformation.

A major observation is therefore:

A single profile run is sufficient for many important program transformations to
provide accurate values for sequential program parameters. Those parameters
which change due to a program transformation can be adapted in many cases.

Let the sequential parameter functions freq� iter, and tr, specify the function value
before the application of a program transformation Tr. freq�� iter�, and tr� specify the
function value after the application of Tr.

Furthermore it is assumed that the loop header statement of a loop L is executed only
once for all of its iterations.

2.4.1.1 Loop distribution and fusion

Loop distribution ([24],[28]) places each statement in the loop body of a nested loop in
a separate loop nest with identical loop header statements. Ex. 2.4.1 shows a loop kernel
before loop distribution. From Ex. 2.4.2 it can be easily seen, that none of the frequencies
of any statement nor the iteration count of the loop changes after loop distribution.

Example 2.4.1 before distribution

DO I=3,N
A(I) = A(I) + 1
B(I) = A(I-2) - B(I)

ENDDO

Example 2.4.2 after distribution

DO I=3,N
A(I) = A(I) + 1

ENDDO
DO I=3,N

B(I) = A(I-2) - B(I)
ENDDO

22 2 The Weight Finder - An Advanced Profiler for Fortran Programs

Since loop distribution does not change frequency or loop iteration counts, loop fusion
behaves in the same way.

2.4.1.2 Loop Skewing

According to [24] loop skewing does not change the execution order of the loop itera-
tions. It does only change the dependence direction vectors of references inside of the
loop nest.

Example 2.4.3 before skewing

S1: DO I = 2,N
S2: DO J = 2,N
S3: A(I,J) = A(I,J-1) - A(I-1,J)
S4: ENDDO
S5: ENDDO

Example 2.4.4 after skewing

S1: DO I = 2,N
S2: DO J = I+2,I+N
S3: A(I,J-I) = A(I,J-I-1) - A(I-1,J-I)
S4: ENDDO
S5: ENDDO

We see that neither frequencies nor loop iteration counts are changing for any state-
ment. This means that freq�S��� freq�S��� freq�S��� freq�S
�� freq�S��� iter�S��,
and iter�S�� do not change after loop skewing.

2.4.1.3 Loop interchange

This transformation interchanges the loop header statements of pairs of different loops,
without changing the loop bodies ([24],[28]).

Assuming that the loop header statement of a loop L is executed only once for a single
instantiation ofL, then loop interchange (Ex. 2.4.6) does not change freq�S��� iter�S��,
and iter�S��. However, the frequency of the loop header statements and their associated
CONTINUE statements change. The new frequency values for S�� S�� S
 and S� can
easily be adapted as follows: freq��S�� � freq�S���iter�S��, freq��S�� � freq�S��,
freq��S
� � freq��S��, and freq��S�� � freq��S
�.

Example 2.4.5 before loop interchange

S1: DO I=2,N-1
S2: DO J=2,N-1
S3: A(I,J) = B(I,J) + B(I-1,J)
S4: ENDDO
S5: ENDDO

2.4 Adaptation of Profile Data 23

Example 2.4.6 after loop interchange

S2: DO J=2,N-1
S1: DO I=2,N-1
S3: A(I,J) = B(I,J) + B(I-1,J)
S5: ENDDO
S4: ENDDO

2.4.1.4 Loop unroll and jam

Loop unrolling ([17],[28]) unrolls an outer loop in a loop nest by a factor � and jams the
resulting inner loops.

Ex. 2.4.8 illustrates the unrolling of loop S� by a factor � � �, which means, that
loop S� is unrolled � times. The frequencies of S� and all loop body statements of S�
are divided by �, thus e.g. freq��S�� � freq�S����, and iter��S�� � iter�S����. For
each statement S in the loop body (before unrolling) a new statement S � is induced after
unrolling, for which the following holds freq��S �� � freq��S�. All other sequential
program parameters do not change.

Example 2.4.7 before unrolling and jamming

S1: DO I=2,N-1
S2: DO J=2,N-1
S3: C(I) = C(I) + A(I,J)
S4: ENDDO
S5: ENDDO

Example 2.4.8 after unrolling and jamming

S1: DO I=2,N-1,2
S2: DO J=2,N-1
S3: C(I) = C(I) + A(I,J)
S3’: C(I+1) = C(I+1) + A(I+1,J)
S4: ENDDO
S5: ENDDO

2.4.1.5 Loop peeling

Loop peeling ([28]) peels off the first and/or last iteration of a loop.
As can be seen from the example below, iter�S�� and the frequency for all statements

inside of the loop (S3,S4,S5) and the loop header statement (S2) is decreased by �, the
peeling number. The frequency for those statements (S3’), which are hoisted out of the
loop body because of the peeling effect, is equal to freq�S��.

24 2 The Weight Finder - An Advanced Profiler for Fortran Programs

Example 2.4.9 before peeling

S1: K = 99
S2: DO I=1,100
S3: B(I) = A(K) + C(I+1)
S4: K = I - 1
S5: ENDDO

Example 2.4.10 after peeling

S3’: B(1) = A(99) + C(2)
S2: DO I=2,100
S4: K = I - 2
S3: B(I) = A(K) + C(1 + I)
S5: ENDDO
S1: K = 99

In Ex.2.4.11 scalar forward substitution and statement elimination is applied to S
 in
that sequence, which yields a more optimized code.

Example 2.4.11 after forward substitution and statement elimination

S3’: B(1) = A(99) + C(2)
S2: DO I=2,100
S3: B(I) = A(I-2) + C(1 + I)
S5: ENDDO
S1: K = 99

2.4.1.6 Loop tiling

Loop tiling combines strip mining and loop interchange to promote reuse across a loop
nest ([24]). The execution sequence of loop iterations is reordered such that iterations
from outer loops are executed before completing all the iterations of the inner loop. The
tile size TS is chosen to allow maximum reuse for a specific memory hierarchy.

As can be seen from Ex. 2.4.13 the frequency of S3, S4, S5, S6 and S7, and iter(S1)
do not change. For the outermost loop S1, we derive:
freq��S�� � biter��S���TSc � biter��S���TSc � freq�S��, and
freq��S�� � freq�S�� � biter�S���TSc. Furthermore,
iter��S�� � TS, iter��S�� � TS, iter��S��� � bN�TSc, iter��S��� � bN�TSc.
Moreover, freq��S�� � freq��S�� and freq��S�� � iter�S���.

Example 2.4.12 before tiling

S1: DO I=1,N
S2: DO J=1,N

2.4 Adaptation of Profile Data 25

S3: DO K=1,N
S4: C(I,K) = C(I,K) + A(I,J) * B(J,K)
S5: ENDDO
S6: ENDDO
S7: ENDDO

Example 2.4.13 after tiling

S2’: DO J2=1,N,TS
S3’: DO K2=1,N,TS
S1: DO I=1,N
S2: DO J=J2,MIN(J2+TS-1,N)
S3: DO K=K2,MIN(K2+TS-1,N)
S4: C(I,K) = C(I,K) + A(I,J) * B(J,K)
S5: ENDDO
S6: ENDDO
S7: ENDDO
S8: ENDDO
S9: ENDDO

Many other transformations, such as scalar expansion, constant propagation, statement
reordering, subscript normalization, etc. do not have any effect on frequency and loop
iteration counts.

Based on the above examples another observation can be made: All but loop unrolling
and jam and loop peeling do not influence true ratios at all, because they do not change
the frequency of statements other than loop header statements. Loop peeling has a negli-
gible influence, because the frequency of a non-loop-header statement is decreased at a
maximum by �, the peeling number. Loop unrolling and jamming may significantly de-
crease the frequency of non-loop-header statements. In absolute values this may have a
strong influence on true ratios. However, the relative change of a true ratio is reasonably
small. This means e.g. that if the true ratio value was small before loop unrolling, then it
will be small afterwards.

2.4.2 Problem Size

Choosing a different problem size for a program Q may have a strong influence on fre-
quency and iteration counts. For regular problems mainly loop bounds may depend on
the problem size. We believe that, based on initial values for the sequential program
parameters as derived by a single profile run, it is possible to incorporate intra- and in-
terprocedural scaling techniques, to scale the initial parameter values for problem sizes.
It is in particular important to derive the initial sequential parameter values based on a
small problem size. This helps to reduce the profiler runtime. Interprocedural constant
propagation ([25],[28]) as implemented in the VFCS, play an important role to scale
these parameter values appropriately. Statistical and asymptotic analysis ([2]) methods
might be very useful to scale frequency and loop iteration parameters in relationship to

26 2 The Weight Finder - An Advanced Profiler for Fortran Programs

the problem size increase. However for cases where the sequential program parameters
depend on different array (problem) sizes more advanced techniques are required. This
will be addressed in future research.

A considerable effect of varying problem sizes on true ratios with respect to relative
changes could not be observed. This can be explained by analyzing the classes of condi-
tional statements frequently occurring in real world programs:

� Conditional exit GOTOs most of the time have a relatively small true ratio.

� Conditions depending on loop iteration counts are rather rare.

� Conditions dependent on the control flow of a program – frequently induced by nor-
malizing and standardizing transformations of the underlying compilation system –
are usually independent of the problem size.

We have not yet found a general solution to scale the true ratios for arbitrary condi-
tional statements. However, for simple cases, statistical scaling techniques for different
problem sizes should provide reasonably accurate true ratios.

2.5 Conclusion and Future Work

Optimizing and parallelizing a sequential program is a time consuming and complex
task. In order to create a performance efficient program, many program transformations,
e.g. statement reordering, scalar forward substitution, loop distribution, interchange, fu-
sion, etc., may have to be applied to a program. Existing Fortran codes are generally
too large to analyze fully in depth with respect to all different program transformation
sequences. In this paper the Weight Finder, an advanced profiler for Fortran77 programs
based on a von Neumann architecture, is described. It locates the run-time intensive
program parts by profiling the underlying program. This allows the user to concentrate
program optimization and parallelization efforts on those smaller program sections.

The Weight Finder also derives concrete values for program unknowns and symbolics,
e.g. frequencies, true-ratios, loop iteration counts, etc. This is a critical requirement for
many state-of-the-art performance estimators, which require such data in order to derive
reasonable accurate performance predictions. The Weight Finder is an integrated tool
of the Vienna Fortran Compilation System (VFCS), which handles the optimization of
sequential programs as well as parallelizing them. A major advantage of the described
profiler is, that the obtained profile data are used to attribute internal data structures
(syntax tree) of a given program. If the program is subsequently parallelized, then these
values are transferred to the parallel program. Thus the profile data can also be used for
performance prediction of parallel programs. The P �T ([11, 8]) is successfully using
the Weight Finder profile data to derive accurate performance estimates and to guide the
program transformation process under the VFCS.

The Weight Finder is able to instrument a program for control flow information, e.g.
the concrete outcome of IF-expressions of conditional statements for every statement
instantiation. Animation tools may use this data together with frequency information
and iteration counts to post-visualize the control flow of a program.

2.5 Conclusion and Future Work 27

Debugging tools might require the Weight Finder’s frequency information and/or true
ratios of program branches in order to detect program portions which are never executed
during a program run.

The user selectively chooses from a set of sequential program parameters: frequency
information, true-ratios, loop iteration counts, dynamic outcome of IF-expressions, and
timing information to be derived by the Weight Finder for specific program parts. Based
on a Fortran77 program the Weight Finder creates an optimized instrumented program,
which gets compiled and executed on a von Neumann architecture. The obtained profile
data are then visualized on a Motif/X11 window together with the original Fortran77
program.

The Weight Finder uses efficient optimization techniques to reduce profile overhead
with respect to instrumentation code, profile time and memory requirements.

Furthermore it is shown how to adapt the profile data for a variety of program changes
without redoing the profile. This is in particular critical, considering the many transfor-
mations a program may undergo until it is reasonably well optimized.

The Weight Finder is a 10000 source line (excluding comments) software package
developed at the University of Vienna.

Future work will extend the Weight Finder to obtain profiles directly from parallel
programs. Based on these profile data a trace file will be created, which then serves as
input to a visualization tool showing the performance behavior of the parallel program.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers, Principles, Techniques and Tools. Series in
Computer Science. Addison Wesley, 1988.

[2] G. Balbo and G. Serazzi. Asymptotic Analysis of Multiclass Closed Queueing Networks:
Multiple Bottlenecks. Technical Report, Dipartimento di Elettronica, Politecnico di Milano,
March 1992.

[3] Bell Laboratories, Murray Hill,NJ. prof command , January 1979. section 1.

[4] B. Chapman, S. Benkner, R. Blasko, P. Brezany, M. Egg, T. Fahringer, H.M. Gerndt, J. Hul-
man, B. Knaus, P. Kutschera, H. Moritsch, A. Schwald, V. Sipkova, and H.P. Zima. VIENNA
FORTRAN Compilation System - Version 1.0 - User’s Guide, Jan. 1993.

[5] B. Chapman, T. Fahringer, and H. Zima. Automatic Support for Data Distribution. In
Proc. of the Sixth Annual Workshop on Languages and Compilers for Parallel Computing,
Portland, Oregon, Aug. 1993.

[6] B. Chapman, P. Mehrotra, and H. Zima. Vienna Fortran - A Fortran Language Extension
for Distributed-Memory Multiprocessors. Elsevier Science Publishers, Amsterdam, 1991.
Also: ICASE Report No. 91-72, Contract No. NAS1-18605, NASA, Langley Research Cen-
ter, Hampton, VA, 1991.

[7] B. Chapman, P.Mehrotra, and H.Zima. Programming in Vienna Fortran. Scientific Pro-
gramming, 1(1):31 – 50, August 1992.

28 2 The Weight Finder - An Advanced Profiler for Fortran Programs

[8] T. Fahringer. Automatic Cache Performance Prediction in a Parallelizing Compiler. In Proc.
of the AICA’93 - International Section, Lecce, Italy, September 1993.

[9] T. Fahringer. Automatic Performance Prediction for Parallel Programs on Massively Paral-
lel Computers. PhD thesis, University of Vienna, Department of Software Technology and
Parallel Systems, to appear (1993).

[10] T. Fahringer, R. Blasko, and H. Zima. Automatic Performance Prediction to Support Par-
allelization of Fortran Programs for Massively Parallel Systems. In ACM International
Conference on Supercomputing 1992, pages 347 – 356, Washington D.C., July 1992.

[11] T. Fahringer and H. Zima. A Static Parameter based Performance Prediction Tool for Par-
allel Programs. Invited Paper, in Proc. of the 7th ACM International Conference on Super-
computing 1993, Tokyo, Japan, July 1993.

[12] H.M. Gerndt. Parallelization for Distributed-Memory Multiprocessing Systems. PhD thesis,
University of Bonn, December 1989.

[13] S.L. Graham, P.B. Kessler, and M.K. McKusick. gprof: A Call Graph Execution Profiler. In
Proceedings of the SIGPLAN 82 Symposium on Compiler Construction, pages 120 – 126,
June 1982. SIGPLAN Notices, Vol.17, No. 6.

[14] D.E. Knuth. An empirical study of FORTRAN programs. Software - Practice and Experi-
ence, (1):105–133, 1971.

[15] P. Lenzi and G. Serazzi. ParMon: Parallel Monitor. Technical Report N3/95, Dipartimento
di Elettronica, Politecnico di Milano, October 1992.

[16] K.S. McKinley. Automatic and Interactive Parallelization. PhD thesis, Rice University,
CRCP, Houston, TX, April 1992.

[17] D.A. Padua and M. Wolfe. Advanced compiler optimizations for supercomputers. In Comm.
ACM, pages 1184–1201, 1986.

[18] C.D. Polychronopoulos. Parallel Programming and Compilers. Kluwer Academic Pub-
lisher, Boston, MA, 1988.

[19] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C;
The Art of Scientific Computing. Cambridge University Press, 1988.

[20] V. Sarkar. Determining Average Program Execution Times. In ACM International Confer-
ence on Supercomputing, 1989.

[21] V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessor. The MIT
Press, Cambridge, Massachusetts, 1989.

[22] E. Satterthwaite. Debugging Tools for High Level Languages. Software - Practice and
Experience, (2):197 – 217, 1972.

[23] K.Y. Wang. A Performance Prediction Model for Parallel Compilers. Technical Report,
Computer Science Dept., Purdue University, November 1990. Technical Report CSD-TR-
1041, CAPO Report CER-90-43.

[24] M. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cambridge,
Massachusetts, 1989.

2.5 Conclusion and Future Work 29

[25] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB - A Tool For Semi-Automatic MIMD/SIMD
Parallelization. Parallel Computing, pages 1–18, 1988.

[26] H. Zima and B. Chapman. Compiling for Distributed-Memory Systems. Proceedings of the
IEEE Special Section on Languages and Compilers for Parallel Machines, February 1993.
to appear.

[27] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran - a language
specification. Technical report, ICASE, Hampton,VA, 1992. ICASE Internal Report 21.

[28] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers. ACM Press
Frontier Series. Addison-Wesley, 1990.

30 2 The Weight Finder - An Advanced Profiler for Fortran Programs

Figure 2.1 Selecting the sequential program parameters using the Weight Finder

2.5 Conclusion and Future Work 31

Figure 2.2 After the profile run is finished

32 2 The Weight Finder - An Advanced Profiler for Fortran Programs

Figure 2.3 Visualizing the sequential program parameters

33

3 Predicting Execution Times of Sequential
Scientific Kernels

N. B. MacDonald
DEPT. OF COMPUTER SCIENCE

THE UNIVERSITY OF EDINBURGH, UNITED KINGDOM

email: nbm@epcc.ed.ac.uk

Abstract: Parallel computer systems are typically employed in order to obtain higher perfor-
mance or cost-performance levels than can be achieved by a conventional system. It is therefore
important that parallel software achieves sufficiently high performance to justify investment in a
parallel platform.

Performance prediction is a potentially important tool, allowing the parallel programmer or the
parallelising compiler to determine the relative merits of different parallelisation schemes, and
select the implementation which offers the highest performance. In order to accurately predict
the execution time of parallel programs, we must first be able to accurately predict the execution
times of the sequential components of a parallel program.

This paper applies a micro-analysis technique to deriving estimates of the sequential execution
time of code fragments written in a subset of Fortran 77. The approach considers the execution
of each code fragment to involve the execution of a certain number of various basic operations,
and predicts the execution time of the fragment using expected execution times for the basic
operations, which can be derived automatically. Models are developed for five microprocessor
platforms (Inmos T800, Intel i860, Sun 4/20, Sun 4/75, MIPS R3000) and are used to predict the
execution time of six simple code fragments, drawn from the Livermore Loops. Comparison of
predicted and measured execution times for these fragments gives an average percentage error
for each platform of between 19.7% and 66.1%. The paper concludes with a discussion of the
model’s inaccuracies and proposals for further work.

3.1 Motivation

Parallel computer systems are typically employed to achieve high performance. In or-
der to achieve that performance, either the programmer or the compiler must spread
the computation across the available processors. In both cases, decisions must be made
about how to decompose the computation into processes, and then how to assign these
processes to the available hardware, in order to minimise execution time. Different de-
compositions give rise to different sets of processes, and each set of processes can be
mapped in many ways, each with different performance characteristics. Performance
prediction is an important tool, offering a principled basis on which to select decompo-
sition and mapping techniques.

In order to predict the execution time of parallel programs, there is clearly a need to
predict the execution time of the sequential components of parallel programs. A naive

34 3 Predicting Execution Times of Sequential Scientific Kernels

Statistic T800 i860
Maximum 0.7765 4.5955
Average 0.3303 2.1994
Geometric Mean 0.2953 2.0055
Harmonic Mean 0.2669 1.9285
Minimum 0.1363 1.0066

Table 3.1 Single precision MFlop/s statistics from Livermore Loops

approach might be to seek to determine the MFlop/s rate of the platform, and determine
the number of floating point operations performed by the program. Table 3.1 shows var-
ious statistical measures of MFlop/s rates obtained from the Livermore Loops [1] on
T800 and i860 processors (see Section 3.3 for details of these platforms). The maximum
rate is some 5.7 times the minimum rate on the T800, and 4.6 times the minimum rate
on the i860. The average rate on the T800 is 2.3 times smaller than the maximum, and
2.4 times larger than the minimum. Hence estimates based on an average MFlop/s rate
may be up to a factor of 2.4 away from the actual measured performance. For the i860,
Table 3.1 suggests that such predictions could be up to a factor of 2.1 away from reality.
Of course, there may be codes which exhibit higher or lower MFlop/s ratings than those
included in the Livermore Loops, leading to higher factors. The major problem with this
approach is that it takes no account of non-floating point operations, whose execution
may comprise a significant proportion of execution time. Since the ratio of floating point
calculations to other operations is very program dependent ([2]), a prediction methodol-
ogy based purely on floating point operations will be unable to distinguish between the
performance of programs which have widely different execution times.

A more detailed method, termed “micro-analysis”, involves generating a symbolic
time-formula for a code (fragment), representing its execution time [3]. The variables
occurring in time-formulas represent the time it takes to execute basic operations. The
time-formula associated with a code is platform-independent. platform. An estimate of
execution time on a particular platform is obtained by substituting the time taken for
basic operations on that platform into the time-formula. The use of this technique to
estimate the execution times of Pascal or C-like programs is described in [4].

This paper presents current work which seeks to determine the effectiveness of ap-
plying similar techniques to Fortran 77 codes, running on a variety of high performance
processor platforms. In this environment, the prevalence of sophisticated compiler op-
timisation and processor technology combine to provide additional challenges to the
micro-analysis approach.

3.2 Deriving time formulae for code fragments

A subset of Fortran 77 was identified (Table 3.2). The subset provides only for data-
independent code; conditional branches are not supported. The intention is to evaluate

3.3 Obtaining a platform model 35

IDENT ��� SCALARIDENT
j ARRAYIDENT

SCALARIDENT ��� aj���jz
ARRAYIDENT ��� SCALARIDENT(EXPR)

EXPR ��� EXPR + EXPR
j EXPR - EXPR
j EXPR * EXPR
j EXPR / EXPR
j (EXPR)
j IDENT
j CONSTANT

STMTLIST ��� STMT
j STMT

STMTLIST

STMT ��� IDENT = EXPR
j do SCALARIDENT � EXPR�EXPR

STMTLIST
enddo

Table 3.2 Syntax of programs

the degree of accuracy with which the execution time of codes with such completely
defined behaviour can be estimated.

Many of the symbols representing basic operation times are subscripted with � to
denote type information. Only INTEGER and REAL variables are currently supported,
represented by the subscripts I and R respectively. We follow the Fortran convention of
naming — that variables I through N are INTEGER and others are REAL.

A mapping from expressions in this language to time-formulae is presented in Ta-
ble 3.3. A constraint on this translation is that a time formula must be a linear com-
bination of basic operation times. The reason for this restriction will be discussed in
Section 3.3.

3.3 Obtaining a platform model

To predict the execution time of codes on a particular platform given their time formulae,
we must obtain measurements of the basic operation times on that platform. We do this

36 3 Predicting Execution Times of Sequential Scientific Kernels

TEXPR�EXPR� + EXPR�� � TEXPR�EXPR�� � tadd�
� TEXPR�EXPR��

TEXPR�EXPR� - EXPR�� � TEXPR�EXPR�� � tsub�
� TEXPR�EXPR��

TEXPR�EXPR� * EXPR�� � TEXPR�EXPR�� � tmult�

� TEXPR�EXPR��

TEXPR�(EXPR)� � TEXPR�EXPR�

TEXPR�CONSTANT� � �

TEXPR�SCALARIDENT� � �

TEXPR�SCALARIDENT(EXPR)� � TEXPR�EXPR� � tindex

TSTMT�IDENT = EXPR� � TEXPR�IDENT� � tassign�
� TEXPR�EXPR�

TSTMT

�
�do S = E�, E�

STMTLIST
enddo

�
A � �E� � E� � ��

� �tloopoh � TSTMTLIST�STMTLIST��

TSTMTLIST�� �� � �

TSTMTLIST

�
STMT
STMTLIST

�
� TSTMT�STMT�

� TSTMTLIST�STMTLIST�

Table 3.3 Mapping from programs to time formulae

3.3 Obtaining a platform model 37

Time, �s
Operation T800 Sun 4/20 Sun 4/75 R3000 i860
tloopoh 2.1662 0.4149 0.3498 0.4161 0.0889
tindex 0.4718 0.0626 0.0713 0.0633 0.0953
tassignI 0.7418 0.3570 0.2875 0.3553 0.1260
taddI 0.7964 0.2968 0.2106 0.2924 0.1972
tsubI 0.5952 0.2951 0.2112 0.2908 0.1980
timultI 0.9087 0.9647 0.7761 0.9652 0.4751
tassignR 1.0002 0.4034 0.2980 0.4024 0.2266
taddR 0.6938 0.2293 0.1952 0.2432 0.1687
tsubR 0.5609 0.2304 0.1984 0.2373 0.1683
trmultR 0.3296 0.2300 0.1947 0.2289 0.1683

Table 3.4 Basic op-
eration times

by measuring the execution time of a number of code fragments and constructing a set
of simultaneous equations in which the predicted execution times, derived the mapping
given above, and the measured execution times are equated. The unknowns in this set
of equations are the basic operation times for the platform in question. The equations
are very unlikely to admit an exact solution, since the model is an approximation. The
restriction of linearity which we place on time formulae allows us to use a standard least
squares technique to find an approximate solution.

A number of difficulties must be addressed in selecting the set of experiments from
which to generate the set of simultaneous equations. We must conduct at least as many
experiments as there are basic operations, and in general, the larger the set of exper-
iments the better. Unfortunately, some basic operations will appear disproportionately
often in many sets of experiments, and this can lead to a very poorly conditioned matrix
of coefficients. Care must also be taken to avoid equations which are almost linearly
dependent, since the small differences in basic operation coefficients can lead to a set of
equations with a very unstable fit.

Several further issues arise in timing the experiments. In addition to ensuring that the
platform is dedicated to the experiment when measurements are made, account must
also be taken of the clock resolution. The high clock period on some platforms typically
means that a code fragment must be executed many times in order to eliminate significant
quantisation errors. It is easy to implement a wrapper which increases the number of
iterations and repeats the experiment until the elapsed time is large with respect to the
clock period. Finally, it can be important to determine the time taken to read the clock,
and to normalise the measured execution times of experiments using this value.

Table 3.4 gives basic operation times obtained using this method on a number of
processors�

�All T800 measurements in this paper refer to an Inmos T800 processor in a Meiko Computing Surface,
running code generated by Version 2.12 of Meiko Scientific’s mf77 compiler. Code was generated for both
Sun 4 workstation platforms using EPC Fortran77 Release 2.6.5.1. The MIPS R3000/3010 processor, in a
Silicon Graphics 4D/20G workstation, used Silicon Graphics F77 compiler release 4.0.5. Measurements
annotated i860 refer to an i860 processor running in a Meiko Computing Surface executing code generated
by Green Hills Fortran-I860 compiler version 1.8.5. Default optimisation levels were used on all platforms.

38 3 Predicting Execution Times of Sequential Scientific Kernels

3.4 Examples

The Livermore Loops [1] are 24 loops from production applications written in Fortran 77
at Lawrence Livermore National Laboratory. In this section, the prediction methodology
introduced above is applied to modified versions of six of the Livermore Loops, over a
variety of problem sizes. These predictions are then compared with measured execution
times on each of the five platforms characterised in section 3.3.

The six codes have been slightly modified in that single precision REALs are used in
place of the double precision variables in the original versions.

3.4.1 Fragment A

Fragment A (Loop 1 of the Livermore Loops) is a fragment from a hydrodynamics code:

do i=1,n
x(i) = q + (y(i) * ((r * z(i+10)) + (t * z(i+11))))

enddo

The predicted execution time of this code is:

n�tloopoh � tassignR �
tindex � �taddR � �trmultR � �taddI�

SGI i860
n Actual Predicted Error % Actual Predicted Error %

10 31.67 61.727 +94.9 14.207 19.333 +36.1
100 299.54 617.27 +106.1 135.98 193.33 +42.2

1000 3699.4 6172.7 +66.9 1357.1 1933.3 +42.5
10000 38146 61727 +61.8 14293 19333 +35.3

T800 Sun 4/20
n Actual Predicted Error % Actual Predicted Error %

10 72.9 90.231 +23.8 19.185 28.112 +46.5
100 695.6 902.31 +29.7 182.11 281.12 +54.4

1000 6919.0 9023.1 +30.4 1821.4 2811.2 +54.3
10000 69125.0 90231 +30.5 20199 28112 +39.2

Sun 4/75
n Actual Predicted Error %

10 15.592 23.285 +49.3
100 148.98 232.85 +56.3

1000 1468.1 2328.5 +58.6
10000 16393 23285 +42.0

3.4 Examples 39

3.4.2 Fragment B

Fragment B (Loop 3 of the Livermore Loops) is the Inner Product function, which fre-
quently occurs in scientific codes.

q = 0.0

do i=1,n
q = q + (z(i)*x(i))

enddo

The predicted execution time is:

T � tassignR � n�tloopoh � tassignR � �tindex � taddR � trmultR�

SGI i860
n Actual Predicted Error % Actual Predicted Error %

10 21.129 27.887 +32.0 5.6267 8.6571 +53.9
100 187.08 274.48 +46.7 50.741 84.531 +66.6

1000 2457.3 2740.4 +11.5 501.89 843.27 +68.0
10000 27295 27400 +0.4 5631.2 8430.7 +49.7

T800 Sun 4/20
n Actual Predicted Error % Actual Predicted Error %

10 47.7 52.336 +9.7 12.237 14.432 +17.9
100 441.4 514.36 +16.5 112.84 140.69 +24.7

1000 4375.6 5134.6 +17.3 1120.7 1403.3 +25.2
10000 43712.0 51337 +17.4 12948 14029 +8.3

Sun 4/75
n Actual Predicted Error %

10 10.098 12.100 +19.8
100 93.055 118.32 +27.2

1000 918.99 1180.5 +28.5
10000 10631 11802 +11.0

40 3 Predicting Execution Times of Sequential Scientific Kernels

3.4.3 Fragment C

Fragment C (Loop 5 of the Livermore Loops) is a fragment of a Tridiagonal Elimination
routine.

do i=2,n
x(i) = z(i) * (y(i)-x(i-1))

enddo

The predicted execution time of this loop is:

T � �n� ���tloopoh � tassignR �
tindex � tsubR � trmultR � tsubI�

SGI i860
n Actual Predicted Error % Actual Predicted Error %

10 22.996 34.124 +48.4 9.3502 11.080 +18.5
100 233.60 375.37 +60.6 97.439 121.88 +25.1

1000 3030.1 3787.8 +25.0 1054.0 1229.9 +16.7
10000 31248 37912 +21.3 11053 12310 +11.4

T800 Sun 4/20
n Actual Predicted Error % Actual Predicted Error %

10 53.7 58.855 +9.6 11.878 16.419 +38.2
100 552.7 647.41 +17.1 120.62 180.61 +49.7

1000 5545.6 6532.9 +17.8 1223.2 1822.5 +49.0
10000 55468.8 65338 +17.8 15074 18241 +21.0

Sun 4/75
n Actual Predicted Error %

10 10.098 13.834 +37.0
100 101.97 152.18 +49.2

1000 1032.4 1535.6 +48.7
10000 12987 15370 +18.3

3.4 Examples 41

3.4.4 Fragment D

Fragment D (Loop 7 of the Livermore Loops) is taken from an Equation of State code.

do i=1,n
x(i) = u(i) + (r * (z(i) + (r * y(i)))) +

(t * (u(i+3) + (r * (u(i+2) +
(r * u(i+1))))) +
(t * (u(i+6) + (r * (u(i+5) +
(r * u(i+4)))))))

enddo

The predicted execution time of this loop is:

T � n�tloopoh � ��tindex � taddI � �trmultR � �taddR � tassignR�

SGI i860
n Actual Predicted Error % Actual Predicted Error %

10 58.405 163.90 +180.6 35.166 51.474 +46.4
100 563.98 1639.0 +190.6 346.58 514.74 +48.5

1000 6666.3 16390 +145.9 3548.3 5147.4 +45.1
10000 67329 16390 +143.4 35687 51474 +44.2

T800 Sun 4/20
n Actual Predicted Error % Actual Predicted Error %

10 160.5 208.51 +29.9 36.254 69.003 +90.3
100 1571.0 2085.1 +32.7 351.78 690.03 +96.2

1000 15670.4 20851 +33.1 3543.7 6900.3 +94.7
10000 156659.2 208510 +33.1 38517 69003 +79.1

Sun 4/75
n Actual Predicted Error %

10 27.263 57.431 +110.7
100 267.27 574.31 +114.9

1000 2686.1 5743.1 +113.8
10000 29999 57431 +91.4

42 3 Predicting Execution Times of Sequential Scientific Kernels

3.4.5 Fragment E

Fragment E (Loop 11 of the Livermore Loops) is a First Sum. The value of x(i) is set
to y(1) + ... + y(i).

x(1) = y(1)
do i=2,n
x(i) = x(i-1) + y(i)

enddo

The predicted execution time of the loop is:

T � �tindex � tassignR � �n� ���tloopoh � tassignR � �tindex � taddR � tsubI�

SGI i860
n Actual Predicted Error % Actual Predicted Error %

10 18.997 26.504 +39.5 7.2444 9.1298 +26.0
100 178.12 280.95 +57.7 72.344 96.255 +33.1

1000 2078.1 2825.5 +36.0 724.23 967.51 +33.6
10000 22221 28270 +27.2 7911.6 9680.1 +22.4

T800 Sun 4/20
n Actual Predicted Error % Actual Predicted Error %

10 50.9 54.783 +7.6 10.454 14.304 +36.8
100 509.2 583.18 +14.5 102.96 152.06 +47.7

1000 5092.0 5867.1 +15.2 1022.5 1529.6 +49.6
10000 50905.6 58706 +15.3 12195 15305 +25.5

Sun 4/75
n Actual Predicted Error %

10 8.9066 11.852 +33.1
100 87.096 125.97 +44.6

1000 872.16 1267.1 +45.3
10000 10303 12679 +23.1

3.4 Examples 43

3.4.6 Fragment F

Fragment F (Loop 19 of the Livermore Loops) is a general Linear Recurrence Equation.

do i=1,n
b(i) = t(i) + s * u(i)
s = b(i) - s

enddo

do i=1,n
k = n - i + 1
b(k) = t(k) + s * u(k)
s = b(k) - s

enddo

The predicted execution time of this fragment is:

T � n��tloopoh � taddI � tsubI � tassignI � �tindex � �taddR

��trmultR � �tsubR �
tassignR�

SGI i860
n Actual Predicted Error % Actual Predicted Error %

10 64.029 101.18 +29.3 26.124 33.783 +29.3
100 623.48 1011.8 +33.5 253.09 337.83 +33.5

1000 7091.8 10118 +28.2 2635.9 3378.3 +28.2
10000 79226 101180 +22.0 27699 33783 +22.0

T800 Sun 4/20
n Actual Predicted Error % Actual Predicted Error %

10 157.5 174.10 +10.5 30.593 52.728 +72.4
100 1522.4 1741.0 +14.4 293.93 527.28 +79.4

1000 15167.3 17410 +14.8 2967.2 5272.8 +77.7
10000 151609.6 174100 +14.8 33332 52728 +58.2

Sun 4/75
n Actual Predicted Error %

10 25.729 43.477 +69.0
100 247.52 434.77 +75.7

1000 2469.1 4347.7 +76.1
10000 28055 43477 +55.0

44 3 Predicting Execution Times of Sequential Scientific Kernels

3.4.7 Summary of results

Tables 3.5 and 3.6 summarise the results by code fragment and platform respectively.

Fragment Average % Error Standard Deviation of % Error
A 50.0 20.9
B 27.6 19.5
C 30.0 15.8
D 88.2 49.8
E 31.7 13.3
F 46.1 24.8

Table 3.5 Summary
of results for each
code fragment

Platform Average % Error Standard Deviation of % Error
T800 19.7 8.3
i860 36.6 14.7
Sun 4/20 51.5 25.3
Sun 4/75 54.6 33.0
R3000 66.1 51.7

Table 3.6 Summary
of results for each
platform

3.5 Discussion and Further Work

All of the predictions are higher than the corresponding measured execution time. This
suggests either that the basic operation times are too high, or that the time formulae are
ascribing too many operations to code fragments. The code fragments currently used in
experiments to determine the basic operation times for each platform are very simple,
and only a small set of experiments are conducted. It is possible that these experiments
are not representative of larger codes, in terms of instruction mix, and that this is leading
to erroneously high values of basic operation times. Although not modelled explicitly,
load costs appear in the time taken to perform arithmetic operations. The time model
used in this paper has a very naïve view of the memory hierarchy: variables referenced
several times in a statement will incur the corresponding number of load costs. This can
clearly lead to overestimation of execution time. Significantly, Fragment D, by far the
least-well modelled of the example codes, has the highest number of repeated references
to objects. Furthermore, the best results overall were obtained for the T800, which proba-
bly makes significantly less use of registers than the other platforms. However, extending
the model to include loads explicitly is not straightforward. Firstly, the strong correla-
tion between the number of loads and the number of arithmetic operations in a statement
can make determining the basic operation times a very badly conditioned fitting prob-
lem which does not readily admit a stable solution. Secondly, iterating code fragments
many times to obtain measurements of execution time tends to hide the cost of bringing
data up the memory hierarchy, which can be a significant proportion of execution time
when the code fragment is executed only once. It may be the case that using larger set of

3.5 Discussion and Further Work 45

more complex fragments to determine the basic operation times will be a more fruitful
approach.

A second striking feature of the results is that those for the T800 and i860 platforms
are significantly better than the others. These two platforms are dedicated processors
in a multicomputer, running only a run-time kernel in addition to the code fragments,
whereas the others are all workstations running a full operating system implementation.
While the workstations were otherwise idle when measurements were taken, further in-
vestigation of hidden interference is necessary.

If the difficulties with the current language can be adequately resolved, it would be-
come important to extend the domain of the technique to include other language features,
such as branches, multi-dimensional arrays, procedure calls, I/O and a wider range of op-
erations and data types. This would necessitate careful choice of the code fragments used
in obtaining basic operation times, in order to avoid unstable solutions. It would also be
worthwhile to explore the robustness of the approach on a wider range of platforms, and
with aggressive compiler optimisation enabled.

Acknowledgements

The author was supported by a Research Studentship from the UK Science and Engi-
neering Research Council.

The work presented in this paper was performed on the facilities provided by the
Edinburgh Parallel Computing Centre (EPCC). EPCC is a multidisciplinary centre sup-
ported by major contracts from European industry and grants from the Advisory Board
for the Research Councils, the Department of Trade and Industry, the Joint Informations
Systems Committee, the Science and Engineering Research Council, Scottish Enterprise
Software Group, Lothian and Edinburgh Enterprise Ltd., the Commission of the Euro-
pean Communities, the Department of Transport and the Economics and Social Sciences
Research Council. It is a pleasure to acknowledge substantial additional support from the
University of Edinburgh and from the Industrial Affiliates of the centre.

References

[1] F. H. McMahon. L.L.N.L FORTRAN kernels: MFLOPS. Lawrence Livermore National
Laboratory, 1986.

[2] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann, 1990.

[3] J. Cohen. Computer-Assisted Microanalysis of Programs. Communications of the ACM,
25(10):724–733, October 1982.

[4] J. Cohen and A. Weitzman. Software Tools for Micro-analysis of Programs. Software —
Practice and Experience, 22(9):777–808, September 1992.

46

4 Isolating the Reasons for the Performance
of Parallel Machines on Numerical Pro-
grams

Arno Formella Silvia M. Müller Wolfgang J. Paul Anke Bingert�
COMPUTER SCIENCE DEPARTMENT

SAARBRÜCKEN UNIVERSITY, GERMANY

email: fformella,smueller,wjpg@cs.uni-sb.de

Abstract: In this paper we present a nontrivial set of modules which measure performance
parameters of node processors and interconnection networks. With the help of these parameters
we explain the run time of the following algorithms conjugate gradient method, one–dimensional
partial differential equation solver and two–dimensional partial differential equation solver on
the parallel machine Ncube–2. The iPSC/860 Hypercube and the vector machine VP100 are
analyzed in an other paper (see [3]). Our explanations are sometimes within 0.5 % and almost
always within 5 % of the measured run times.

4.1 Introduction

Benchmark programs come in four flavours: (i) small loops designed to measure machine
parameters [4], (ii) inner loops of algorithms [6], (iii) whole applications [11] and (iv)
synthetic benchmarks [10]. Benchmark suites may include modules of several flavours
[9], [11]. In such cases one sometimes wishes to explain results of higher–order modules
by results of lower–order modules [9].

Such an explanation would amount to isolating the reasons why an algorithm or an
application runs well or poorly on a particular machine. It should be of considerable
interest for two reasons: on the one hand designers of machines are given direct infor-
mation which parameters of the machines are responsible for the performance delivered,
on the other hand prospective buyers of machines can analyze their own algorithms and
applications and check if the reasons for a machine’s performance on the benchmark
apply to their own program.

Unfortunately, we have been unable to find any such explanation whatsoever in the
literature, and it has been stated that often it cannot be given at all [4]. This is obviously
true, because any such explanation would have to involve some kind of analysis of algo-
rithms which is not feasible if the flow of control depends too heavily on the input data
(e. g. Livermore loop 15 [6]) and in general, of course, because of the unsolvability of
the halting problem. On the other hand one would hope that there are relevant situations

�This research is part of the PARANUSS–project, which is funded by BMFT and DLR.

4.2 Micro Measurements 47

where such an explanation can be given, although it might be a tricky task to arrive at
that explanation.

In this paper we present a nontrivial set of micro benchmarks which measure per-
formance parameters of node processors and interconnection networks. With the help
of these parameters we explain the run time of the following algorithms (i) conjugate
gradient method, (ii) one–dimensional partial differential equation solver and (iii) two–
dimentional partial differential equation solver on an Ncube–2 parallel machine. The
iPSC/860 hypercube and the VP100 vector processor are analyzed in an other paper (see
[3]). Our explanations are sometimes within 0.5 % and almost always within 5 % of the
measured run times.

Our goal is it to extract the features of a machine concerning both the hardware, i. e.
the functional units and the data paths, as well as the compiler, i. e. code generation
strategies. Built–in libary functions exploiting the underlying hardware are examined,
too. In the end, we are able to model the machine based on the gathered information in a
such way that the run time prediction is close to the measured run time even for parallel
algorithms. At the start of the analysis we only know the machine’s cycle time. Then
we gradually build a model of the machine we benchmark. We do not pretend that the
machine actually is like the model. We only claim that it behaves like the model.

Section 4.2 discribes the micro measurements we have implemented in order to mea-
sure the parameters of the node processor and those of the communication network.
Section 4.3 summarizes the tests we have performed and the features we have inferred
from the tests. In section 4.4 we present the algorithms under consideration both in se-
rial and parallel versions. In section 4.5 we predict the run time of the algorithms on the
Ncube and compare our modelled time with the measured run times. Finally, section 4.6
gives a brief conclusion about the presented benchmarking and prediction method.

4.2 Micro Measurements

This section has two parts. In the first part we describe test routines for node processors.
In the second part we describe routines which exercise the interconnection network of
parallel machines.

From the run time of the test routines described in the sequel we try to infer the pres-
ence or absence of certain hardware features and how the compiler makes use of them.
We are interested in the performance characteristics of arithmetic units, the addressing
modes supported, the processor’s memory hierarchy and the bandwidths within this hi-
erarchy. We are interested in the compiler’s capabilities to perform vectorization, strip
mining and loop optimization under the most simple circumstances.

Similar to the Livermore Loops ([6], [2]), our test routines for the node processors
consist of a few lines of FORTRAN code inside two nested loops with loop variables i
and j which range from 1 to n or L, respectively. In general n is the upper bound for the
loop variable of the inner loop and denotes something like vector length. The outer loop
serves both to increase the accuracy of timer measurements and to distinguish between
encached (L � ��) and non–encached (L � �) performance.

48 4 Isolating the Reasons for the Performance of Parallel Machines

4.2.1 Micro Measurements for a Node Processor

We arrange our test routines in groups g. Within each group g there are several routines
r�g� j�, j � �� �� � � �. We denote by �t�g� j� L� n� the run time of routine r�g� j� started
with parameters L and n, by �t�g� j� L� n� the run time of one pass of the outer loop and
by t�g� j� L� n� the run time of one pass of the inner loop, respectively. If no confusion is
possible we will drop arguments g, j or L in order to simplify notation.

We are interested in large problem sizes, so it would seem natural to take measure-
ments for large values of n only. In general this does not suffice because parallelization
decreases the problem size, which must be handled by a node processor. Run time curves
depending on n characterize the memory’s hierarchy, its type (e. g. register file, vector
register or cache) and strip mining strategies of the compiler. This paper focuses on the
Ncube, which is a scalar machine, so our model can be held very simple. For a more
detailed description for a vector machine or a processor with a cache see [3], where we
extended this approach for the VP100 and iPSC/860–Hypercube.

If routine r�g� j� consists of a fixed number of operations, then for large n we expect
to observe run times of the form

�t�L� n� � � � �n ��
�

r�
�n��� � n��

(see [5], [4]) or

t�L� n� � �t�L� n�

n
�

�

n
� �

On a scalar machine we expect the operation time, i. e. �, to be much greater than ��n,
even for small n. We took measurements for n � ��� � � � � ���� with step 100 and L � �
as well as L � ��.

4.2.1.1 Details of the Implementation

In order to simplify notation we often will not write complete FORTRAN–sequences. A
vector statement (or an inner loop) will just express the block of the DO–loop without
the surrounding control statements. Thus the line

A[i] = B[i] + C[i]

is an abbreviation for the full loop:

DO 88 J=1,L
DO 88 I=1,N

88 A(I) = B(I) + C(I)

The outer loop simply iterates on the same vector. A smart compiler will drop the
outer loop and we can not rely on the measured data. Therefore we used always two–
dimensional implementations of the vector statements. The following example shows
how the vector addition given above might be written

4.2 Micro Measurements 49

DO 77 K=1,L
DO 77 I=1,N

77 A(I,K) = B(I,K) + C(I,K)

However, this would increase the memory space needed to store all variables of the
benchmark. Moreover, caching strategies of the hardware can not be observed, because
no data is referenced twice. Finally we chose the following version:

DO 66 J=1,L
K = IND(J)
DO 66 I=1,N

66 A(I,K) = B(I,K) + C(I,K)

Vector IND contains only values 1 and 2, thus addressing two rows of a matrix. During
compile time the array is not known to the compiler, so it is not possible to eliminate
the outer loop in J. A reference to the same data word is now performed at least L��
times. The inner loop still can be vectorized, because K appears as a constant. In order to
verify that we do not loose to much while addressing in this way, we have implemented
the simple vector statement, too. We have not detected a significant loss of performance
([1]).

4.2.1.2 group 0. scalar loops, simple scalar–vector operations

1) an empty statement within the 2 nested do-loops
2) A[i]=a0
3) A[i]=B[i]
4) A[i]=a0+B[i]
5) A[i]=a0*B[i]

Routine r��� �� measures the time for the loop overhead Tov. It is

Tov �
�t��� �� L� n�

Ln � L
and should be more or less independent of L and n. Tov cannot be optimized away com-
pletely because after the loops the variables k and i should have values L and n. A smart
compiler should replace this loop by two assignments, but we have not encountered this.
Routine r��� �� gives a first hint if loop control and store operations can be overlapped.
If t��� �� � t��� �� this clearly can be done. In the other case at least the bandwidth to
store a vector can be calculated as

bsmm �
Ln

t��� �� L� n�

Yet, bsmm does not reflect the real bandwidth, because the degree of overlapping is still not
known. It is assumed that a0 is held in a register and not loaded in every loop body. Rou-
tine r��� �� copies a vector from one location to another, which can be done bypassing
the functional units. Similar to routine r��� �� the bandwidth and the overlap facilities
can be examined. In routines r���
� and r��� �� additional arithmetical operations are
performed. Their influence on the run time and possible overlaps (e. g. t��� �� � t���
�)
can be detected.

50 4 Isolating the Reasons for the Performance of Parallel Machines

4.2.1.3 group 1. scalar recursive ��� ��–expressions

1) a0= a0+a1
2) a0=(a0+a1)*a2
3) a0=(a0+a1)*a2+a3

...
j) a0=(...(a0+a1)*a2+a3)*a4+...

These loops are supposed to measure scalar encached performance even if L � �, be-
cause the number of operands is very small. If a compiler knows how to pull statements
out of loops at least the first two of the routines will run in constant time. (This vio-
lates the FORTRAN expression evaluation scheme). Otherwise for odd j and large n the
difference

d�j� n� � t��� j� �� n�� t��� j � �� �� n�

should be independent of j and n. It should be the time as for a scalar addition performed
on the fastest level of the processor’s memory hierarchy. For even j one should get the
time for a scalar multiplication.

4.2.1.4 group 2. scalar recursive ��� ��–expressions

Same as above with subtraction and division.

4.2.1.5 group 3. simple vector operations

1) A[i]=B[i]+C[i]
2) A[i]=B[i]*C[i]
3) A[i]=B[i]/C[i]

These loops measure performance of vector operations in the spirit of HOCKNEY ([4],
[5]). For large n, t��� j� L� n� is the time needed to perform a vector operation out of
main memory. For small n but large L it is the time to perform a vector operation out of
a fast memory, like a cache or vector memory. Naturally, all loads, stores and computes
can possibly be overlapped, so the different times for one type of operation can not be
extracted. However, every version needs three operands out of main memory, thus a first
estimation for the effective bandwidth to main memory can be done: bM � ��t��� j� L� n�
for large n. If t��� j� � t��� �� it can be assumed that the machine operates with real (hard
wired) vector operations instead of scalar loop constructs. Since the operations on parts
of the operands are independent, strip mining compilers can yield a higher performance
if the hardware has more than one arithmetic pipe.

4.2 Micro Measurements 51

4.2.1.6 group 4. one–vector ��� ��–expressions

1) A[i]= A[i]+A[i]
2) A[i]=(A[i]+A[i])*A[i]
3) A[i]=(A[i]+A[i])*A[i]+A[i]

...
j) A[i]=(...(A[i]+A[i])*A[i]+A[i])*A[i]+...

The measurements done in group 1 for scalar variables which are held probably within
the register set of a machine are performed in this group for components which are ad-
dressed out of a vector. Every pass through the inner loop needs one operand out of
main memory, which has to be loaded before and must be stored afterwards. Thus the
expected run time t�
� j� L� n� should differ from t��� j� L� n� according to the additional
transfer operations. For a well–designed system with an optimizing compiler the dif-
ferences t�
� j� � t��� j� should be constant, because main memory must be accessed
only twice, once to load A[i] and once to store it. Increasing differences for larger
j can be interpreted in two ways: more than two accesses to a lower memory in the
hierarchy are performed or the fastest memory (or register file) cannot be accessed by
three–address–operations specifying the same address (or register) more than once. De-
creasing differences may be due to hiding load and store operations behind arithmetical
operations.

4.2.1.7 group 5. vector ��� ��–expressions

1) A[i]= B[i]+C[i]
2) A[i]=(B[i]+C[i])*D[i]
3) A[i]=(B[i]+C[i])*D[i]+E[i]

...
j) A[i]=(...(B[i]+C[i])*D[i]+E[i])*F[i]+...

The vector operations of group 4 are implemented in this group on a set of different
operands. Thus the transfer rate to main memory is much higher. Each additional opera-
tion requires a load out of main memory. Therefore, �j����t��� j� L� n� for large n gives
a next estimation for the effective bandwidth to main memory. If t��� j� � t��� j � ��
for odd (or even) j � � (or j � �) addition and multiplication can be chained. If there is
no loss of cycles for large n and for large L the effective bandwidth to main memory is
high enough to support fully chained operations. For large L and strip mining compilers
the bandwidth to main memory is no longer the bottleneck. The bandwidth to a vector
memory or a vector register file dominates the run time.

4.2.1.8 group 6. one–vector recursive ��� ��–expressions

52 4 Isolating the Reasons for the Performance of Parallel Machines

1) X[i]= X[i]+X[i-1]
2) X[i]=(X[i]+X[i-1])*X[i-2]
3) X[i]=(X[i]+X[i-1])*X[i-2]+X[i-3]

...
j) X[i]=(...(X[i]+X[i-1])*X[i-2]+X[i-3])*X[i-4]+...

The vector components of the expressions within this group are addressed in a recursive
manner out of one operand vector. The required bandwidth to main memory is similar to
the bandwidth needed in group 4. To evaluate the expressions more scalar registers are
necessary. A very sophisticated compiler can use a parallel prefix method or a recursive
doubling method to avoid bubbles in a pipe, at least for the smaller expressions. Once
again, constant differences t�� j� � t�
� j� can be attributed to the additional address
calculation.

4.2.1.9 group 7. simple addressed vector expressions

1) A[i]= B[i]+C[i-1]
2) A[i]=(B[i]+C[i-1])*D[i-2]
3) A[i]=(B[i]+C[i-1])*D[i-2]+E[i-3]

...
j) A[i]=(...(B[i]+C[i-1])*D[i-2]+E[i-3])*F[i-4]+...

The same address calculations as in group 6 are necessary in group 7. But here, different
operands are used in the expression. If the run times are equal to those in group 5,
addressing is not the bottleneck of an operation, in the other case, its influence can be
documented. Because there are no data dependencies, we expect almost the same run
time as for group 5.

4.2.1.10 group 8. dot product and matrix product

1) Q=Q+A[i]*B[i]
2) P[i,j]=P[i,j]+A[i,k]*B[k,j]
3) P[i,j]=P[i,j]+A[i,k]*B[j,k]
4) P[i,j]=P[i,j]+A[k,i]*B[k,j]

In this group the dot product r��� �� and the matrix product are implemented. Routine
r��� �� addresses one matrix column wise and one matrix row wise, r��� �� addresses
both operands column wise and r���
� addresses both matrices row wise. A matrix
product can be implemented just as a sequence of dot products. If a dot product, can
profit from previously loaded operands a speed–up is possible. On the other hand one
matrix is row wise addressed, so addressing with constant stride may increase the time
to load the operands. Differently declared sizes of the matrices are used to measure the
run times belonging to different stride sizes. In the case that t��� �� � t��� �� � t���
�
addressing of main memory does not slow down the load or store time.

4.2 Micro Measurements 53

4.2.1.11 group 9. more complex vector expressions

1) X[i,k]=X[i,k+1]+a0*X[i,k+2]
2) X[i,k]=X[i,k+1]+a0*X[i,k+2]+a1*X[i,k+3]
3) X[i,k]=X[i,k+1]+a0*X[i,k+2]+a1*X[i,k+3]+a2*X[i,k+4]

...
j) X[i,k]=X[i,k+1]+a0*X[i,k+2]+a1*X[i,k+3]+a2*X[i,k+4]+...

This group contains a set of more complex expressions. The operands are addressed
as columns out of a matrix. Parallel operations are possible, because subexpressions are
independent from each other. All in all the routines are used to verify the model generated
so far by the analysis of the first eight groups.

4.2.1.12 group 10. more complex constant stride vector expressions

1) X[k,i]=X[k+1,i]+a0*X[k+2,i]
2) X[k,i]=X[k+1,i]+a0*X[k+2,i]+a1*X[k+3,i]
3) X[k,i]=X[k+1,i]+a0*X[k+2,i]+a1*X[k+3,i]+a2*X[k+4,i]

...
j) X[k,i]=X[k+1,i]+a0*X[k+2,i]+a1*X[k+3,i]+a2*X[k+4,i]+...

The routines are similar to those of group 9, but the operands are taken as the rows of
a matrix, which leads to a more complex addressing scheme. So especially preloading
of consecutive elements of a vector can not be used to reduce the run time, as it is often
done by caches equipped with a block wise access strategy.

4.2.2 Micro Measurements for Communication Networks

The test routines in this section are arranged in groups, too. They measure the network
performance and the speed at which global functions are computed. We do not specify
the exact code of these routines. It is machine dependent but quite obvious.

We will use the same notation we have introduced in the last section. g indicates the
group number and j stands for the routine. L denotes the outer loop length and m the
message length in byte. We denote by n � m�� the message length in words (8 byte
floating point format). A new parameter d is introduced to denote the distance or the
direction between two nodes according to the network’s architecture.

4.2.2.1 group 11. simple unidirectional node to node communication

54 4 Isolating the Reasons for the Performance of Parallel Machines

The routines in this group test the communication between two processors i and j
while no other communication is performed. In routine r���� �� an arbitrary processor
i sends a block of m bytes to one of his neighbors. We assume that the neighbors are
ordered in a hypercube structure, where the numbers of two nodes just differ in the ap-
propriate bit which defines the dimension. Processor i sends its data while processor j is
waiting. After j has received all data, the data block is sent back to i. Parameter d speci-
fies in what direction, dimension resp., the communication is performed. If the underly-
ing hardware system is a symmetric hypercube the communication time t���� �� d� L�m�
for communication in one direction (not round trip) should be independent of d. We
expect the time t���� �� d� L�m� to run this program to be of the form

t���� �� d� L�m� � S�i� j� �m�B

where S�i� j� is the startup time for the communication (roughly the time to transmit the
first byte) and B is the bandwidth of the links of the communication network. Startup
time S�i� j� should be independent of L and m. The bandwidth B can depend on m if
messages are transmitted in blocks with fixed sizes. Routine r���� �� is similar to routine
r���� �� but the sending and the receiving node are selected as members of a GRAY–code
chain embedded on a hypercube structure. Parameter d reflects the distance of i to j on
the chain. The run time t���� �� d� L�m� may increase for larger d, but for large m and
blockwise parallel data transfer on all of the links between i and j we expect the time to
be of the form

t���� �� d� L�m� � S�i� j� d� �m�B

where S�i� j� d� is the startup time.

4.2.2.2 group 12. simple bidirectional node to node communication

Both routines in this group are similar to those of group 11. But now processor j is not
waiting to receive the data. In contrast i and j are exchanging their data blocks simul-
taneously. For bidirectional communication channels we expect half the communication
times, because sending and receiving of both messages can be done in parallel.

4.2.2.3 group 13. simple parallel node to node communication

In group 13 we test parallel communication speed when more than two processors
are sending/receiving data simultaneously. In routine r���� �� all processors send their
messages in the same dimension using the hypercube structure. The direction is indicated
by the parameter d. We expect the same communication speeds between any pair of
processors as we measured in group 11 or 12, which should be independent of d. Routine
r���� �� deals with a one dimensional exchange communication. We create as many
processes as there are processors. We arrange them on a GRAY–code chain and each
process exchanges m bytes with his neighbor on the chain (according to group 11). In

4.2 Micro Measurements 55

2. dimension

3. dimension

4. dimension

1. dimension

Figure 4.1 Broadcast on a 4–dimensional hypercube

a well designed system the measurements should not be worse than measurements from
group 11 or 12 above. In routine r���� �� the mapping of the processors on the chain
remains the same as in routine r���� ��. Now, the processors send their data not to their
neighbors, but to a processor being in distance d on the chain.

4.2.2.4 group 14. one to all communications

Group 14 tests the speed of broadcast, of synchronization and of global sum com-
putations within clusters of p processors. We do not give a general formal definition of
clusters. On a hypercube a cluster is a subcube. Routine r��
� �� measures for an arbi-
trary processor i as a member of a cluster with p processors (p is a power of two) the time
b�i�m� p� to broadcast n bytes from processor i to all processors of the cluster. Generally,
we would expect run times of the form

b�i�m� p� � Stotal �m�Beff

independent of i, where Stotal is the total startup time and Beff is the effective bandwidth
of the chained links in the network. There are a lot of ways to implement a broadcast
on a network. One simple approach on a hypercube would use something like a tree
embedded on the network. The root sends the data block to its sons and they send the
block to their sons and those to their sons etc. In each stage the direction is switched into
another dimension (see figure 4.1). This algorithm needs d�p� stages where d�p� is the
diameter of the cluster.

We expect the total start–up time to be composed of two terms:

Stotal � S� � S�p�

S� is independent of p and represents the overhead at the beginning of the transfer. S�p�
reflects the start–up times of every node encountered on the longest path of the embeded
communication graph. In the example given above we have

S�p� � Sp d�p�

where d�p� is the diameter of the hypercube and Sp is the time spent on one node.

56 4 Isolating the Reasons for the Performance of Parallel Machines

We expect the effective bandwidth Beff to be independent of n. We suppose Beff to
be composed of a bandwidth BV due to the physical limitations of the network and of a
bandwidth BS due to software overhead, e. g. copying the message from user to system
space.

�

Beff
�

�

BV

�
�

BS

On a hypercube with all links having the same bandwidth B we expect for the described
broadcast algorithm

BV � B�d�p�

Finally we have for a symmetric hypercube

b�i�m� p� � S� � Sp d�p� �m�
d�p�

B
�

�

BS
�

Routine r��
� �� measures the time sy�p� spent to synchronize p processors of a cluster.
This requires the computation of a boolean OR. With very little extra hardware this can
be achieved in constant time for machines with moderate numbers of processors [7].
Routine r��
� �� measures for p processors of a cluster the time gs�p� spent to compute
and distribute to all processors the sum of p data, where each of the data is contributed
by a different processor. We expect run times

gs�p� � S � � d�p�

S stands for a start–up time and � is the time spent in one node while the message travels
through the diameter d�p� of the network.

4.2.2.5 group 15. global collection

The routine, named gcol(), in this group updates a vector of length n which is
known to every processor of a cluster but which has been modified partially on each one,
i. e. each processor i within the cluster of size p has to broadcast its portion of length
n�p of the vector to all other processors in the cluster. This can be achieved in log�p�
communication steps. In each step s (s � �� � � � � log�p�) processor i sends a block of
length �s�� � n�p to processor j with

j � i

�
� �s�� if i mod �s � �s��

� �s�� if i mod �s � �s��

The received block is copied to the left or to the right side of the recently updated part of
the vector. The appropriate side is determined according to the same condition as given
above.

4.3 Measurements 57

1 2 3 4 5 6 7 8 j
0 19 23 24 34 35
1 26 36 43 53 60 70
2 26 58 65 97 104 136
3 34 36 33
4 31 41 50 58 67
5 34 44 53 61 70
6 28 43 52 64 72
7 33 45 52 62 69
8 43 54 54 53
9 45 63 80 97 131 165 189 208

10 57 74 93 123 157 179 204 230
g

Table 4.1 Operation times in cc for Ncube’s node processor on micro kernels

4.3 Measurements

In this section we summarize the data we got while executing our micro kernels on an
Ncube–2 parallel machine. We try to model the performance of the node processor as
well as the behavior of the communication network.

It is more convenient to use the number of clock cycles as unit for the run times
rather than absolute times if we deal with a node processor. Therefore, we will denote
with cc as unit length one clock cycle of the machine. The abbreviation dpc (datawords
per clock cycle) is used to express the bandwidth in terms of clock cycles within the
node processor’s memory hierarchy. If one knows the clock cycle time the bandwidth in
MByte/s can easily be calculated. For the communication network we will keep the unit
MByte/s to measure the bandwidth.

4.3.1 Measurements of the Serial Kernels

We benchmarked an Ncube–2 Parallel Computer with 64 nodes. The node processor is
clocked with 50 ns cycle time and it is equipped with 4 MByte local memory. In total the
Ncube has a distributed main memory of 256 MByte. The node processors are connected
in a six–dimensional hypercube structure.

All programs are written in FORTRAN under Ncube Development Environment 3.0
Beta 11/01/91. The FORTRAN–compiler was started with the -O optimization option. A
peak performance of 2.4 MFlop/s and a communication bandwidth of 80 MByte/s be-
tween two nodes are announced by the manufacturer. The communication in FORTRAN

is done using library functions (see section 4.3.2).
We used the library function dclock() to measure the execution times. This timer

returns the elapsed time since the start of the program. A call to that function requires at
least 33 �s and at most 64 �s, so we have an accuracy of 31 �s for the timer.

In the data set that we obtained for L � � and L � �� (see [1]), there is almost
no difference due to L. In table 4.1 the operation time � is summarized for all groups

58 4 Isolating the Reasons for the Performance of Parallel Machines

50

55

60

65

70

75

80

10 20 30 40 50 60 70 80 90 100

Figure 4.2 Measured run time in cc ver-
sus modelled run time of group 8, rou-
tines 2, 3 and 4, of the Ncube node pro-
cessor

40

60

80

100

120

140

160

180

200

220

240

0 50 100 150 200 250 300 350 400 450 500

Figure 4.3 Measured run time in cc ver-
sus modelled run time of group 9 of the
Ncube node processor

of the micro kernels (L � ��). With start–up time � � ��� cc (see section 4.2.1),
which we will write as Tin (loop initialization time) the run times of all routines can be
modelled closely. In figure 4.2 and 4.3 the measured run time and the modelled run time
t�g� j� n� ��� are given for group 8 (routines 2, 3 and 4) and group 9, respectively.

Because there is almost no difference in the run times due to L, it can be concluded
that the Ncube’s memory hierarchy is very simple, consisting of a register file for scalar
values (high performance in group 1) between functional units and main memory. In the
following only large L will be discussed.

We observed the highest performance of 1.70 MFlop/s (not considering divide opera-
tions) in r��� �, where a large scalar expression has to be evaluated a lot of times. This
is 71 % of the peak performance. Because divide operations are counted as four Flop, a
higher performance is reached, e. g. in r��� �� almost 2.40 MFlop/s have been measured.
In r��� � a floating point multiplication or addition is executed in a mean time of at least
580 ns or more than 11 cc, so we can conclude that the processor works like a scalar
machine and not like a vector machine.

Now we will discuss the different groups in detail and derive the parameters of the
Ncube.

4.3 Measurements 59

4.3.1.1 group 0.

Routine r��� �� implies a loop overhead of Tov � �� cc. Initializing a vector r��� ��with a
value probably held in a register requires additional time Tasg �
 cc (� t��� ���t��� ��).
These cycles are due to a non–overlapped store or due to the additional address calcula-
tion, which can not be overlapped with the loop control maybe there is only one integer
unit, or due to the reloading of the constant out of memory. The difference t��� ���t��� ��
of one cycle shows that load and/or store operations can be overlapped. With 24 cc for
a vector move the effective bandwidth to main memory is at least bmm � ���
 � �����
dpc (13.3 MByte/s). Because it is more likely that rather a store than a load can be over-
lapped, we assume that the additional time is due to the load whereas the store is hidden
or at least reduced to one cc needed to initialize the transfer. An additional add operation
in r���
� increases the run time by 10 cc, a multiplication by 13 cc. Thus adding is 3 cc
faster than multiplying.

4.3.1.2 group 1.

The differences t��� j� � t��� j � �� for even j � � and for odd j � � imply run times
for a scalar multiplication Tmul � �� cc and for a scalar addition Tadd � � cc. The
difference t��� �� � t��� �� � � cc can be interpreted in a way that loop overhead and
floating point operation can not be overlapped. The difference of 3 cc between addition
and multiplication is equal to the difference t��� �� � t���
� found in group 0. No load
or store is encountered, we assume that all operands are held in registers.

4.3.1.3 group 2.

Analogously to group 1 we get Tsub � � cc for a scalar subtraction and Tdiv � �� cc for
a scalar division by inspecting the corresponding differences in group 2. The time Tov
for loop overhead derived in groups 0 and 1 can be observed, too.

4.3.1.4 group 3.

In group 3 the vector division r��� �� has the smallest run time, which is quite astonish-
ing. But if we assume that a divide operation can be overlapped with the loop control,
then 32 cc (derived in group 2) still fit into t��� ��. The effective bandwidth to main
memory is at least bmm � ���� � ����� dpc (14.5 MByte/s) because three data words
have to be transmitted in 33 cc. The difference t��� �� � t��� �� of 2 cc reflects not the
encountered difference of 3 cc which we have assumed as the difference between an
addition and a multiplication. But the missing cycle may be hidden in an overlap. The
time t��� �� for a vector addition is equal to the time t���
� for an addition of a vector
with a scalar value. Thus in group 0 the scalar value is loaded every time. Let us assume
that a store can be hidden, that all arithmetical operations are performed with scalar op-
eration time, and that the time Tld to load a value is equal to 4 cc (a value suggested by
Tasg � t��� ��� t��� �� or t��� ��� t��� ��). Loop overhead Tov is fixed with 19 cc. Thus

60 4 Isolating the Reasons for the Performance of Parallel Machines

g
j 4 �% 5 �% 6 �% 7 �%

1 30 -3.2 34 0.0 30 7.1 34 3.0
2 40 -2.4 44 0.0 40 -7.0 44 -2.2
3 47 -6.0 51 -3.8 47 -9.6 51 -1.9
4 57 -1.7 61 0.0 57 -10.9 61 -1.6
5 64 -4.5 68 -2.9 64 -11.1 68 -1.5

Table 4.2 Modelling run times of groups 4, 5, 6 and 7 for the Ncube in cc

we can model the operation time per element of a vector addition with Tov ��Tld�Tadd
resulting in �� � � �
 � � � �
 cc. A vector multiplication needs 37 cc by replacing
Tadd with Tmul.

Up to now no loop unrolling techniques have been detected. The loop overhead of 19
cc appears for each inner loop.

4.3.1.5 group 4, group 5, group 6 and group 7.

These groups are analyzed simultaneously. The maximal bandwidth occurs in r��� ��
with bmm � ���� � ��� dpc (16 MByte/s). The differences t��� j� � t�
� j� are equal
to 3 cc for all j. Thus, addressing different operands in a loop body increases the run
time of the loop only by 3 cc independent of the number of operands. If we assume that
calculating the address of an operand and loading it can be hidden almost entirely behind
the arithmetical operation, we have to count the load time only at the beginning of the
expression evaluation for the first and second operand. The second load is only counted
if it is a different operand. Even in group 7, where all operands are taken from different
vectors with different indices, no large increase of the run time can be detected, which
depends on the number of operands. Addressing and loading an operand seems not to be
the bottleneck of an operation. Thus the evaluation of the simple vector expressions can
be closely modelled with the following assumptions: arithmetical operations take times
according to group 1 and 2, loop overhead Tov � ��, loading an operand Tld �
 at the
beginning of the expression evaluation. Further we count the time Tld to load an operand
only if the operand has not been calculated or loaded previously in the same basic block,
because it otherwise apparently would be held in a register. Storing and addressing is
hidden. We get the modelled run times for the groups 4, 5, 6 and 7 given in table 4.2.
The absolute error is often less than 2 cc, the relative error is less than 4 %.

In group 6 the run time for small expressions is less than the run time in groups 4, 5 or
7; for large expressions it is greater. On the one hand there is a data dependency in group
6 between each pass of the loop and its following one, but on the other hand the large
loop overhead should make it possible that no wait is necessary over loop boundaries
(there seems to be no loop unrolling). We note at this point that addressing the same
vector in a recursive manner leads to slightly different run times than we have modelled
so far.

4.3 Measurements 61

group j � � j � � j � � j � � j � � j � 	 j �
 j � �

9 measured 45 63 80 98 127 165 189 208
approximated 44 61 78 95 112 129 146 163

�% -2.3 -3.2 -2.5 -3.1 -13.4 -27.9 -29.5 -27.6
10 measured 57 74 93 124 157 180 207 231

approximated 54 71 88 105 122 139 156 173
�% -5.3 -4.1 -5.4 -18.1 -28.7 -29.5 -32.7 -33.5

Table 4.3 Run time approximation of group 9 and 10 for the Ncube

The machine seems to be able to overlap parts of the operations both on integer
operands (addresses) and floating point values and memory accesses.

4.3.1.6 group 8.

This group measuring inner loops for dot product and matrix product shows two facts.
On the one hand there is almost no difference in the run time for row or column wise ad-
dressing. But on the other hand one pass through the inner loop of a dot product is about
20 % faster than one pass through the inner loop of a matrix product, although, naively
spoken, both inner loops should have nearly equal run time. Possibly, the compiler is
not able to pull the address multiplication out of the inner loop, if two loops are nested
and the address calculation depends on both loop variables. Addressing a vector out of a
matrix seems to add Tadr � �� cc to the run time inner loop. However, t��� �� is equal to
t��� �� where the same types of operations are performed. So we can model the run time
of the dot product simply in the way introduced in group 5 leading to a run time for one
pass of the inner loop of the dot product of 44 cc and of the matrix product of 54 cc.

4.3.1.7 group 9 and group 10.

The last two groups are discussed together. Looking at the differences t�g� j��t�g� j���
for both g � � and g � �� we find a quite unstructured list of values. But if we choose
the modelling derived so far with increasing j the run time t��� j� should increase by 17
cc:

t��� j� � �Tadd � Tmul� � j � �Tld � Tov

In group 10 we have an additional time Tadr for addressing out of a matrix. In table 4.3
we have listed the approximated run times using this formulae as far as the modelling
ranges within 5 % of the measured run time. Larger expressions take more time to get
evaluated. It is easy to see that the run time seems to be faster if we split the expression
in the high level language. But the compiler has not detected this possibility. Thus exact,
simple modelling is impossible. Almost 30 % of the performance are lost because the
compiler does not find a good way to evaluate the more complex expressions.

62 4 Isolating the Reasons for the Performance of Parallel Machines

Tin Tov Tadd Tmul Tdiv Tld Tadr

cc 100 19 7 10 32 4 10

Table 4.4 Run times of inner loops for the Ncube in cc

We summarize the properties and parameters of an Ncube’s node processor (in con-
junction with this particular compiler):

� There is no data cache. The memory hierarchy is very simple. It consists of a register
file between main memory and the functional units. Its size has not been detected
by the test routines. It seems to be large enough to avoid any bottleneck.

� The processor behaves like a scalar machine, because no vector operations, i. e. the
generation of a result every clock cycle, could be encountered.

� Dividing is pretty fast. Probably there is a special dividing routine, which allows for
more overlapped work of the functional units of the processor.

� Load and store operations can be overlapped with address calculation and arith-
metical operations. The time to load an operand occurs only at the beginning of the
expression evaluation, if the operand has not been loaded beforehand in the expres-
sion (or basic block).

� The effective bandwidth bmm between functional units and main memory through
the register file is � ��� dpc, which is about 16 MByte/s. However, the time to load
for one item can be modelled with 4 cc, which is about 50 MByte/s.

� Addressing of main memory keeps almost pace with floating point performance,
but multi–dimensional addressing adds a constant term Tadr to the run time of the
inner loop.

� We can model the run times of all test routines sufficiently by using the parameters
given in table 4.4.

� The compiler has difficulties with common subexpression elimination.

� The compiler does not optimize beyond DO–loop bounderies.

� The loop overhead Tov is quite large compared with the time to perform a floating
point operation. One should avoid simple inner loops.

� The compiler does not use loop unrolling techniques to reduce the run time due to
loop overhead.

� The sustained performance on expression evaluation ranges from 25 to 63 % of the
peak performance (excluding divide operations, see discussion in group 3 above).

4.3 Measurements 63

0

50

100

150

200

250

300

350

0 10000 20000 30000 40000 50000 60000 70000

Figure 4.4 Measured run time in ms
versus modelled run time of group 11
(upper curve) and group 12 (lower curve)

4.3.2 Measurements of the Parallel Kernels

A brief description of the Ncube’s architecture is given in section 4.3.1. We used the two
communication routines nwrite and nread, which are provided by the FORTRAN

library, to perform the data transfer. nwrite(b,l,n,t) sends a data block b with
length l to a node n in context t. nread(b,l,t) receives a data block b with length
l in context t, which can be sent by any other node. Corresponding calls to nread and
nwrite have equal block lengths and the same context.

4.3.2.1 group 11.

The test routines in this group are started using the whole 64 node Ncube. The com-
munication is performed only between directly connected nodes. Because the run time
appeared to be independent of the direction in which the communication takes place (see
[1]), d occurs not as a parameter. The run time t���� �� in �s can be modelled with

t���� �� �n� �

�
��� if n � �
��
 � �n����� if n 	 �

In figure 4.4 (upper curves) the run times of routine r���� �� for two outer loop
lengths L and the modelled run time are plotted. The difference t���� �� d� �� �n� �
t���� �� d� ��� �n� is almost constant. The error between modelled run time and mea-
sured run time with l � �� is always less than 1 %. Thus the bandwidth between any
two connected nodes is about 1.75 MByte/s (or 0.011 dpc) with a startup time of about
354 �s (or 7080 cc). Small packets of less than 32 Byte are transmitted in a constant time
of 290 �s (or 5800 cc). For L � � the startup time increases by about 900 �s (or 18000
cc) independent of n.

For routine r���� �� we measured the same run times as in routine r���� ��, although
now the distance between two nodes increases with d. Thus, the node to node commu-
nication time on the Ncube seems to be independent of the distance of the two nodes
which participate on the data transfer. Note that no other communication takes place
simultaneously.

64 4 Isolating the Reasons for the Performance of Parallel Machines

0

50

100

150

200

250

300

0 10000 20000 30000 40000 50000 60000 70000

Figure 4.5 Measured run time in ms
versus modelled run time of group 13,
routine 1

4.3.2.2 group 12.

Similar to group 11 the run times of routine r���� �� are independent of the direction
in which the communication takes place, so d occurs not as a parameter. The run time
t���� �� in �s can approximated by

t���� �� �n� �

�
��� if n � �
��� � �n���� if n 	 �

which is shown in figure 4.4 (lower curve). Again the error made is always less than 1
percent. Thus the bandwidth between any two connected nodes is about 3.5 MByte/s (or
0.022 dpc) — twice as high as in group 11 — with a startup time of about 289 �s (or
5780 cc). Small packets of less than 256 Byte are transmitted in a constant time of 289
�s (or 5780 cc). For L � � the startup time increases by about 900 �s (or 18000 cc) for
small block sizes n, but in this routine the additional term vanishes for larger ones.

For routine r���� �� we measured almost the same run times as in routine r���� ��,
although now the distance between two nodes increases with d. Thus, the node to node
communication time on the Ncube seems to be independent of the distance of the two
nodes, which participate on the data transfer, even if it is bidirectional. Note, that no
other communication takes place simultaneously.

4.3.2.3 group 13.

In this group all nodes participate in the communication.
For routine r���� �� the run times in different directions d are almost equal (see [1]).

They differ by less than 1 percent The outer loop length L has no noticeable influence
on the run times neither. Therefore, those two parameters do not occur in the run time
formula. The run time t���� �� in �s is modelled with

t���� �� �n� �

�
��� if n �

�� � �n���� if n 	

which is shown in figure 4.5. The error is in all cases less than 1.6 %.

4.3 Measurements 65

Routine r���� �� shows the expected behavior, too. The run time is independent of L
and can be modelled with almost the same bandwidth as above. The startup times have
been chosen differently:

t���� �� �n� �

�
��� if n � �
�� � �n����� if n 	 �

The maximal error is about 4.3 %.

4.3.2.4 group 14.

All of the routines in this group were started with an appropriate cluster of p processors
which had been allocated before the program was started.

Routine r��
� �� deals with a broadcast of a message from one node of a cluster to
all other nodes. The FORTRAN library provides a routine bcast() to perform such an
operation. According to section 4.2.2 we can model the run time b�i� n� p� in �s with

b�i� n� p� � S� � Sp d�p� � �n�
d�p�

B
�

�

BS

�

where n denotes the message length in words, d�p� denotes the diameter of the network,
i. e. the longest path from the source node to the destination node used by bcast(), B
denotes the bandwidth on the links in MByte/s, which we assume to be equal on all links,
and BS denotes the bandwidth due to software overhead. With S�p� � S��Sp d�p� and
��B�p� � d�p��B � ��BS this can be written as

b�i� n� p� � S�p� � �n�B�p�

The run times of broadcast from node 0 to p � � nodes within a cluster are not listed
here, because the data set is quite large. The length of a message varies from 1 to 65536
words. In table 4.5 those run times are approximated with the two parameters S�p� and
B�p� according to the formula given above for all p. The difference between the approx-
imation and the measurement is less than 1 percent, if n is larger than the value listed in
the fourth column of the table.

Now, we want to derive the parameters d�p�, S�, BS , Sp and B required by our model.
The differences ��B�p�� � ��B��p�� and the differences S�� � p�� � S�p�� are almost
constant (� ��
 for B�p� and � �� for S�p�) for all � � p� �
. So the routine
bcast() exploits the hypercube structure of the Ncube, the diameter d�p� is equal to
log�p� and the parameter Sp is equal to 50 �s. � can be set to 185 �s. If we solve the
equation

��B�p� � d�p��B � ��BS

in B and if we use d�p� � log�p� we get

B �
log�p�B�p�

�� B�p��BS

66 4 Isolating the Reasons for the Performance of Parallel Machines

p ts�p� B�p� n� ts�p� B�p�

2 235 1.96 8 235 1.96
4 285 1.04 2 285 1.04
8 335 0.71 4 335 0.71

16 380 0.54 4 385 0.54
32 435 0.43 2 435 0.43
64 485 0.36 2 485 0.36

approximated modelled

Table 4.5 Modelling the run time in �s and the bandwidth in MByte/s of broadcast on the
Ncube

p sy�p�

2 25190 503800
4 25343 506860
8 50663 1013260

16 101299 2025980
32 102571 2051420
64 205126 4102520

Table 4.6 Run time in �s and cc to synchronize a cluster on the Ncube

Now we have a set of equations for B with parameter BS , which we both expect to
be constant. The values B � ���� MByte/s and BS � ��� MByte/s give a good ap-
proximation, which is documented in the last column of table 4.5, where B�p� has been
recalculated.

Finally, we have the run time formula for broadcast (in �s)

b��� �n� p� � ��� � �� log�p� � �n � � �

���
�
log�p�

����
�

for the Ncube. This run time formula can be interpreted in the following way. The startup
time for a broadcast, which is independent from the size of the cluster is about 185 �s
(3700 cc). In order to copy the message from user space to system space on the first node
and to copy it from system to user space on all receiving nodes 0.06 �s (12 cc) are used
for each word. The effective bandwidth on a link is about 2.22 MByte/s (0.014 dpc). The
software uses a tree–like transfer scheme on the hypercube with an additional startup
time of about 50 �s (1000 cc) on each branch.

Routine r��
� �� measures the time sy�p� to synchronize p processors within a cluster.
We used the library function nodesy() to perform synchronization. In table 4.6 this
time is listed as the maximum over all participating nodes of the cluster.

The measured time is incredibly large. Before the loop, which just calls nodesy(),
is entered all processors have been synchronized by another call to nodesy(). Thus,
the large run time should not be caused by non–synchronized nodes at the beginning of
the measurement.

4.3 Measurements 67

p gs�p�
minimal maximal modelled

2 278 282 278
4 444 450 444
8 611 689 610

16 777 842 776
32 942 951 942
64 1109 1118 1110

Table 4.7 Run time in �s to compute the global sum in a cluster on the Ncube

Routine r��
� �� measures the time gs�p� to build the global sum of p values and
distribute the sum to all processors within the cluster. Initially, every processor owns his
part of the sum. We used the library function dsum() to perform the calculation. Table
4.7 summarizes the minimal and maximal measured run times gs�p�.

If we treat the two maximal values for 8 and 16 processors as exceptions, we have
almost constant differences gs�� � p��� gs�p�� (� ��s) for all � � p� �
. Thus the
software exploits the hypercube structure with diameter d�p� � log�p� and implements
a tree–like structure to evaluate the global sum. The run time can be approximated with

gs�p� � ��� � � log�p�

which is listed in the last column of table 4.7, too.

4.3.2.5 Remark.

Because gsum() also has to synchronize the nodes, one should prefer this routine,
instead of nodesy(), which is provided by the library, if the program needs an explicit
synchronization point.

4.3.2.6 group 15.

Until now the data set is much too small, so we are still not able to give a model for the
run time. Most of the time is spent in start up time and loop control. The maximal length
of the vector distributed over the cluster has been set to 256 elements, thus, in a cluster
of 64 nodes there are only 4 words located on every node. The run times must be taken
as they are, a simple extrapolation for greater vector lengths should not be performed. In
table 4.8 the measured data is summarized. The difference between minimal and max-
imal value is not very large, so we will use the averaged value later. Nevertheless, the
data set is sufficient for use in later sections.

68 4 Isolating the Reasons for the Performance of Parallel Machines

n�p p gcmin gcmax gcavg

32 2 551 556 553
64 2 830 836 833

128 2 1420 1430 1425
16 4 920 925 923
32 4 1340 1363 1351
64 4 2228 2248 2238

4 8 881 943 932
8 8 1146 1205 1185

16 8 1670 1730 1714
32 8 2731 2751 2740

4 16 1379 1453 1428
8 16 2000 2028 2015

16 16 3062 3120 3103
2 32 1599 1675 1648
4 32 2166 2263 2227
8 32 3323 3415 3378
1 64 1790 1895 1862
2 64 2385 2481 2447
4 64 3553 3647 3614

Table 4.8 Run time in �s of global collection on the Ncube

4.4 Algorithms

This section contains the description of serial and parallel programs of a (i) conjugate
gradient method for dense arrays (CG–method), and (ii) of an explicit solver for a partial
differential equation with one (PDE1–method) respectively (iii) two (PDE2–method)
spatial dimensions.

4.4.1 CG–method

The conjugate gradient method [8] is an iterative method for solving linear systems of
equations Ax � b. For vectors u and v we denote by hu� vi the scalar product of u and v.
The conjugate gradient method iteratively computes vectors xt, dt and gt. In one iteration
the following computations are performed:

� � hgt� gti�hdt� Adti
xt�� � xt � �dt

gt�� � gt � �Adt

� � hgt��� gt��i�hgt� gti
dt�� � �gt�� � �dt

The following segment of FORTRAN code for p processors performs a certain number
it of the above iterations. Vectors xt, dt and gt are computed in local arrays vx(mp),

4.4 Algorithms 69

vd(m) and vg(mp); local arrays vh(mp) store intermediate results. The symmetric
m �m matrix A is stored in local arrays ma(m,mp). In general each processor stores
mp consecutive rows of A and mp consecutive elements of the vectors. The conjugate
gradient algorithm accesses the matrix by rows, but, because in FORTRAN arrays are
stored by columns and because A is symmetric, the program accesses columns instead.

t1 = secnd()
1000 CONTINUE

CALL gcol(vd,m,mp,me)
ab = 0.0
DO 20 i=1,mp
vh(i) = 0.0
DO 21 j=1,m

vh(i) = vh(i) + ma(j,i) * vd(j)
21 CONTINUE

ab = ab + vh(i) * vd(i+u-1)
20 CONTINUE

CALL gsum(ab)
IF(ab.NE.0.0) ab = nga/ab
err = 0.0
ngn = 0.0
DO 30 i=1,mp
vg(i) = vg(i) + ab * vh(i)
vh(i) = ab * vd(i+u-1)
vx(i) = vx(i) + vh(i)
err = err + vh(i) * vh(i)
ngn = ngn + vg(i) * vg(i)

30 CONTINUE
CALL gsum(err)
CALL gsum(ngn)
IF(nga.NE.0.0) ab = ngn/nga
nga = ngn
nsteps = nsteps + 1
DO 40 i=1,mp
vd(i+u-1) = ab * vd(i+u-1) - vg(i)

40 CONTINUE
IF(nsteps.LT.it) GOTO 1000

t2 = secnd() - t1

At the end of each iteration, each processor knows his section of length mp of vector
vd. At the beginning of each iteration, procedure gcol() performs a multicast where
each processor me broadcasts his segment of vector vd (length m) to all other processors
(see group 15 in section 4.2.2). Procedure gsum() computes the global sums necessary
for the computation of the global scalar products (see group 14 in section 4.2.2).

Most of the time the sequence stays in the inner DO–loop 21 within the DO–loop 20.
The body of the loop is similar to the routines of group 8: in vh(i) the dot product of
row i of matrix ma with vector vd is accumulated. A dot product r��� �� follows this
loop and a scalar assignment r��� �� precedes it. DO–loop 30 consists of an assembly

70 4 Isolating the Reasons for the Performance of Parallel Machines

of vector operations and dot products (group 4 to 8). DO–loop 40 is similar to routine
r��� ��. The three loops are embedded in an outer loop (labeled with 1000) which per-
forms the iterations. The version for one processor is obtained by setting mp=m and
eliminating all calls to procedures gcol() and gsum().

4.4.2 PDE1–method

This kernel deals with an explicit solver for a partial differential equation for one spatial
dimension.

ut�t� x� � �uxx�t� x� t 	 �� x � ��� ��
u��� x� �
�x� x ���� ��
u�t� �� � u�t� �� � � t � �

Solving such an inital boundary value problem often leads to explicit iterative formulae
like

uk���i � uk�i �
��t

�x�
� �uk�i�� � �uk�i � uk�i���

u��i �
�i�x�
uk�� � uk�m�� � �

The forward differential quotient is used to approximate ut and a central differential
quotient to approximate uxx.

The following segment of FORTRAN code for p processors performs a certain num-
ber it of the above operations. The vectors ui and ui�� are computed in local arrays
u0(mp+2) and u1(mp+2). The new result is stored alternately in u0 and u1. Each
processor stores mp consecutive elements of both vectors. To update all local values the
processors also need one value from both of their neighbors. These data are transferred
after every time step and are stored in the vector elements u[0] and u[mp+1]. Element
u[0] of processor me � � and element u[mp+1] of processor me � p� � contain the
boundary values.

The version for one processor is obtained by setting mp=m and eliminating all calls of
the procedure exchlr(). The iteration does not converge, because the constant value
have been chosen in a way that the initial configuration is repeated every second time
step.

t1 = secnd()
DO 20 lp=1,it,2
DO 21 i=1,mp

21 u1(i) = u0(i) + c0 * (u0(i-1)-2*u0(i)+u0(i+1))
CALL exchlr(lp,u0,m,mp);
DO 22 i=1,mp

22 u0(i) = u1(i) + c0 * (u1(i-1)-2*u1(i)+u1(i+1))
CALL exchlr(lp,u1,m,mp);

20 CONTINUE
t2 = secnd() - t1

4.4 Algorithms 71

4.4.3 PDE2–method

This routine solves an initial boundary value problem for two spatial dimensions

ut�t� x� y� � ��u�t� x� y� t 	 �� �x� y� � �
� 	 ��� ��� ��� ��

u��� x� y� �
�x� y� �x� y� � �
u�t� x� y� � � t � �� �x� y� � ���

The LAPLACE operator �u is approximated by a five point central differential quotient
and the time derivation by a forward differential quotient. This leads the following ex-
plicit time stepping method

uk���i�j � uk�i �
��t

�x�y
� �uk�i�j�� � uk�i���j �
uk�i�j � uk�i���j � uk�i�j���

u��i�j �
�i�x� j�y�
uk���j � uk�m���j � �
uk�i�� � uk�i�m�� � �

There are two ways to distribute the matrices over the set of processors. In the first
parallelization method every processor participating the computation holds one stripe of
the matrices. Communication is performed on the boundaries of the stripes, thus leading
to a neighbor–to–neighbor communication on a chain. The second method gives every
processor a squared part of the matrices, so data exchange is done in four directions.

The following segment of FORTRAN code for p processors performs a certain num-
ber it of the above iterations (loop labeled with 1000). For technical reasons two it-
erations are done in this loop. The matrices ui and ui�� are computed in local arrays
u0(mp+2,m+2) and u1(mp+2,m+2). The new result is stored alternately in u0 and
u1. Each processor holds mp � m�p columns of the matrix with range m. We have
listed the program for the first data distribution (stripes). The code for the second pos-
sibility is quite obvious. After every iteration one colum is exchanged both to the right
and to the left neighbor. These data are received in column 0 and mp+1. The boundary
values are stored in row 0 and m+1. The constant values have again been chosen in a
way that the initial configuration is repeated every second time step.

t1 = secnd()
DO 1000 lp=1,it,2
DO 20 j=1,mp
DO 20 i=1,m

u0(i,j) = u1(i,j)+c0*(u1(i,j+1)+
& u1(i-1,j)-4*u1(i,j)+u1(i+1,j)+u1(i,j-1))

20 CONTINUE
CALL exchlr(lp,u0,m,mp)
DO 30 j=1,mp
DO 30 i=1,m

u1(i,j) = u0(i,j)+c0*(u0(i,j+1)+
& u0(i-1,j)-4*u0(i,j)+u0(i+1,j)+u0(i,j-1))

30 CONTINUE
CALL exchlr(lp,u1,m,mp)

72 4 Isolating the Reasons for the Performance of Parallel Machines

1000 CONTINUE
t2 = secnd()

The version for one processor is obtained by setting mp=m and eliminating all calls of
procedure exchlr().

4.5 Analysis of the Programs

We will map the test routines described in section 4.2.1 in an almost systematic way to
the expressions of the algorithms. The run time is predicted using the node parameters
derived in section 4.3.

The measured run time curves are always step wise linear curves, because the data
points are connected by lines. In the diagrams the predicted run time curve is the smoother
one, so we have omitted any labeling of the curves.

4.5.1 Serial Versions

4.5.1.1 CG–method

The local problem size mp is kept in the run time formulae, so we can apply the formulae
later in the parallel run time prediction. The run time of the inner loop 21 is

t�� � m � �Tmul � Tadd � Tadr � �Tld � Tov� � Tin � �
m� ���

The DO–loops 20, 30 and 40 have run times

t�� � mp � �t�� � Tmul � Tadd � �Tld � Tov� � Tin � �
mmp � �

mp � ���

t�� � mp � �
Tmul �
Tadd � �Tld � Tov� � Tin � ���mp � ���

t�� � mp � �Tmul � Tadd � �Tld � Tov� � Tin �

mp � ���

with the following explanations.
In loop 20 the constant and vd are loaded. In loop 30 the scalar ab and the elements

of the vectors vh, vg, vd and vx are loaded. In loop 40 the scalar and the elements of
the vector vd are loaded.

We add all times of the inner loops and do not consider the simple assignments within
the iteration DO–loop 1000. The number of iterations it has been chosen as 10. We get
as predicted run time tspCG (in cc) of the serial CG–program

T s
CG � it � �t�� � t�� � t�� � Tov� � Tin � �
�mmp � ����mp � ����

Figure 4.6 shows the predicted run time versus the measured data. The relative error is
always less than 1.4 %.

4.5 Analysis of the Programs 73

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300

Figure 4.6 Measured run time in ms
versus modelled run time of serial CG–
program for the Ncube (it � �)

0

500

1000

1500

2000

2500

4 6 8 10 12 14 16

Figure 4.7 Measured run time in
ms versus modelled run time of serial
PDE1–program for the Ncube (it � �,
x–scale logarithmical with base 2)

4.5.1.2 PDE1–method

In order to allow for a later usage in the parallel run time prediction the parameter mp

as local problem size is kept in the run time formulae. The run time of both loop 21 and
loop 22 is

t�� � t�� � mp � ��Tmul � �Tadd � Tld � Tov� � Tin �
mp � ���

Only the load of u0(i) can not be overlapped with an arithmetical operation, if we
suppose that both c0 and the value 2 are held in registers. The multiplication 2*u0(i)
can be started during the load of u0(i-1). The run time of both the iterated loops is
then

T s
PDE� � it � �t�� � t�� � Tov� � Tin � it � ����mp � ���� � ���

The predicted run time for different problem sizes m and the measured data are shown
in figure 4.7. The error is for m � ��� always less than 1 %.

4.5.1.3 PDE2–method

In order to allow for a later usage in the parallel run time prediction the parameter mp

as local problem size is kept in the run time formulae. The run time of both loop 20 and
loop 30 is

74 4 Isolating the Reasons for the Performance of Parallel Machines

0

500

1000

1500

2000

2500

3000

3500

5 5.5 6 6.5 7 7.5 8

Figure 4.8 Measured run time in
ms versus modelled run time of serial
PDE2–program for the Ncube (it � �,
x–scale logarithmical with base 2)

t�� � mp � �m � ��Tadd � �Tmul � Tadr � �Tld � Tov� � Tin � Tov� � Tin

� mp � �m � �� � � � � � �� � �� � � �
 � ��� � ��� � ��� � ���

� �mmp � ���mp � ���

Only three operands, namely the first three vector components, have to be loaded without
the possibility to overlap the load with an arithmetical operation. We suppose c0 and 4
are held in registers. The addresses of the components depend on both indices i and j,
so we have to add Tadr to perform the address multiplication. The run time of both the
iterated loops as predicted run time T s

PDE� of the serial PDE2–algorithm is then

T s
PDE� � it�� � ��t�� � Tov� � Tin

� it�� � �� � ��mmp � ���mp� � ��� � ��� � ���

� it � ��mmp � ���mp � �� � ���

The predicted run time of the serial version for different problem sizes m (� mp) and
the measured data are shown in figure 4.8.

4.5.2 Parallel Versions

The abbreviations introduced in the previous sections concerning run times of operations
or communication routines are used in this section without any further reference.

4.5.2.1 CG–Method

In section 4.5.1 we have derived the formula

T s
CG � it � ��
mmp � ���mp � ���� � ���

in order to predict the run time in cc of the serial version of the conjugate gradient
method. m was the problem size and mp was the local problem size. Within the outer
iterating loop a global collection is performed once and three times a global sum is
distributed. This leads to the following formula which predicts the run time in cc of the
program with parameters p as size of the cluster and n as size of the problem

4.5 Analysis of the Programs 75

mp p Tm
CG T p

CG �%

32 4 27000 30806 14.10 *
64 4 50600 52722 4.19

128 4 138000 142306 3.12
256 4 478000 487672 2.02

32 8 31300 31830 1.69
64 8 43900 45318 3.23

128 8 89700 93260 3.97
256 8 264000 271768 2.94

32 16 37000 39748 7.43 *
64 16 44600 45226 1.40

128 16 69600 72422 4.06
256 16 161000 167426 3.99

32 32 44000 45916 4.35 *
64 32 48700 48656 -0.09

128 32 63400 65108 2.69
256 32 114000 118680 4.11

32 64 47100 52530 11.53
64 64 54700 53900 -1.46

128 64 64400 65082 1.06
256 64 93900 97782 4.13

Table 4.9 Run time prediction in �s for parallel CG–method on the Ncube (it � �)

T p
CG � it � ��
n��p� ���n�p� ��� � gc�p� � �gs�p�� � ���

The modelling of the run time of the parallel functions is taken from section 4.3.2. The
run time gc�p� of globel collection gcol() is taken directly from table 4.8 and the run
time gs�p� of global sum gsum() in �s is modelled with

gs�p� � ��� � � log�p�

In table 4.9 the predicted run times T p
CG are listed. The error is for mp 	 �� in all

cases less than 5 %. The marked lines in the table are predicted without correct global
collection times. We have taken the values in table 4.8 of the next larger local problem
size.

4.5.2.2 PDE1–Method

In section 4.5.1 we have derived the formula

T s
PD� � it � ����mp � ���� � ���

in order to predict the run time in cc of the serial version of the one–dimensional differen-
tial equation. mp was the local problem size. After every iteration one item is exchanged
both to the right and to the left neighbor. We have to add two times the run time of the
exchange routine r���� �� taken from section 4.3.2.

76 4 Isolating the Reasons for the Performance of Parallel Machines

0

500

1000

1500

2000

2500

7 8 9 10 11 12 13 14 15

Figure 4.9 Run time prediction in ms
for parallel PDE1–method on the Ncube
(it � �, x–scale logarithmical with base
2, local problem size mp)

T p
PD� � it � ����mp � ��� � �t���� �� d� p� ��� � ���

Because only one item is exchanged, t���� �� d� p� �� is equal to 230 �s. This modelling
leads to the prediction shown in figure 4.9, where for p � � and p � �� the measured
run time is compared to the modelled run time. The curves are almost identical, because
we have chosen the local problem size as x–axis.

4.5.2.3 PDE2–Method

In section 4.5.1 we have derived the formula

T p
PD� � it � ��mmp � ���mp � �� � ���

in order to predict the run time in cc of the serial version of the program to solve a
two–dimensional differential equation.

In the first partitioning method each processor holds one column with width mp �
m�p of the matrix with rank m. After every iteration the borders are exchanged both to
the right and to the left neighbor. Thus we have to add two times the run time of the
exchange routine r���� �� taken from section 4.3.2.

T p�
PD� � it � ��mmp � ���mp � � � �t���� �� d� p�m�� � ���

with

t���� �� �n� �

�
��� if n � �
�� � �n����� if n 	 �

This modelling leads to the prediction shown in figure 4.10
The second partitioning method divides the matrix in squares. Each processor holds

a problem size of mp � mp with mp � m�
p
p. The code is not given in section 4.4

but quite obvious: the outer loop is now also limited by mp and the exchange routine
transfers data to four neighbors. So we get

T p�
PD� � it � ��m�

p � ���mp � � �
t���� �� d� p�mp�� � ���

This modelling leads to the prediction shown in figure 4.11. A larger error occurs when
merely four processors are used for parallelization. In that case, the communication of
every node takes place just in two directions, which probably is a reason for the better
run time.

4.6 Conclusion 77

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300

Figure 4.10 Run time prediction in ms
for parallel two–dimensional differential
equation solver using data partitioning in
stripes on the Ncube (it � �, local prob-
lem size mp)

0

100

200

300

400

500

600

700

800

900

60 80 100 120 140 160 180 200 220 240 260

Figure 4.11 Run time prediction in ms
for parallel two–dimensional differential
equation solver using data partitioning in
squares on the Ncube (it � �, local
problem size mp)

4.6 Conclusion

In this paper we presented a set of test routines which has been designed to measure
both features of the node processor of a parallel architecture as well as features of the
communication network. Based on the measured data set we have derived a relatively
small set of parameters for the Ncube–2, which allows for a consistent modelling of the
behavior of the machine on the test routines. Moreover, we have shown that the model
can be used to predict the run time of a set of algorithms (CG–method and one– and
two–dimensional partial differential equations solver) with high accurracy.

In particular we have seen that an Ncube–2 parallel machine can be modelled in a way
that a prediction of the performance even for moderate problem sizes can be done with
an error of less than a few percent.

References

[1] A. Bingert and A. Formella. Results and Data Sets benchmarking the iPSC and Ncube.
Technical report, Universität des Saarlandes, 1992.

78 4 Isolating the Reasons for the Performance of Parallel Machines

[2] J.T. Feo. An Analysis of the Computational and Parallel Complexity of the Livermore
Loops. In Parallel Computing, volume 7, pages 163–185, 1988.

[3] A. Formella, S.M. Müller, W.J. Paul, and A. Bingert. Isolating the Reasons for the Perfor-
mance of Parallel Machines on Numerical Programs II. In A.J.G. Hey, editor, Portability
and Performance for Parallel Processors. John Wiley & Sons, Ltd., 1993.

[4] R. Hockney. Performance parameters and benchmarking of supercomputers. Parallel Com-
puting, 17:1111–1130, 1991.

[5] R. W. Hockney and C. R. Jesshope. Parallel Computers 2. Adam Hilger, Bristol, 2nd
edition, 1988.

[6] F.H. McMahon. The Livermore Fortran Kernels Test of the Numerical Performance Range.
Technical report, Livermore National Liboratory, 1988.

[7] W.J. Paul and D. Scheerer. The DATIS–P parallel machine. In Proceedings of HICSS–24,
volume I, pages 560–571, 1991.

[8] J. Stoer and A. Bulirsch. Einführung in die Numerische Mathematik, volume I/II of Heidel-
berger Taschenbücher, chapter 2, Das CG–Verfahren. Springer, 1972.

[9] A.J. Van der Steen. The benchmark of the EuroBen group. Parallel Computing, 17:1211–
1221, 1991.

[10] R. Weicker. Dhrystone – a synthetic systems programming benchmark. In Communications
of the ACM 27, volume 10, pages 1013–1030, Oct. 1984.

[11] R.P. Weicker. A detailed look at some popular benchmarks. Parallel Computing, 17:1153–
1172, 1991.

79

5 Targeting Transputer Systems, Past and
Future

Denis A. Nicole�
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

UNIVERSITY OF SOUTHAMPTON

SOUTHAMPTON SO9 5NH, UNITED KINGDOM

email: dan@ecs.soton.ac.uk

Abstract: We discuss some features of three generations of INMOS transputer: the 32 bit T800
family, the 64 bit T9000 family, for which early Silicon is now available, and the recently initi-
ated Chameleon programme. The impact of these features on automatic high-performance com-
pilers is discussed.

5.1 Introduction

INMOS, which is now one of the SGS-Thompson group of companies, introduced a
family of transputer components in the mid 1980s. These transputers were complete
single-chip computers which, by analogy with transistors, were intended to be used
as components for parallel computers. Each transputer included a RISC-like CPU, mi-
crocoded scheduler, on-chip RAM and four high-speed (20M bit/s) bidirectional serial
communication links.

The initial transputer was the 32 bit T414 component; this was rapidly followed by
the T212 16 bit part and the T800 [4], developed under Esprit project 1085 “Supernode”,
which featured fast on-chip floating point arithmetic support. For a while, the T800 could
reasonably be described as the “fastest single-chip computer in the world.” Along with
these components, INMOS developed the occam language to provide the primary pro-
gramming environment for transputers.

After a considerable period of definition, design, and development, � versions of one
of the next family of transputers, the T9000 component are now (September 1993) with
some manufacturers and will be demonstrated publicly this month. The T9000 is largely
software compatible with the T800 family; the influence of occam continues to show
clearly in the design.

Work is also just starting on the specification of a third generation of transputer com-
ponents, the Chameleon family. It is believed that the parallel processing facilities of
these new components will be extended to include support for a single global address
space; it is known that the design has been substantially influenced by Valiant’s “Bridg-
ing Model” [1].

�This work is being conducted as part of Esprit collaboration 5404, “GPMIMD” funded by the Com-
mission of the European Communities.

80 5 Targeting Transputer Systems, Past and Future

5.2 The T800 family

INMOS made a remarkable achievement in squeezing a complete parallel processing
component, the T414, onto a single die in the mid 1980s. In part this was achieved by
a very compact CPU design, occupying only about ten percent of the chip area. Much
of the rest of the space was taken up by the four kilobyte internal RAM and the four
communications link engines. The need to preserve chip area, and to provide support
for very fast interrupt handling, demanded that the CPU maintain only a very simple
context. It also encouraged the use of a simple RISC-like load-store instruction set to
minimise decoder and address generator complexity.

As well as the hardware imperatives to conserve space and minimise interrupt latency
for embedded applications, there was a software imperative to provide a programming
environment which would support the development of reliable and predictable codes for
use in critical embedded systems. The difficulty of adding secure parallel constructs to
existing languages such as C and FORTRAN, coupled with recent theoretical progress
in the development of the CSP and CCS models at Oxford, Edinburgh and Warwick
Universities, led INMOS to propose a new language, occam to form the core of the
principal programming interface to the transputer.

Following these twin imperatives, a novel and effective register organisation was se-
lected for the T9000.

� The operand (O) register served to accumulate long operands using a special opcode
prefixes. A basic instruction, eight bits long, contained a four-bit operand. Longer
operands were built up four bits at a time in the O register using special prefix
instructions.

� The instruction pointer (IP) was a conventional pointer into the instruction stream.

� The workspace pointer (WP) served as combined frame/stack pointer and process
identifier. This setup is quite natural in occam, a language in which each line of
code is potentially a separate process, but introduces considerable difficulties for
more conventional schemes.

� The evaluation stack consisted of three registers A, B and C. It was intended to be
used, in the manner of a Hewlett Packard (HP35) calculator, to hold temporaries
during expression evaluation. It was not preserved across context switches which,
for transputers, could occur at most communication and control flow instructions.
The T800 had a corresponding, separate, floating-point evaluation stack.

The performance of the T800 using occamwas very good; over one megaflop could eas-
ily be sustained on interesting scientific codes. The performance from C and FORTRAN
was considerably worse, perhaps a quarter to a third of a megaflop. In retrospect, several
reasons can be found for this disappointment:

� The principal problem was the poor quality of available compilers. It would be
possible to generate good code for the three register stack, but a code generator
for this purpose would bear little resemblance to that used by, for example, the

5.2 The T800 family 81

freely distributed GNU compilers to target processors with conventional register
sets. Considerable investment would be required to build new high quality back-
ends for the new processor and, for a new processor from a new manufacturer, that
investment was not forthcoming.

� The C and FORTRAN languages require access to global variables defined at the
outermost scope of the program. These are the C statics and the FORTRAN com-
mons. FORTRAN arrays and SAVE variables may also be addressed in this way.
Unfortunately, the T800 provides no spare register which can be set up to point to
these globals. The hardware also provides no direct support for relocation; compiler
vendors found that they needed to pass the global pointer as an additional parameter
into each subroutine. A surprising proportion of FORTRAN instructions are associ-
ated with passing and with indexing from this parameter.

� The addresses around the workspace pointer, including the global pointer, are ac-
cessed frequently. It is thus desirable to ensure that they, and other highly used
locations, are in fast internal memory. Indeed, internal memory needs to be treated
as a precious and scarce resource, with careful compiler optimisation of its use. In
practice, language systems, at best, allowed the user to allocate internal memory by
hand and to place the first workspaces there.

� The T800 contained, in addition to an unconditional jump and subroutine calls, two
rather strange control flow instructions:

Loop End This instruction was set up with an IP offset in the A register and took
as operand a pointer to a two word loop control block. Its approximate action
may be summarised as

if ((--(O[1]))>0) {
O[0]++;
goto (IP-A); }

This was used to implement the occam equivalent of FORTRAN DO-loops,
but is of little value to an optimising compiler. It is improbable that the offset
in the A register could have been placed there other than by an explicit load.
Furthermore, this instruction can deschedule and thus no useful information
can be held in the evaluation stack.

Conditional Jump At first sight a straightforward instruction, the conditional jump,
which does not deschedule, should have permitted interesting values to be re-
tained in the evaluation stack around loop iterations. This instruction, which
takes an IP offset as operand, jumps if the A register is zero. Unfortunately, if
the jump is taken, it leaves the uninteresting zero in the A register while if it is
not taken, it pops the potentially interesting A value.

The form of these loop control instructions made it very difficult to preserve any
useful context on the evaluation stack around loop iterations. As far as the author
can determine, no compilers do so.

82 5 Targeting Transputer Systems, Past and Future

� The small evaluation stack and its floating point equivalent combine with the awk-
ward behaviour of the control flow instructions to give an enormous incentive for
loop unrolling. The inner SAXPY loop of LINPACK can, for instance, be unrolled
so that all temporaries and loop variables are held in registers; the processor then
need only resort to memory for the source and destination vectors and a better than
factor of two speed-up is achieved. Again, these possibilities are not exploited by
current compilers.

� A transputer process has its workspace pointer as its “handle”. This can be very
inconvenient for conventional operating systems.

Firstly, this “handle” changes when a subroutine is called. Secondly, the “handle”
can be held in many different places by the transputer scheduler: on an execution
queue, in a link engine, in an internal channel, on a timer queue, etc. Compilers to
be used with a conventional OS need, as a result, to restrict their use of transputer
instructions in order to fit a conventional OS model. As the T800 family provides no
relocation support, it is also difficult for the Unix fork() call to be implemented.

Overall, the T800 has been poorly supported by FORTRAN and C compilers. Parallel
programming support, intrinsic to the occam programming system has typically been
provided by simple message-passing libraries such as PARMACS, supported by message-
passing software capable of routing messages between transputers that are not directly
connected [6].

5.3 The T9000 family

The T9000 transputer [5] is, in most respects, a compatible upgrade of the T800 series.
Several of the limitations of the T800 family have been eliminated by new architectural
innovations.

� The internal memory can be organised as a sixteen kilobyte unified cache. This
completely eliminates the need to manage internal memory explicitly and provides
other performance advantages.

� A thirty-two word workspace cache effectively provides a register set for use by
high level languages. Its presence, however, worsens the surge in cache activity at
each subroutine call.

� Half-word instructions considerably accelerate certain codes.

� The main integer CPU is organised as a seven deep, four wide superscalar pipeline.
This mitigates against the complex evaluation stack manipulations of the SAXPY
example above and rewards straightforward code generation. It also demands that
addresses be generated using proper address generation instructions, evaluated early
in the pipe, rather than arithmetic instructions. Furthermore, it is necessary to devote
effort to maintaining good instruction grouping in the four wide pipe.

5.4 The Chameleon family 83

On the other hand, some microcoded instructions carried over from the T800 have proven
difficult to implement efficiently on the T9000 pipeline. Architectural trade-offs in de-
sign have been influenced by code generated by the old, naive, T800 compilers and have
thus tended to freeze code quality. Overall, for FORTRAN and C the T9000 appears to
be ten times faster than the T800, with about a factor of five enhancement coming from
the architectural improvements. Unfortunately, this performance in 1993/1994 does not
appear as impressive as that of the T800 when it appeared.

Operating system support in the T9000 is limited. Minimal address mapping is pro-
vided in order to support the Unix fork(). Unfortunately, operating systems have
evolved during the gestation of the T9000 and modern operating systems such as Unix
SVR4 and Microsoft Windows NT expect full virtual memory support.

Parallel programming support is also problematic. The T9000 has a hardware Virtual
Channel Processor which implements an elaborate occam channel model. The VCP, in
conjunction with the C104 router, offers effectively unlimited occam channels between
any processors in a network. This is, however, provided at a considerable cost; each
incoming packet from the network consumes memory bandwidth in manipulations of
the Virtual Link Control Blocks and communications start-up times are not improved
over the T800.

The main problem with T9000 communications is, as with OS support, that the needs
of language and embedded systems have evolved during its development. Systems such
as High Performance Fortran do not need occam’s elaborate synchronisation mech-
anisms but they do need lightweight remote read and write facilities. On the embed-
ded front, support for protocols such as ATM would be eased if the T9000 supported a
slightly larger maximum packet size, able to contain an ATM frame and routing infor-
mation.

5.4 The Chameleon family

Comments about the Chameleon are bound to be speculative. It is, however, expected
that this processor will support a global address space like that of the Stockholm Data
Diffusion Machine [3], the Stanford DASH [2] or the Kendall Square Research computers
but implemented scalably using some of Valiant’s [1] ideas. With such architectures, the
complex data placement information provided by HPF is of little direct value; it can,
however, be used to maintain processor load balance via the “owner computes” rule. A
more important requirement is to restructure accesses to write-shared variables, such as
reduction variable sum below:

for(i=0; i<100000; i++)
sum += array[i];

These operations would otherwise produce severe cache thrashing or network loading.
A variety of investigations involving hashing strategy, shared cache line detection and

reduction variable detection are ongoing in the GPMIMD collaboration.

84 5 Targeting Transputer Systems, Past and Future

References

[1] L G Valiant. A bridging model for parallel computation. Communications of the ACM 33,8
p103 (1990).

[2] D Lenoski, J Laudon, T Joe, D Nakahira, L Stevens, A Gupta and J Hennessy. The DASH
prototype: Logic overhead and performance. IEEE Transactions on Parallel and Distributed
Systems 4 p41 (1993).

[3] E Hagersten, A Landin, S Haridi and D Warren. Moving the shared memory closer to the
processors—DDM. Submitted to IEEE Computer.

[4] M Homewood, D May and D Shepherd. The IMS T800 Transputer. IEEE Micro 7,5 (1987).

[5] The T9000 transputer product manual. INMOS Ltd (1993).

[6] M Debbage, M Hill, D Nicole and A Sturgess. The virtual channel router. Transputer Com-
munications 1 p3 (1993).

85

6 Adaptor: A Compilation System for Data
Parallel Fortran Programs

Thomas Brandes
GERMAN NATIONAL CENTER FOR COMPUTER SCIENCE (GMD)

ST. AUGUSTIN, GERMANY

email: brandes@gmd.de

Abstract: Data parallel programming stands for single threaded, global name space, and
loosely synchronous parallel computation. This kind of parallel programming has been proven to
be very user-friendly, easy to debug and easy to use. But this programming model is not available
for most message passing multiprocessor architectures.

Adaptor (Automatic Data Parallelism Translator) is a compilation system that transforms data
parallel programs written in Fortran with array extensions, parallel loops, and layout directives
to parallel programs with explicit message passing. Therefore it does automatic partitioning di-
rected by user specified data distributions . The current version supports especially the translation
of Connection Machine Fortran and High Performance Fortran programs to message passing pro-
grams.

After a short description of the system it will be shown how efficient the compilation is. There-
fore many results about speed-ups and efficiencies of real codes are presented. Furthermore, the
automatically generated message passing programs are compared with hand written message
passing programs. The results will show that data parallel programs will be competitive to hand
written message passing programs if the data parallelism in the program can be recognized and
utilized by the compiler.

6.1 Introduction

MIMD (multiple instruction, multiple data) architectures with distributed memory are
the kind of parallel machines that are scalable and can be used for a wide range of sci-
entific applications. Usually, these architectures are programmed with explicit message
passing between the processes running on the different processors. As the message pass-
ing programming model is very error prone and difficult to use, many efforts have been
made to offer other programming models that are easier to use.

These difficulties are not given when using the data parallel programming model. This
model stands for single threaded, global name space, and loosely synchronous parallel
computation.

Language extensions and modifications for Fortran 90 have been defined by the High
Performance Fortran Forum [15] to take advantage of data parallelism. This language
High Performance Fortran (HPF) allows code tuning for various architectures and should

86 6 Adaptor: A Compilation System for Data Parallel Fortran Programs

guarantee top performance on MIMD and SIMD (single instruction, multiple data) com-
puters with non-uniform memory access costs. Many large scientific applications are
expected to be programmed in this data parallel language.

The Adaptor system (Automatic Data Parallelism Translator) makes it possible to
translate these programs to message passing programs already now. It transforms data
parallel programs written in Fortran 77 with array extensions, parallel loops, and layout
directives to parallel programs with explicit message passing.

Therefore the code with global data references together with a user specified or im-
plicitly defined data distribution is translated into a program with local and non-local ref-
erences, where the latter are satisfied by automatically inserting message-passing state-
ments.

Experiments with many sequential programs and their Fortran 90 counterparts have
shown [6] that automatic methods could not parallelize the sequential version where it is
possible for the version with explicit array operations. In Adaptor only the inherent par-
allelism of the array operations and of parallel loops is used. Local array operations will
be distributed among the available nodes, for non-local array operations efficient com-
munication is generated as these operations have mostly regular communication patterns
(e.g. global reductions, shift and spread operations).

In the following the Adaptor system is described. Results of benchmark and real ap-
plication codes are presented and useful optimization issues will be discussed.

6.2 The Adaptor Compilation System

The Adaptor system transforms Fortran 77 or Fortran 90 programs with explicit data
parallelism into parallel programs for MIMD architectures with explicit message pass-
ing. Together with a run time system these programs can run on most available parallel
architectures. The current version has been designed especially to translate data parallel
Connection Machine Fortran (CMF) [4] programs to message passing programs, but it
supports also features of High Performance Fortran (HPF) [15].

6.2.1 Properties of Adaptor

The central idea of an automatic translation is to distribute the large data structures like
arrays among the available processors. This should be done in such a way that most oper-
ations can be done locally without any need of communication. Where global operations
are necessary the corresponding message passing statements are inserted automatically.

Though the user will need to understand some issues of parallelism and has to know
for efficiency reasons where message passing will be generated, the effectiveness of
Adaptor is based on the fact that the user has not to know any message passing com-
mand and not to manage the control of the data partitioning. He can change types of
variables (e.g. single to double precision) and data distributions without rewriting any
other statement in his program. He has not to write two versions of code (host and node

6.2 The Adaptor Compilation System 87

program) and many global array operations are translated to the most efficient code for
the underlying architecture.

The parallel program can be written in such a way that it can be developed on a
serial machine and is also suitable for vector machines or parallel machines with shared
memory. Many features supported by Adaptor result also in good execution times for
these architectures. By this way, it helps to design programs that run efficiently on nearly
all architectures.

Adaptor takes only advantage of the parallelism in the array operations and of the
parallel loops. It has no features for automatic parallelization.

The generated code of Adaptor should be as efficient as possible and competitive to a
hand-coded Fortran program with message passing. Otherwise the acceptance of such a
tool cannot be expected.

Adaptor supports the development of parallel codes that scale with the number of
processors. No support is given for any kind of programming where the number of pro-
cessors is fixed in any way. It makes heavy use of dynamic arrays and the executable
version of the generated program can run for any number of processors without any
recompilation.

6.2.2 Overview of Adaptor

Figure 6.1 gives an overview of the Adaptor compilation system. The essential parts are
the interactive source-to-source transformation (fadapt) and the run-time system DALIB
(distributed array library). For compiling and linking of the generated programs, the
available Fortran compiler of the parallel machines is utilized.

DALIB

Data Parallel Program

(Fortran 77 + extensions)

host.f node.f Makefile

host* node*

compile, link

fadapt

Figure 6.1 Overview of Adaptor

88 6 Adaptor: A Compilation System for Data Parallel Fortran Programs

6.2.3 The Input Language

The input language of Adaptor can be defined as Fortran 77 with some restrictions, but
with many extensions like dynamic arrays, array operations, parallel loops and layout
directives of CMF, HPF and Fortran 90 [1].

The user can define host arrays, replicated arrays and distributed arrays. For the spec-
ification of data layouts in Adaptor similar directives as in CMF or HPF are used. Also
the parallel FORALL statement supported by Adaptor has the same syntax and semantic
as proposed in these data parallel languages.

Many features of Fortran 90 and HPF cannot be used with Adaptor. The most serious
restrictions are that Adaptor supports no modules, no pointers, no array-valued functions
and no assumed-shaped arrays.

In contrary to many other systems [19, 22, 7, 10] Adaptor supports only block distri-
butions along one dimension. More distributions will be supported in future releases.

In CMF and HPF explicit alignment can be used to reduce communication [17] espe-
cially for a given program. For Adaptor this feature is not supported until now, but of
course there is an implicit alignment of arrays that are declared and distributed in the
same way.

6.2.4 Programming Models for the Generated Programs

The user can select between the following three programming models:

� If the HOST-NODE programming model is selected, Adaptor will generate a host
program and a node program. The node program runs on all available nodes of the
parallel machine, while the host program contains all I/O operations that will be
executed on the front end system.

� In the ONLY-NODE programming model only one program will be generated that
runs on all available nodes. There is no host program. The first node takes care of
all I/O operations.

� A program that runs only on a single node is generated when using the UNIPROC
programming model. The program has no communication and therefore it ought to
be faster than the previous one running on a single node. By choosing this model
programs with array operations that are not available in Fortran 77 can be translated
to sequential Fortran 77 programs.

6.2.5 Interactive Source-to-Source Transformation

The translation of the input file can be done as a batch job, but an interactive translation
is also possible. A graphical environment allows the user to select units of the source
program (program, functions, subroutines) or variables in a unit to get information about
them (see figure 6.2).

6.2 The Adaptor Compilation System 89

Figure 6.2 fadapt: Interactive Source-to-Source Transformation

6.2.6 Realization of the Translation

The following steps are done during the source to source transformation of Adaptor:

1. The source program is parsed and an abstract syntax tree will be generated.

2. Symbol tables are created and used for a semantic analysis.

3. The program (abstract syntax tree) is normalized to reduce the complexity of the
translation.

4. The real translation on the internal abstract syntax tree and symbol tables has four
phases:

(a) In the analysis phase the code is checked to verify that there are no violations
of the current restrictions.

(b) In many cases array assignments need communication. In this case Adaptor
tries to split up the assignment in primitive array assignments with communi-
cation and local array assignments. Sometimes new temporary arrays have to
be created.

(c) In the initial transformation phase local array operations will be translated to
parallel loops, the forall statement will be translated to equivalent do loops.
After this phase only parallel loops without communication will exist.

(d) In the final translation loops will be restricted to the part of the arrays that
is owned by one processor and communication statements or movements are
translated to corresponding subroutine calls of the underlying run time system.

90 6 Adaptor: A Compilation System for Data Parallel Fortran Programs

5. The new internal abstract syntax tree is unparsed back to source text.

Except the graphical interface, the whole source-to-source transformation of Adaptor
is generated with a toolbox for compiler construction [12]. These tools have a great
flexibility and can generate very efficient code. For the intermediate language, abstract
syntax trees will be used where the program module that defines the structure of the
abstract syntax trees and provides general tree manipulating procedures is also generated
by a tool.

For the analysis and transformation components the compiler tool Puma is utilized
[11]. This tool cooperates with the generator for abstract syntax trees and supports the
transformation and attribution of attributed trees. It is based on pattern-matching, unifi-
cation and recursion. The flexibility of this tool allows not only to have a modular design
but also to extend it in a way as one would expect from a knowledge-based system [2].

6.2.7 Distributed Array Library

For the realization of the communication needed for global operations on distributed ar-
rays, many library functions will be used that build the DALIB (distributed array library).
This library contains

� low level communication (send, receive, wait, ...),

� high level communication (broadcast, reduction, barrier, ...),

� data movements based on regular and irregular communication patterns,

� timing functions and tracing facilities,

� and a parallel random number generator.

The DALIB, which can be considered as the runtime system of the whole compilation
system, is implemented in C. Most part of this library is portable between the different
parallel machines. Only the low level message passing commands, the timing functions
and the random number generator have to be adapted to the hardware architecture.

Though the realization of the high level communication routines is based on the low
level routines, these functions should be tuned for the underlying hardware architecture.
As e.g. the CM-5 [5] has an own control network, broadcasts and reductions are more
efficient when using this network than using the data network by message passing.

One version of the DALIB is implemented upon the public domain software PVM
[21]. PVM is a software system that enables a collection of heterogeneous computers
to be used in parallel. It includes libraries of user-callable functions and a daemon pro-
gram which coordinates inter-machine activity. PVM guarantees the portability of the
generated parallel programs to all machines where it is available. Another version of the
DALIB exists for shared memory and virtual shared memory systems where the message
passing is realized via a shared memory segment.

At the moment the DALIB has been implemented and tested for iPSC/860, net of SUN
or IBM workstations, Alliant FX/2800, Parsytec GC, CM-5, KSR 1 and SGI multipro-
cessor machines. Versions for the Intel Paragon and IBM SP1 are in development.

6.3 Results of Benchmark Codes 91

6.2.8 Visualization of the Run Time Behavior

If the generated parallel program is started with the trace flag switched on, a tracefile will
be generated that gives information about the behavior of the parallel program. The infor-
mation of the tracefile can be visualized and animated with the public domain software
ParaGraph [14]. Especially the information about the utilization and communication can
be used for further optimizations.

6.2.9 Availability

The source files of Adaptor, documentation files in PostScript and a number of example
programs are available via ’anonymous ftp’ from:

ftp.gmd.de (129.26.8.90)
in subdirectory gmd/adaptor

The latest version of June 1993 has more functionality, stability and more supported
features than the first version that has been released in September 1992.

6.2.10 Related Work

Many other systems have been developed during the last time that also support SIMD
or data parallel programming for MIMD architectures. A SIMD program is translated
into an equivalent SPMD program (single program, multiple data stream). This has been
done for C* [13] or for Fortran 90 with additional layout directives [19, 23]. Though the
latter systems are very similar to Adaptor there is no information about the efficiency of
the generated message passing programs and about their availability.

Due to the introduction of High Performance Fortran, many compilers will be avail-
able in the next future and compiler optimizations are goals of some other projects [16].

Further developments have been made to support data parallel programming in an
object-oriented language like C++ [3, 18]. This approach has the great advantage that no
additional preprocessor or compiler is necessary. But due to the lack of efficiency there
is not a great acceptance for scientific applications until now.

6.3 Results of Benchmark Codes

For testing the Adaptor system the High Performance Fortran Benchmark Suite has been
utilized [20] where many data parallel programs are given in different versions. The
Purdue set (J.R. Rice set) with 14 simple data parallel problems has been used to test the
efficiency of the generated message passing programs.

92 6 Adaptor: A Compilation System for Data Parallel Fortran Programs

6.3.1 The Purdue Set

In the Purdue Set many different kernels of data parallel algorithms have been put to-
gether. Table 6.1 shows what kind of algorithms on which problem sizes have been
tested.

no short description of the problem problem size
1 Trapezoidal rule 1048576
2 reduction function 1 1024 x 1024
3 reduction function 2 1024 x 1024
4 reduction function 3 524288
5 simple search 128 x 4096
6 tridiagonal set of lin. equations 65536
7 Lagrange interpolation 10 x 32768
8 divided differences 65536 x 8
9 finite differences 512 x 512

11 Fourier’s moments 262144
12 array’s construction 1023 x 511
13 floating point arithmetic 262144
14 Simpson’s and Gauss’ integration 262144
15 Chebyshev interpolation 16384

Table 6.1 Problems of the Purdue Set

Three different versions of the programs have been considered:

� the Fortran 77 version can be translated for one node and is used to measure real
speed ups,

� the CMF version gives results for the Connection Machine and is used for Adaptor
with slightly changes to get automatically generated message passing programs for
different parallel machines,

� the parallel version, Fortran 77 with explicit message passing based on PICL [9], is
used to compare the results of Adaptor with a hand-coded message passing program.
PICL is a subroutine library that implements a generic message-passing interface
for a variety of multiprocessors.

6.3.2 Comparison of Sequential and Parallel Version

Table 6.2 shows the results of the sequential Fortran 77 version running on one node
of the iPSC/860 compared with the generated message passing program of the hostless
programming model. The parallel program is only running on one node.

The results show that the Adaptor version is faster than the sequential Fortran 77
counterpart for the problems 2, 3, 4, 12, 14 and 15. The following reasons are responsible
for this effect:

6.3 Results of Benchmark Codes 93

no sequential version parallel version ratio
1 284.7 s 290.6 s 0.98
2 45.9 s 33.8 s 1.36
3 47.0 s 10.3 s 4.56
4 222.1 s 185.5 s 1.20
5 175.9 s 209.3 s 0.84
6 414.7 s 1008.9 s 0.41
7 131.1 s 143.4 s 0.91
8 104.8 s 186.5 s 0.56
9 46.2 s 46.2 s 1.00

11 289.7 s 289.1 s 1.00
12 182.6 s 21.9 s 8.34
13 588.4 s 555.9 s 1.06
14 35.5 s 25.2 s 1.41
15 133.2 s 92.0 s 1.45

Table 6.2 Comparison of sequential and parallel version on one node

� In problem 2, 3 and 12 Adaptor generates a different loop nesting (innermost loop
is always for the first index that results in stride 1 for the loop iterations). After loop
interchanging and loop distribution the sequential version was as fast as the Adaptor
version.

� In problem 4 only one loop fusion makes the sequential version as fast the generated
parallel one.

� For problems 14 and 15 the Adaptor version has a vector version of the function
that is integrated. By this way there is only one subroutine call instead of a call for
every point.

But usually the Adaptor version is a little bit slower due to the generated communica-
tion and due to additional memory movements. Especially the problems 6 and 8 require
much communication.

6.3.3 Efficiency and Scalability

Table 6.3 shows the speed ups and efficiencies for the generated message passing pro-
grams on the iPSC/860 for 8, 16 and 32 nodes. On other parallel machines similar results
were achieved. Also on a net of workstations there were reasonable speed-ups for large
problem sizes.

These results verify that the scalability of the data parallel programs results also in
scalability of the automatically generated message passing programs.

94 6 Adaptor: A Compilation System for Data Parallel Fortran Programs

no 8 nodes 16 nodes 32 nodes
1 7.96 (99.5 %) 15.79 (98.7 %) 31.25 (97.6 %)
2 7.41 (92.6 %) 14.08 (88.0 %) 28.17 (88.0 %)
3 6.44 (80.5 %) 12.88 (80.5 %) 25.75 (80.5 %)
4 6.08 (76.0 %) 13.16 (82.2 %) 26.13 (81.6 %)
5 7.12 (89.0 %) 14.14 (88.4 %) 27.91 (87.2 %)
6 4.86 (60.7 %) 8.75 (54.7 %) 16.17 (50.5 %)
7 7.97 (99.6 %) 15.76 (98.5 %) 31.17 (97.4 %)
8 7.61 (95.2 %) 13.92 (87.0 %) 25.90 (80.9 %)
9 7.97 (99.6 %) 15.40 (96.3 %) 28.88 (90.2 %)

11 7.94 (99.3 %) 14.90 (93.1 %) 29.20 (91.3 %)
12 6.84 (85.5 %) 10.95 (68.4 %) 16.85 (52.6 %)
13 7.91 (98.9 %) 15.80 (98.7 %) 31.71 (99.0 %)
14 7.20 (90.0 %) 14.00 (87.5 %) 25.20 (78.8 %)
15 7.48 (93.5 %) 14.84 (92.7 %) 28.75 (89.8 %)

Table 6.3 Speed-Up and Efficiency of Adaptor generated parallel programs

6.3.4 Adaptor vs. hand-coded message passing programs

The parallel programs based on PICL stand for portable hand-coded message passing
programs. The most interesting results came up when comparing these programs with
the automatically generated message passing programs of Adaptor.

Both versions are portable parallel programs. Both versions are able to run on different
number of processors. The hand-coded version realizes this by having the whole data
structure replicated on all arrays but every node works only on a subset of the arrays. This
has the disadvantage that for bigger problems the code has to be rewritten completely.
The Adaptor version can also be used for bigger problems with the only restriction that
the program will not run on smaller machine sizes.

� A hand-coded message passing program of problem 6 was not available.

� For problem 2, 3, 4, 14 Adaptor was much more faster,

� for all other problems a little bit faster or nearly the same (problems 5, 8, 11, 12,
13).

As a hand-coded program should always be faster than an automatically generated
message passing program, the results show in any case that Adaptor can generate more
efficient programs than just straightforward hand written message passing programs. In
section 6.4.3 more reliable results on a real application code are given.

6.3.5 Full vs. Loosely Synchronous Execution

The Connection Machine CM-5 [5] of Thinking Machines Corporation offers the data
parallel programming model by using CMF and the message passing model by using
Fortran 77 and the CMMD message passing library.

6.3 Results of Benchmark Codes 95

no PICL: hand-coded Adaptor: automatic
1 25.4 s 18.4 s
2 5.2 s 2.4 s
3 7.1 s 0.8 s
4 24.3 s 14.1 s
7 9.0 s 9.1 s
9 5.3 s 3.0 s

14 11.6 s 1.8 s
15 14.6 s 6.2 s

Table 6.4 Comparison with hand-coded message-passing programs

The 14 CMF applications have been compiled with the CM Fortran compiler (SIMD
model). The runtimes have been compared with the runtimes of the by Adaptor auto-
matically generated message passing programs (MIMD model). The vector units of the
CM-5 nodes have not been utilized.

Table 6.5 shows the results on a CM-5 with 64 nodes. These results are preliminary
as an early version of the CMF Compiler has been used and the programs have been
slightly modified for the translation with Adaptor. But it shows that the execution of data
parallel programs in MIMD mode is more favorable than the execution in SIMD mode,
which requires more synchronization.

no SIMD execution MIMD execution
1 16.8 s 8.8 s
2 6.2 s 1.0 s
3 14.6 s 0.6 s
4 25.8 s 6.3 s
5 43.4 s 19.2 s
6 98.7 s n.a.
7 24.8 s 2.7 s
8 22.8 s 10.1 s
9 8.4 s 1.7 s
11 34.2 s 15.9 s
12 28.1 s 4.8 s
13 56.0 s 21.5 s
14 4.9 s 1.8 s
15 14.1 s 3.5 s

Table 6.5 SIMD and MIMD execution on a CM-5 (64 nodes, no vector units)

If the vector units are used, both versions will be faster. But the advantages of MIMD
are lost as every single node works in SIMD mode.

96 6 Adaptor: A Compilation System for Data Parallel Fortran Programs

6.4 Results of Application Codes

6.4.1 HYDFLO: a CM Fortran Code for Fluid Dynamics

HYDFLO is a three-dimensional compressible hydrodynamics code based on an explicit
two-step Lax-Wendroff finite difference scheme on a regular Eulerian mesh in a regular
domain. Such a scheme operates on a compact stencil and is therefore particularly simple
for parallel computing.

The given code has run efficiently on a CM and could successfully be translated by
Adaptor. In general case it can be assumed that data parallel Fortran programs that run
efficiently on SIMD architectures like CM or MasPar should run efficiently on MIMD
architectures.

6.4.2 ESM: a Fortran 90 Code for Circulation

The Earth System Model (ESM) is part of a three-dimensional atmospheric general cir-
culation model. This code is a finite difference approximation to the equations of hydro-
dynamics following the potential enstrophy conserving methods of Arakawa (UCLA). It
is based on a grid-point based scheme rather than the more standard spectral decompo-
sition schemes and uses a hydrostatic approximation.

Though the Fortran 90 version of ESM can run on MIMD architectures after using
Adaptor, there have been no speed-ups. This is due to the fact that the data decomposition
was not conform to the parallel loops in the code.

This effect can be explained with the following example. The code is very inefficient
as the parallelism is given for the first dimension of the array, but the distribution is along
the second one.

real A(N,N), B(N)
!hpf$ distribute A(*,BLOCK)
!hpf$ distribute B(BLOCK)

....
do J = 1, N

A(1:N,J) = B(J) * A(1:N,J)
end do

Acceptable results for the ESM code could be achieved after introducing better paral-
lel loops.

6.4.3 IFS: a Fortran 77 Code for Weather Prediction

In a cooperation between GMD and ECMWF (European Center for Medium-Range
Weather Forecasts) it is intended to parallelize the ECMWF’s production code for medium-
range weather forecasts, the IFS (Integrated Forecasting System). For a evaluation of
Adaptor a sequential program of the 2D model of the IFS has been investigated. This
version contains already all relevant data structures and algorithmic components of the
corresponding 3D model.

6.5 Summary 97

Results on a CM-5 (without VU) 1 node 4 nodes 16 nodes 32 nodes
hand-written message passing 71.3 s 24.9 s 7.8 s 4.8 s
Adaptor generated version 64.5 s 34.0 s 4.6 s 2.6 s

Table 6.6 Comparison of hand-written and automatically generated MP programs

The same distribution and parallelization strategy has been used as proposed in a
parallelization by hand [8]. Though the data structures of the code must be rearranged
for Adaptor and the runtime is higher, the effort for parallelization was much less. Table
6.6 shows the runtimes on a CM-5 for a problem with 63 wave numbers, the vector units
are not used.

The experiences with the IFS code have shown that Adaptor can also deal with coarse-
grained parallelism from parallel loops and not only with fine-grained parallelism from
array-operations. The potential of fine-grained parallelism was very low in the given
code.

6.5 Summary

Adaptor is a prototype of a compilation system for High Performance Fortran that has
given very useful insights how far it is possible to translate efficient data parallel pro-
grams to efficient message passage programs for MIMD architectures and in which sit-
uations hand-written message passing programs can be faster.

With these insights Adaptor itself can and will be used to implement different opti-
mization strategies for High Performance Fortran compilers. Adaptor will also be used
to define and test language extensions of interest that could be part in one of the next
versions of High Performance Fortran. Especially features that deal with sparse matrices
and parallel I/O are of great interest.

Acknowledgements

I thank the Central Institute for Applied Mathematics at the research center in Jülich
for providing the iPSC/860 and Renate Knecht for her user support.

The following people have influenced this work by valuable discussions: James Cownie
(Meiko, Bristol), Clemens-August Thole (GMD), Rolf Hänisch (GMD), Michael Gerndt
(ZAM, Research Center Jülich), John Merlin (University of Southampton), and Dave
Watson (NA Software, Liverpool). Many improvements of the current release have been
proposed by the Adaptor users.

Many thanks are also due to Falk Zimmermann for his implementation work and for
the discussions about proving correctness of the transformations realized within Adaptor.

98 6 Adaptor: A Compilation System for Data Parallel Fortran Programs

References

[1] T. Brandes. ADAPTOR Language Reference Manual (Version 1.0). Internal Report
ADAPTOR-3, GMD, June 1993.

[2] T. Brandes and M. Sommer. Realization of a Knowledge-Based Parallelization Tool in
a Programming Environment. In International Conference on Supercomputing, Athens,
Greece, June 1987.

[3] C. Chase, A. Cheung, A. Reeves, and M. Smith. Paragon: A Parallel Programming Envi-
ronment for Scientific Applications Using Communications Structures. In Proc. of 1991
International Conference on Parallel Processing, St. Charles, Illinois, August 1991.

[4] Thinking Machines Corporation. Connection Machine Model CM-2. Technical Summary
Version 6.0, TMC, November 1990.

[5] Thinking Machines Corporation. Connection Machine Model CM-5. Technical summary,
TMC, November 1992.

[6] G. Fox. Achievements and prospects for parallel computing. Concurrency: Practice and
Experience, 3(6):725–739, December 1991.

[7] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran
D language specification. Technical Report TR90079, Department of Computer Science,
Rice University, April 1991.

[8] U. Gärtel, W. Joppich, and A. Schüller. Parallelizing the ECMWF’s Weather Forecast
Program: The 2D Case, Technical Documentation and Results for the IFS-2D Model.
Arbeitspapiere der GMD 740, Gesellschaft für Mathematik und Datenverarbeitung mbH,
March 1993.

[9] G.A. Geist, M.T. Heath, B.W. Peyton, and P.H. Worley. PICL: A Portable Instrumented
Communication Library, C Reference Manual. Technical report, Oak Ridge National Lab-
oratory, 1990.

[10] H.M. Gerndt. Automatic Parallelization for Distributed-Memory Multiprocessing Systems.
PhD thesis, University of Bonn, 1989.

[11] J. Grosch. Puma - A Generator for the Transformation of Attributed Trees. Compiler
Generation Report 26, GMD, Forschungsstelle an der Universität Karlsruhe, 1991.

[12] J. Grosch and H. Emmelmann. A Tool Box for Compiler Construction. Lecture Notes of
Computer Science, 477:106–116, October 1990.

[13] P. Hatcher, A. Lapadula, R. Jones, M. Quinn, and R. Anderson. A production quality C*
compiler for hypercube machines. In 3rd ACM SIGPLAN Symposium on Principles Practice
of Parallel Programming, pages 73–82, April 1991.

[14] M. Heath and J. Etheridge. Visualizing the Performance of Parallel Programs. IEEE Soft-
ware, pages 29–39, September 1991.

[15] High Perforamnce Fortran Forum. High Performance Fortran Language Specification. Final
Version 1.0, Department of Computer Science, Rice University, May 1993.

6.5 Summary 99

[16] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler Optimizations for Fortran D on
MIMD Distributed-Memory Machines. Technical report, Department of Computer Science,
Rice University, 1991.

[17] K. Knobe, J. Lukas, and G. Steele. Data Optimization: Allocation of Arrays to Reduce Com-
munication on SIMD Machines. Journal of Parallel and Distributed Computing, 8:102–118,
1991.

[18] M. Lemke and D. Quinlan. P++, a C++ Virtual Shared Grids Based Programming Envi-
ronment for Architecture-Independent Development of Structured Grid Applications. In
Springer Verlag, Lecture Notes in Computer Science, No. 634, CONPAR/VAPP V, Lyon,
France, September 1992.

[19] J. Merlin. ADAPTing Fortran 90 Array Programs for Distributed Memory Architectures.
In Proc. 1st International Conference of the Austrian Center for Parallel Computation,
Salzburg, October 1991.

[20] A. Mohamed, G. Fox, G. Laszewski, M. Parashar, T. Haupt, K. Mills, Y. Lu, N. Lin, and
N. Yeh. Applications Benchmark Set for Fortran-D and High Performance Fortran. Tech-
nical Report 327, Northeast Parallel Architectures Center, 1992.

[21] V. Sunderam. PVM: a Framework for Parallel Distributed Computing. Concurrency: Prac-
tice and Experience, 3(10), December 1990.

[22] Thinking Machines Corporation. CM Fortran Programming Guide, Version 1.0. Manual,
TMC, January 1991.

[23] M. Wu and G. Fox. Compiling Fortran 90 programs for distributed memory MIMD parallel
computers. Technical Report No. SCCS-88, Syracuse Center for Computational Science,
1991.

100

7 SNAP! Prototyping a Sequential and Nu-
merical Application Parallelizer

Rolf Hänisch
GMD–FIRST

BERLIN, GERMANY

email: Rolf.Haenisch@gmd.de

Abstract: In the PACE Project we will construct and implement parts of a software system
for a distributed–memory MIMD architecture. These parts are the higher system levels and com-
prise autoparallelizing compilers for FORTRAN, Lisp and the operating system components for
Virtual Shared Memory. This article describes our approach for automatic parallelizing sequential
FORTRAN programs for distributed–memory MIMD architectures. Annotations are not needed
and data distribution is done automatically at compile time.

7.1 Introduction

One of the most interesting parallel architectures are MIMD systems. In the MANNA
Project (Multiprocessor Architecture for Numerical and Non numerical Applications) a
distributed–memory MIMD system will be built with an operating system that provides
virtually shared memory (VSM).

In many numerical applications there exists a certain amount of potential parallelism.
The obvious thing in programming such parallel systems is to use a language or its
extensions providing a parallel concept.

Unfortunately the user has not only to deal with parallelism in the program but also
with data distribution. In some newer language extensions [1, 8] this can be expressed.

However, the users of parallel architectures want to take advantage of the computa-
tional power provided by them and want to avoid being confronted with the problems of
programming parallel systems [19].

While parallelism is a language issue, data distribution is an optimization problem
and, for this reason, should not be included in a programming language. This means that
data distribution is architecture dependent and will often change during the life time of
the program.

For this reason we will try to automate data distribution in our approach. But unlike
to [9] we do not think that data distribution can be done by a simple preprocessor.

If a sequential program implements a mathematical method that contains a certain
amount of parallelism, this parallelism must be reflected in the concrete implementation,
whether the actual language supports parallelism or not.

7.2 Compiler 101

For vector supercomputers the user has come to write programs in a vectorizable style
long before languages like Fortran 90 where defined. We believe that it will be equally
possible for users to write programs in a parallelizable style.

Therefore we assume that parallelism can easily be detected, and describe a compila-
tion approach for automatically generating data distribution. We will address three levels
of parallelization:

1. procedural level (functional)

2. loop level (data parallel)

3. instruction level (vectorization)

For the second and third level of parallelism, we use a SPMD computational model as
used in shared memory systems except that we deal with locality of data access. Thus,
there are two major issues involved in data distribution: partitioning and separation into
local and distributed data, as we base our approach on VSM. VSM systems are usually
based on caching memory pages. So arrays and scalars have to be mapped onto memory
pages. To avoid page threshing and other conflicts that reduce performance, one has to
be very careful in mapping objects into the memory. This paper focuses on techniques
for finding an efficient data partitioning.

7.2 Compiler

Fortran has several advantages for a parallelizing compiler. Fortran programs are storage
oriented and for that all data accesses can – more or less – be determined. It belongs to
the class of imperative languages having built-in notions of globally updatable variables
which tends to make them superior to functional languages for parallel processing. In
the first phase of our project we will implement only a subset of FORTRAN 77 that is
sufficient for compiling real programs. In this paper we describe the prototype compiler
called SNAP!.

In addition we are working on a compiler system with more functionalities accepting
Fortran 90 and HPF. Functional parallelism will only be exploited in the advanced
compiler system.

The user interface is window–based and uses the X-Windows system. The whole pro-
totype system is implemented using the compiler specification language gentle which
provides a common notation for a high-level description of analysis, transformations,
and synthesis. It is based on the calculus of Horn logic [21, 22]. The GNU-C compiler
is used for a highly optimizing back-end, which also gives us great portability.

Fig. 7.1 shows the passes and function of the prototype compiler system.

7.2.1 Front-End for FORTRAN

The front-end normalizes FORTRAN programs to an intermediate language which looks
like a subset of an Algol–type language. Actually, a subset of C is used with special

102 7 SNAP! Prototyping a Sequential and Numerical Application Parallelizer

Prototype System
Normalizer

simple control flow analysis and transformation
loop start value 0 and step size +1
inline expansion of heavy procedures
dead code elimination
ordering of expressions
integer expression evaluation

Dependence Analysis
scalar dependence
transformation of induction variables
scalar expansion
simple array dependence with equal index expressions
generation of data parallel sections

Alignment Analysis
determinate all access relations between arrays
produce local optimal partitioning

Parallelization
usage of an evolution strategy
usage of a cost model
produce global optimal partitioning

Code generation
data distribution at compile or run time
GNU–C Compiler

Figure 7.1 The prototype system of the SNAP! compiler

comments to guide parallelization. First of all, loops and array bounds are normalized.
In addition, while and repeat-until loops, written in a Fortran manner, are trans-
formed into explicit higher control loops. Then, expression ordering is done and integer
expressions are evaluated as far as possible. Subsequently, dead code elimination is per-
formed. To avoid inter–procedural dependence analysis, procedures can be expanded
in–line. In the current version this will be user–guided, but it may also be done automat-
ically. It shall be noted that we analyze the whole program.

For instance, see the Fortran–program in Fig. 7.2. It is translated into a C–program, as
shown in Fig. 7.3.

7.2.2 Dependence Analysis

We plan to perform a very sophisticated dependence analysis in the extended compiler
system, yet in the prototype system only a simple scalar analysis is done for detecting

7.2 Compiler 103

parallel loops. This is broadened to arrays by allowing only identical index expression in
the dimension where the loop variable occurs ([3]). The SNAP! compiler uses compu-
tations of symbolic expressions. For propagating usages and definitions we use a tech-
nique similar to regular sections ([7]). Several patterns of index expressions are forward
or backward references and can also easily be detected.

The result is a program where parallelizable loops are marked and loops that could not
be parallelized are annotated with the reason why. Forward dependences can be solved
by copies, recurrences are replaced by appropriate reduction operations, and the remain-
ing backward dependences stay as they are. The lowest–order loops in this intermediate
form are like the six primitives mentioned in [24] and are called data parallel sections
(DPS). These are element wise array operations, shifts along array axes, reduce opera-
tions, extraction of array sections, insertion of array sections, and distribute operations
(replications along new array axes).

Restructuring like loop distribution, loop fusion, and loop interchange will be consid-
ered in the extended version.

7.2.3 Alignment analysis

Alignment analysis is done in a straightforward manner [14, 24]. We assume that all
data that is used in a DPS is global (possibly replicated) and all data defined in a DPS is
local. This is also known as owner–computes rule. All DPS will be attributed with this
alignment information. With this knowledge we start in the deepest loop nest level and
group different DPS in a loop nest level together if they do not conflict.

Each group of DBS implies a partitioning and so possible distributions. This informa-
tion is also an attribute of the DPS groups. We call this local optimization.

With partitioning we mean block, cyclic, or no partitioning of any array dimension. If
a dimension is partitioned, this might be done in any granularity and is determined by
the parallelization part.

7.2.4 Parallelizer

If we can build different groups of DPS, we will choose the best of them using a cost
model. The same holds if groups of DPS must be connected. In addition we weight the
groups using an approximation of the computation length. For this we need a machine
model which is an approximation of the real architecture and not analytically based. We
approximate computation length and the amount of communication. Communication
latency may be hidden by computations, and communication cost may depend on the
data volume rather than on the distances.

With this pre–partitioning, we use a genetic algorithm (GA) to optimize the partition-
ing [4, 15]. This means that we need a population of individuals also called chromo-
somes. Successive populations are called generations. The process of creating genera-
tions is repeated until a solution is found. This process can be parallelized and is called
the parallel genetic algorithms (PGA) [18, 16, 17, 2].

104 7 SNAP! Prototyping a Sequential and Numerical Application Parallelizer

A new generation is created in three steps. First the generation is reproduced using a
fitness value of the individuals. If this value is high, this individual has a good chance
to be in the next generation. In the second step, the individuals are recombined to create
the offspring. This operation — also called crossover — is done over the syntactical
structure of the chromosomes and does not use any information about the “meaning”
of the chromosome. The last step is called mutation. In this step the individuals can be
altered randomly. But this is done with a very low probability. Note: GAs are randomized
— but not random — search algorithms.

For each DO loop, a bit represents whether this loop shall be distributed or not. If a DO
loop is a DPS, this loop can be parallelized and the alignment information is used to gen-
erate data distributions. Otherwise the loop can only be distributed, and synchronization
has to take place.

Alignment information are also stored in a chromosome. But they are not represented
by a bit vector but by a list of all relevant relations between array definitions. This list
is recombined by permutation instead of partial exchange. To evaluate the array distri-
bution, one relation after another is taken from this list. If the next relation is in conflict
with any of the chosen relations, it will not be used.

With the given loop distribution and the alignment information, a local optimization
will be done to generate the “best” program. This is called local hill climbing. Then, the
machine model and the optimized program is used to determinate the fitness value of
this individual.

7.2.5 Code generation

The actual distribution is done at run time if array sizes and loop bounds are not known
at compile time; otherwise, it can be done at compile time.

The GNU C Compiler[23] is used as back-end. It generates code for the i860 super-
scalar microprocessor. Future steps will make use of pipelining, dual instruction and dual
operation mode.

*** GLOBAL ***
PARAMETER (ISLANDS=10,SUBSIZE=10,CHROMSIZE=20,

+ MAXVAL=8)
COMMON /GLOB/

+ POPULATION (CHROMSIZE, SUBSIZE, ISLANDS),
+ FITVAL (SUBSIZE,ISLANDS)
INTEGER POPULATION
REAL FITVAL

*** PROGRAM ***

00 REAL DELTA, EPSILON
01 INTEGER ITER
02 EXTERNAL NEXTGEN
03 READ *, EPSILON, ITER, SIZE

7.2 Compiler 105

04 DELTA = 2*EPSILON
05 1 IF (DELTA .GT. EPSILON) THEN
06 DO 3 I=1,ISLANDS
07 DO 2, J=1,ITER
08 CALL NEXTGEN(I)
09 2 CONTINUE
10 3 CONTINUE
11 DELTA = ...
12 GOTO 1
13 ENDIF

END

SUBROUTINE NEXTGEN (ILAND)
INCLUDE GLOBAL

20 INTEGER ILAND
21 CALL REPRO (ILAND)
22 DO 1,I=1,SUBSIZE,2
23 CALL CROSSOVER (I, I+1, ILAND)
24 1 CONTINUE
25 CALL MUTATION (ILAND)
26 CALL NEWFIT (ILAND)

END

SUBROUTINE REPRO (ILAND)
INCLUDE GLOBAL

30 INTEGER TEMP (CHROMSIZE, SUBSIZE), CHOICE, ILAND
31 EXTERNAL SELECT
32 DO 2, I=1,SUBSIZE
33 CALL SELECT (ILAND, CHOICE)
34 DO 1, J=1,CHROMSIZE
35 TEMP (J, I) = POPULATION (J, CHOICE, ILAND)
36 1 CONTINUE
37 2 CONTINUE
38 DO 4, I=1,SUBSIZE
39 DO 3, J=1,CHROMSIZE
40 POPULATION (J, I, ILAND) = TEMP (J, I)
41 3 CONTINUE
42 4 CONTINUE

END

SUBROUTINE CROSSOVER (A, B, ILAND)
INCLUDE GLOBAL

50 INTEGER CUT, A, B, ILAND
51 REAL RAND
52 EXTERNAL RAND
53 CUT = RAND ()*CHROMSIZE
54 TEMP = 0
55 DO 1, I=1,CUT

106 7 SNAP! Prototyping a Sequential and Numerical Application Parallelizer

56 TEMP = POPULATION(I, A, ILAND)
57 POPULATION(I,A,ILAND) = POPULATION(I,B,ILAND)
58 POPULATION(I, B, ILAND) = TEMP
59 1 CONTINUE

END

SUBROUTINE MUTATION (ILAND)
INCLUDE GLOBAL

60 INTEGER I, J, ILAND
61 REAL RAND
62 EXTERNAL RAND
63 DO 2, I=1,SUBSIZE
64 DO 1, J=1,CHROMSIZE
65 IF (RAND() .LT. PMUT) THEN
66 POPULATION (J,I, ILAND) = RAND()*MAXVAL
67 ENDIF
68 1 CONTINUE
69 2 CONTINUE

END

SUBROUTINE SELECT (ILAND, INDX)
INCLUDE GLOBAL

70 REAL SUM, CHOICE, RAND
71 INTEGER I, INDX, ILAND
72 EXTERNAL RAND
73 SUM = 0.0
74 DO 1, I=1,SUBSIZE
75 SUM = SUM + FITVAL (I, ILAND)
76 1 CONTINUE
77 CHOICE = RAND() * SUM
78 SUM = 0.0
79 INDX = 0
80 2 INDX = INDX + 1
81 SUM = SUM + FITVAL (INDX, ILAND)
82 IF (SUM .LT. CHOICE) GOTO 2

END

SUBROUTINE NEWFIT (ILAND)
INCLUDE GLOBAL

90 INTEGER I, ILAND
91 REAL FITNESS
92 EXTERNAL FITNESS
93 DO 1, I=1,SUBSIZE
94 FITVAL (I, ILAND) = FITNESS ()
95 1 CONTINUE

END

Figure 7.2: Example Fortran program: Genetic Algorithm

7.2 Compiler 107

The next figure shows the analysed genetic algorithm of the previous figure. DPS
are marked with a “parallel” comment (/*//*/). All other loops are not parallel. The
sets with the label CONFLICT contains all usages of objects that cause the loop car-
ried dependence. This analyzed program is the base for the PGA which is now under
investigation.

*** C-PROGRAM ***

float glob_fitval [10][10];
float glob_population [10][10][20];

int j, i, iter;
float size, epsilon, delta;

/*#03 */ read ("%e%d%e\n", &epsilon , &iter , &size);
/*#04 */ delta =2*epsilon;
/*#05 */ while (delta >epsilon)

/* CONFLICT = glob_fitval [:][:],
glob_population [:][:][:]*/ {

/*#06 */ for /*//*/ (i = 0; i < 10; i++) {
/* CONFLICT = glob_fitval [i][:],

glob_population [i][:][:]*/ {
/*#07 */ for (j = 0; j < iter ; j++)
/*=nextgen * * CONFLICT = glob_fitval [i][:],

glob_population [i][:][:]*/
{ int i_1;

/*=repro */ /* CONFLICT = glob_population [i][:][:]*/
{ int j, i_2, choice, temp [10][20];

/*#32 */ for /*//*/ (i_2 = 0; i_2 < 10; i_2++) {
/*=select */ { int i_3 ; float choice_4, sum ;
/*#73 */ sum = 0.;

/* CONFLICT = sum */ {
/*#74 */ for (i_3 = 0; i_3 < 10; i_3++)

/* CONFLICT = sum */ {
/*#75 */ sum = sum + glob_fitval [i][i_3];

}
}

/*#77 */ choice_4 = rand () * sum;
/*#78 */ sum = 0.;
/*#79 */ choice =0;
/*#80 */ do {

/* CONFLICT = sum ,choice */ {
/*#80 */ choice = choice + 1;
/*#81 */ sum = sum + glob_fitval [i][choice-1];

}
/*#82 */ } while (sum < choice_4);

}
/*=repro */
/*#34 */ for /*//*/ (j = 0; j < 20; j++)

108 7 SNAP! Prototyping a Sequential and Numerical Application Parallelizer

/*#35 */ temp [i_2][j] =
glob_population [i][choice-1][j];

}
/*#38 */ for /*//*/ (i_2 = 0; i_2 < 10; i_2++)
/*#39 */ for /*//*/ (j = 0; j < 20; j++)
/*#40 */ glob_population [i][i_2][j] =

temp [i_2][j];
/*=nextgen */}

/* CONFLICT = glob_population [i][*][*],
glob_population [i][*][*]*/

{ int i_5 ;
/*#22 */ i_5 =5;
/*#22 */ for (i_1 = 0; i_1 < i_5 ; i_1++)

/* CONFLICT =
glob_population [i][i_1*2+1][*],
glob_population [i][i_1*2][*]*/

/*=crossover */{ int i_6, cut; float temp;
/*#53 */ cut = rand ()*20;
/*#54 */ temp =0;
/*#55 */ for /*//*/ (i_6 = 0; i_6 < cut ; i_6++) {
/*#56 */ temp = glob_population [i][i_1*2][i_6];
/*#57 */ glob_population [i][i_1*2][i_6]=

glob_population [i][i_1*2+1][i_6];
/*#58 */ glob_population [i][i_1*2+1][i_6] = temp;

}
/*=nextgen */ }

}
/*=mutation*/{ float pmut; int j, i_7;
/*#63 */ for /*//*/ (i_7 = 0; i_7 < 10; i_7++)
/*#64 */ for /*//*/ (j = 0; j < 20; j++)
/*#65 */ if (rand ()<pmut)
/*#66 */ glob_population [i][i_7][j] = rand ()*8;
/*=nextgen */}
/*=newfit */ { int i_8 ;
/*#93 */ for /*//*/ (i_8 = 0; i_8 < 10; i_8++)
/*#94 */ glob_fitval [i][i_8]=fitness ();
/*=nextgen*/ }

}
}

}
/*#11 */ delta = ...

}

}

Figure 7.3: The transformed program of Fig. 7.2

7.3 Conclusions 109

7.3 Conclusions

In this paper we introduced our concepts for automatic parallelizing and distributing
sequential FORTRAN programs over the processors of a MIMD machine. We applied a
variety of known concepts and described our concept for automatic data distribution.

Since this approach is now under investigation, we cannot generally state whether this
approach has advantages over others or if it is manageable in a convenient way and leads
to the expected results.

Automatic parallelization reaches its limits if some values cannot be determined at
compile time. For such situations, annotations provided by the user give information
about ranges of index variables and so on. With the combination of extensive automatic
parallelization and user–specified constraints, the potential parallelism of a given pro-
gram can, for the most part, be detected.

References

[1] Barbara M. Chapman, Piyush Mehrotra, and Hans Zima, “Programming in Vienna Fortran”,
Scientific Programming, vol. 1, Oct. 1992.

[2] M. Georges-Schleuter, “Genetic algorithms and population structures — a massively paral-
lel algorithm”, Technical report, University of Dortmund, 1990.

[3] Gina Goff, Ken Kennedy, and Chau-Wen Tseng, “Practical dependence testing”, in ACM
SIGPLAN ’91 Conference on Programming Language Design and Implementation, Rice
University, Houston, Texas, June 1991.

[4] David E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning,
Addison–Wesley, 1989.

[5] Manish Gupta and Prithviraj Banerjee, “Automatic data partitioning on distributed memory
multiprocessors”, Technical Report UILU-ENG-90-2248, University of Illinos, Oct. 1990.

[6] Manish Gupta and Prithviraj Banerjee, “Demonstration of automatic data partitioning tech-
niques for parallelizing compilers on multicomputers”, IEEE Transactions on Parallel and
Distributed Sytems, vol. 3, Mar. 1992.

[7] Paul Havlak and Ken Kennedy, “An implementation on interprocedural bounded regular
section analysis”, IEEE Transactions on Parallel and Distributed Sytems, vol. 2, July 1991.

[8] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng, “Compiler support for machine–
independent parallel programming in Fortran D”, Technical Report COMP TR91–149,
Department of Computer Science, Rice University, Jan. 1991.

[9] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng, “Compiler optimization for For-
tran D on MIMD distributed–memory machines”, Technical report, Department of Com-
puter Science, Rice University.

110 7 SNAP! Prototyping a Sequential and Numerical Application Parallelizer

[10] Kathleen Knobe, Joan D. Lukas, and Guy L. Steele, “Data optimization: Allocation of
arrays to reduce communication on SIMD machines”, Journal of Parallel and Distributed
Computing, 1990.

[11] Kathleen Knobe, Joan D. Lukas, and Guy L. Steele, “Massively parallel data optimiza-
tion”, in The �nd Symposium on the Frontiers of Massively Parallel Computation, Fairfax,
Virginia, Oct. 1988.

[12] Kathleen Knobe and Venkataraman Natarajan, “Data optimization: Minimizing residual
interprocessor data motion on SIMD machines”, in The �rd Symposium on the Frontiers of
Massively Parallel Computation, College Park, Maryland, Oct. 1990.

[13] Kathleen Knobe and Venkataraman Natarajan, “Data allocation to minimize data motion
on SIMD machines”, in The �rd Symposium of the Frontiers of Massively Parallel Compu-
tation, College Park, Maryland, Oct. 1990.

[14] Jingke Li and Marina Chen, “Index domain alignment: Minimizing cost of cross-
referencing between distributed arrays”, Technical Report YALEU/DCS/TR-725, Depart-
ment of Computer Science, Yale University, Nov. 1989.

[15] Nashat Mansour and Geoffrey C. Fox, “Parallel physical optimization algorithms for allo-
cating data to multicomputer nodes”, Technical report, School of Computer and Information
Science, and Syracuse Center for Computational Science, Syracuse University, 1992.

[16] Mühlenbein, “Evolution in time and space – the parallel genetic algorithm”, in G. Rawlins,
editor, Foundations of Genetic Algorithms. Morgan–Kaufman, 1991.

[17] Mühlenbein, “Parallel genetic algorithms in combinatorial optimization”, in Osman Balci,
editor, Computer Science and Operation Research. Pergamon Press, 1992.

[18] Heinz Mühlenbein, M. Schomisch, and J. Born, “The parallel genetic algorithm as function
optimizer”, Parallel Computing, vol. 17, 1991.

[19] Cherri M. Pancake and Donna Bergmark, “Do parallel languages respond to the needs of
scientific programmers?”, IEEE Computer, vol. 23, Dec. 1990.

[20] SNAP, The Power, Logic Records, 1990.

[21] Friedrich-Wilhelm Schröer, “Gentle”, Technical Report 166, GMD, Birlinghoven, Ger-
many, Aug. 1989, in: W.M.Waite, J. Grosch, F.–W. Schröer, Three Compiler Specifications.

[22] Friedrich-Wilhelm Schröer, “Gentle language specification”, Technical Report to appear,
GMD, Birlinghoven, Germany, 1993.

[23] R.M.Stallmann, “Using and porting GNU CC”, Technical report, Free Software Foundation,
June 1989.

[24] Skef Wholey, “Automatic data mapping for distributed-memory parallel computers”, Tech-
nical Report CMU-91-121, Carnegie Mellon University, 1991.

111

8 Knowledge–Based Automatic Paralleliza-
tion by Pattern Recognition

Christoph W. Keßler
GRADUIERTENKOLLEG INFORMATIK

SAARBRÜCKEN UNIVERSITY, GERMANY

email: kessler@cs.uni-sb.de

Abstract: We present the top–down design of a new system which performs automatic paral-
lelization of numerical Fortran77, Fortran90 or C source programs for execution on distributed–
memory message–passing multiprocessors such as e.g. the INTEL iPSC/860 or the TMC CM–5.

The key idea is a high–level pattern matching approach which in some useful way permits
partial reverse–engineering of a wide class of numerical programs. With only a few hundred
patterns, we will be able to completely match many important numerical algorithms. This is also
applicable to so-called dusty deck sources that may be ’encrypted’ by various former machine-
specific optimizations.

We show how successful pattern matching enables safe algorithm replacement and allows
more exact prediction of the performance of the parallelized target code than usually possible.
Together with mathematical background knowledge and parallel compiler engineering, this opens
access to a new potential for automatic parallelization that has never been exploited before.

8.1 Introduction and Overview

Current distributed memory multiprocessers are hard to program. Predicting the perfor-
mance of a nontrivial parallel program is not easy either. Thus it is a natural consequence
to leave as much as possible of this – often tedious – work to an optimizing paralleliz-
ing compiler. The programmer just wants to feed in the sequential program and get out
optimized parallel code.

Today, truly automatic parallelization is yet a dream (and some people believe it will
remain so forever). Currently, research on automatic methods appears rather at the bor-
der of compilers for parallel programming languages for distributed memory systems,
e.g. [7] for Fortran D ([20]) or [10, 11] for Vienna Fortran 90 ([9]).

The state of the art in both parallelizing compilers and compilers for parallel pro-
gramming languages for distributed memory multiprocessors is semiautomatic paral-
lelization: The programmer supplies the compiler with array distribution specifications
(e.g. interactively, as in SUPERB ([15]) or in the form of compiler directives, as in For-
tran D), and, generally, transforms the program himself in order to efficiently make use
of machine–specific properties (e.g., buffer sizes, message protocols, processor distances
and so on). The job of the compiler is to insert masks and communication statements
according to the distribution specifications. Automatic optimization of masks and com-
munication is possible in a limited way (see [15]).

112 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

The semi-automatic approach enables the programmer to write his code in the single–
program–multiple–data programming paradigm which is well suited for scientific (nu-
meric) applications. However, the efficiency of the generated parallel code is heavily
dependent on the chosen data distribution.

This user interaction seems inevitable since the problem of determining optimal array
distributions is a hard one, and only the user seems to possess sufficient knowledge about
his program in order to decide which distributions to choose and how to transform his
code to maintain parallel program efficiency.

However, for large application programs with lots of arrays and complex distribution
relations between them, this becomes impracticable because the user cannot solve this
optimization problem either. Moreover, detailed knowledge of the target machine must
be available at this step, and different parts of the application program may require differ-
ent data partitioning schemes to perform efficiently. Where may redistribution be useful,
and where not? Furthermore, the quality of a given data distribution is also dependent on
the underlying hardware. There is no automatic guidance in choosing suitable code trans-
formations for better utilization of hardware properties. Changing the hardware platform
means also repeating the whole parallelization procedure. Should an average user —
who is, in general, not an expert in parallel computing — really care about all this stuff?

Recently some research has been done on automatic derivation of data distribution
([24, 17, 29, 37, 21]), but we are missing a really automatic approach which leaves no
partial work to the programmer any more and requires no user interaction.

Some recent research has recommended to apply pattern recognition techniques on a
quite low level to facilitate parallelization and optimizations ([17, 33, 10, 11]). We claim
that pattern matching can be usefully applied to entire programs as the core of an auto-
matic parallelization system. Only high–level pattern recognition will enable knowledge-
based program transformations by decrypting the meaning of the program which is often
hidden past recognition within the source code by former target–specific transformations
and programming styles.

Earlier approaches have suggested to apply program concept recognition to guide vec-
torization ([5, 4]) and parallelization ([6, 36, 11]) but have not been developed further.
The PAT system performs concept recognition for non-numerical codes (see [18, 27]).
However, pattern recognition techniques have never been applied on a large scale in a
‘fully automatic’ parallelization system.

How can pattern recognition techniques be motivated? In order to answer this ques-
tion, we have examined lots of numerical application algorithms that are typically run on
distributed memory multiprocessors, e.g. the algorithms considered in [32] or the algo-
rithms occurring in a parallel numerics course [30]. These algorithms contain basic linear
algebra subroutines (see also [28, 12]), direct solvers for linear equation systems (such
as Gaussian Elimination, LU, QR or Cholesky decomposition), Simplex, iterative lin-
ear equation solvers (such as Jacobi, Gauß–Seidel, JOR, SOR and Conjugate–Gradient
solver), fixpoint iterations (e.g. square–rooting a matrix), grid relaxations (used e.g. for
numerical solution of differential equations), interpolation problems, numerical integra-
tion and differentiation, and multigrid algorithms�.

�We have focussed in this work on algorithms operating on rectangular dense real matrices. Our ap-
proach may easily be extended to other matrix types (e.g., banded, blocked, triangular; complex).

8.2 Preprocessing the Source Code 113

We observed that these numerical algorithms are made up of only a few (around 100)
characteristic programming schemes (called patterns) such as e.g. vector and matrix
operations, simple recurrences, relaxation operations or simple reduction operations. We
describe these patterns in more detail in section 8.3.

We claim that these few patterns cover a broad range of numerical application codes
that are actually run on distributed–memory multiprocessors. We exemplify this in sec-
tion 8.3 by examining the source codes of actual application programs.

Faced with these real–world codes, the pattern matcher must be robust against seman-
tics preserving code transformations, in order to maintain acceptability. In general, there
are several different possibilities (called templates) to implement a specific pattern. Thus
a pattern is, in some way, a normal form of all its templates. The job of pattern matching
is to compare a given piece of the source program with the templates, to choose the cor-
responding pattern and to replace this program piece by an instance of that pattern. We
will describe our pattern matching algorithm in detail in section 8.4.

Once this pattern recognition tool performs well, the rest is quite simple: locally find
out what the programmer’s intention was, and then select well–suited and highly opti-
mized target code for this piece of the application. If necessary, these code pieces must
be connected by appropriate redistribution operations.

The remaining sections describe the other components of our parallelization system
called PARAMAT (“PARallelize Automatically by pattern MATching”) that use the pat-
tern matcher’s output in order to generate efficient parallel code.

8.2 Preprocessing the Source Code

It is very important that the program is rather explicit when it is submitted to automatic
parallelization by pattern matching. Beyond a sophisticated dependence analysis, a pass
of preparing code transformations� should be carried out in order to facilitate pattern
recognition. Often, semantics preserving code modifications had been applied to Fortran
codes to optimize sequential or pipelined execution. However, this made the code less
readable, and for pattern recognition, they impose unnecessary barriers which must be
removed� by the following transformations:

1. procedure inlining�

2. constant propagation

Example: Consider the following situation:

�For a detailed description of optimizing transformations, see e.g. [39].
�We remind that such optimizations may be re-inserted later on at code generation time – well-tailored

to the parallel target machine.
�This is only for a prototype version of PARAMAT in order to make the implementation easier. Inter-

procedural analysis is currently evolving, and we will include interprocedural analysis tools into the final
system as soon as they become adequately reliable. Our case studies have shown that for purely numerical
programs, procedure inlining will blow up program size by only a small constant factor. Since this only
appears at compile time, it can be tolerated.

114 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

N = 1024
.....
NP1 = N + 1
.....

Such constructs are widely used to enforce the compiler to use registers or to avoid
recomputation of often–needed common constant subexpressions. Here, N + 1
should be replaced by its actual value 1025. This propagates information about the
constant values into the ’interior’ of the program where it is needed at the pattern
recognition phase.

3. induction variable recognition (substitution, if possible)

Induction variables are integer variables used to abbreviate array indexing expres-
sions. They often are introduced into program codes to optimize address calculation
time and to enforce the compiler to use address registers for these expressions.

Example: Consider the following code fragment:

DO 20 J=2,NC
JF=J+J
DO 10 I=2,NC
IF1=I+I
FC(I,J)=2*(FF(IF1,JF)-4.0*UF(IF1,JF)+UF(IF1,JF-1)

* + UF(IF1-1,JF)+UF(IF1+1,JF)+UF(IF1,JF+1))
10 CONTINUE
20 CONTINUE

The introduction of the induction variables JF and IF1 saves many integer multi-
plications by 2 but hides important information from the pattern recognition phase.
For this reason, the induction variables must be substituted away by propagating
their values 2*J and 2*I, respectively.

4. temporary variable recognition (substitution if possible)

Temporary variables have often be inserted into a program only to denote common
subexpressions, to enforce use of a data register for that variable or just to make the
code more readable. In such a case, the variable may be substituted away.

Example: Consider the following matrix multiplication code:

do i=1,64
do j=1,64
temp(i,j) = 0.0
do k=1,64
temp = temp + a(i,k) * b(k,j)
enddo
c(i,j) = temp
enddo
enddo

8.2 Preprocessing the Source Code 115

The variabletemp can be recognized as temporary and substituted away by c(i,j)
since the value of temp is not used further.

5. dead code elimination

Example: In the example above, the assignment to c(i,j) changes into c(i,j)
= c(i,j) which is redundant and can be removed.

6. conversion of GOTO’s into if–then–else or while statements, where possible.

This feature concerning especially old (Fortran77) codes is important since GOTO’s
cannot be handled by the current version of the pattern recognition tool.

7. IF-outermosting

An IF statement checking a condition not depending on the index of the surrounding
loop (after induction variable detection!) should be moved before this loop.

8. array simplification

Each array A containing a dimension d with an extent eAd smaller than 16 will be
splitted into eAd different arrays A�� � � � � Ad of dimensionality d� � each.�

9. loop distribution

If not prevented by data dependency cycles, this transformation supplies the pattern
recognition phase with handy, small, mostly perfectly nested loops.

Example:

do i=1,128 do i=1,128
do j=1,256 do j=1,256
c(i,j)=b(j)*c(i,j) ----> c(i,j)=b(j)*c(i,j)
enddo enddo
a(i)=c(i,1) enddo
enddo do i=1,128

a(i)=c(i,1)
enddo

Furthermore we disallow constructs causing run–time dependencies which cannot be
recognized by the prototype version of PARAMAT. This especially concerns index vec-
tors, so programs containing indirect array references will be rejected just at the begin-
ning. For these cases, dynamic techniques must be applied (see e.g. [34]). In this work
we restrict ourselves to static parallelization.

�Loops stepping through dimension d of A must then be completely unrolled (i.e., replicated EA

d
� �

times) and the Aj must be inserted instead of the A�j�. If there arise compile–time–unknown factors in
A’s indexing, or if loops step through this dimension in an irregular manner, this transformation will not
be possible.

116 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

8.3 Which Patterns are Supported?

Now, let us describe which patterns should be included into the pattern library of PARA-
MAT. On the one hand, we want to cover a very high percentage of numerical programs,
on the other hand we must not use too many patterns, leading to inacceptable compile
times.

The basic algorithms considered in [32] and [30] suggest that a rather small number
of patterns will suffice to cover large parts — especially the time–critical ones — of real
application programs. In order to exemplify this assumption, we took a closer look to
some real–world codes (after being normalized by the transformations described in the
last section):

� the Livermore Loops (cf. [31]),

� some kernels from the NAS Benchmark program (cf. [1]),

� a LU decomposition code from the netlib,

� a least–square Conjugate Gradient solver
 from [30],

� two multigrid programs,

� selected codes from the Perfect Club Benchmarks (especially from the programs
FLO52, SPEC77 and DYFESM, see also [3]).

� and others.

Faced with these codes, we created appropriate patterns, subpatterns and templates
while carefully making the patterns robust against many possible semantics–preserving
code modifications. The result of this research, the current version of the Basic PARA-
MAT Library, unfortunately cannot presented here for lack of space, but it is listed in
[23]. A brief summary of the patterns is given in Tab. 8.1. Some ideas for the efficient
distributed–memory parallel implementation of all the patterns occurring in these algo-
rithms are summarized in [32].

As one can see from Tab. 8.1, the number of low–level patterns (expression and state-
ment level) is rather limited; so is the number of medium–level patterns (loop level,
e.g. vector instructions). The number of medium–level patterns can additionally be re-
stricted by maintaining loop normal forms generated by loop distribution; we will dis-
cuss this following the example of section 8.4.4. The most critical point is how many
high–level patterns (and which) to include in the library; they are often too specific to in-
clude them into the Basic Library. This question will later be alleviated by introducing a
modular concept where the pattern library may be individually composed from the basic
and other more specific sub–libraries in a hierarchically organized database.

With the current version of the Basic Pattern Library — containing only 120 patterns
— we are able to cover completely (and thus, to parallelize automatically) a lot of the

�E.g. the main patterns generally contained in CG–algorithms are CGINIT(1), MV(2) or VM(2) (vector–
matrix multiply), VADD(1), VADDMUL(1) (vector instructions), SSP(1)(standard scalar product) and
SV(1) (scalar–vector multiply).

8.4 Pattern Recognition: A Detailed View 117

order patterns number

0 scalar arithm. operations, init, max, min, swap, assign, read write 20
MULTIADD/-MUL, difference stars and substars (first and second order) 5

1 vector instructions, v-init/-assign/-copy/-swap, v-read/write, SV 16
reductions: v-sum, scalarproducts, vector norms 8
reductions: vector maximization/minimizations 6
1D relaxation steps (Jacobi, Gauss–Seidel) 2
first order linear recurrences 2
intermediate forms of 1D convolution 2

2 matrix operations, m-init/-assign/-copy, m-read/-write, SM 12
vector/matrix multiplication patterns 4
2D-reductions: m-sum, concurrent v-sum, matrix norms 5
2D-reductions: m-max/min, row/col-max/min 8
2D relaxation steps (Jacobi, Gauss–Seidel, ...) 4
global matrix updates (GJstep, GRstep,..., Mreduce) 6
1D convolution; intermediate forms of 2D convolution 4

3 matrix multiplication 2
matrix inversion, Gaussian elimination 2
intermediate forms of 2D convolution 2

4 2D convolution 1

Table 8.1 A brief summary of the patterns included into the current version of the Basic
PARAMAT Pattern Library. No pattern has more than four different templates, most patterns
have only one or two. All BLAS routines operating on dense real matrices have been entered.

basic numerical codes from [32] and [30], e.g. Gaussian Elimination (with pivoting),
LU decomposition, Simplex, Jacobi relaxation, Gauß–Seidel relaxation, JOR, SOR and
CG, iteratively square–rooting a matrix, and others. The results for the Livermore Loops
are given in Tab. 8.2. We obtained similar results for the other application codes listed
above.

8.4 Pattern Recognition: A Detailed View

Pattern Matching is done in a rather intuitive way. It is supported by a suitable hierarchi-
cal representation of the input program and the complexity is diminished by a suitable
hierarchical ordering of all patterns. For each template of each pattern there exists a
small procedure which tests whether a given piece of program matches this pattern (i.e.,
an occurrence of this pattern), and if yes, it returns an instance of this pattern where the
formal pattern parameters (slots) are bound to the corresponding actual parameters (slot
entries) occurring in the program piece. �

�A formal definition of patterns, templates, occurrences, and instances is given in [23].

118 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

LL name recognized patterns lp lr

1 Hydrofragment GVOP(1) 1 1

3 Inner Product SSP(1) 1 1

5 tri-diag. elim., below diag. FOLRO(1) 1 1

8 A.D.I Integration VHSTAR(1)(3x), GVOP(1)(3x) 6 6

9 Numerical Integration GVOP(1) 1 1

10 Numerical Differentiation GVOP(1) 19 19

11 First Sum FOLR(1) 1 1

12 First Difference VHSTAR(1) 1 1

13 2D particle in a cell VCOPY(1)(4x),VADD(1)(2x),GVOP(1)(4x) 17 10

14 1D particle in a cell GVOP(1)(3x),VCOPY(1)(1x),VADD(1)(2x) 12 6

18 2D explicit hydrodyn. fragm. MADDMUL(2)(2x) 6 2

21 Matrix Product MMO(3) 1 1

22 Planckian Distribution GVOP(1)(2x) 2 2

23 2D implicit hydrodyn. fragm. MGAUSSSEIDEL(2) 1 1

24 1D Minimization VMINLOC(1) 1 1

Table 8.2 Analysis of the Livermore Loops: currently recognizable patterns. lp denotes the
number of loops (lp) (after applying loop distribution) occurring in a kernel. lr indicates how
many of these can be covered by patterns from the current version of the PARAMAT Library.
GVOP(1) denotes a general vector operation, FOLRO(1) and FOLR(1) first order linear re-
currences, VHSTAR(1) a 1D difference star; VMINLOC(1) finds in a vector the location with
minimal absolute value.

8.4.1 Program Representation

The source program is represented by an attributed syntax tree. The nodes are control
statements (do, if, etc.), assignment statements, or expression operators (���� �� �
etc.). There is one root node called main which represents the highest program con-
trol level.

We distinguish between two kinds of directed edges between nodes:

1. vertical edges: these are the edges contained in the syntax tree representation of the
program, e.g. from all statement nodes corresponding to the body of a do statement
to the do node, from the then resp. else statement nodes to the corresponding
if node, from expression tree nodes to their parent nodes and so on.

2. cross edges: these edges establish a partial execution order among several child
nodes of the same parent node; they are caused by data dependency. If there might

8.4 Pattern Recognition: A Detailed View 119

exist a loop–independent� data dependence from a statement S� to another state-
ment S�, then a cross edge e must be drawn in the following way: Let v be the
lowest common vertical successor of both S� and S�, and let u�� u� be direct ver-
tical predecessors (‘son statements’) of v such that u� is a vertical successor of S�
(but not of S�) and u� is a vertical successor of S� (but not of S�), see the figure
below:

S� S�

...
...

u� u�

v

e

����

����

����

����

HHHY

HHHY

HHHY

HHHY

�

�

�

�

��
���

PP
PPi
�

Then the cross edge e must be drawn from u� to u�, implying a partial execution
order on the son statements of v. Note that S� may be equal to u� and S� equal to
u�. If S� � S� then there is no edge necessary, of course. If it is not clear at compile
time which of several statements is the source of a dependence, then all of them are
to be connected with the target node by the way just described. The order among
these possible source nodes must be maintained by inserting cross edges following
the textual order of the statements in the source program.

Thus the vertical edges form a tree while the cross edges form a directed acyclic graph
on each control hierarchy level. For an example, see section 8.4.4.

The cross edges may be extremely useful when trying to recognize patterns from sub-
patterns which are textually separated by other pieces of code not affecting the relations
between these subpatterns. In such “intermixed” computations, statements that belong
together (to the same computation thread) are connected by cross edges.

8.4.2 Pattern Hierarchy Graph

The Pattern Hierarchy Graph (PHG) consists of all possible predefined patterns as its
nodes. There is a directed edge from one pattern p� to another pattern p� if p� may occur
as a subpattern of p� (see Fig. 8.1 for an example). Thus the PHG is acyclic.

Each pattern has an order number which indicates how many loop nests it contains.
Thus an edge from p� to p� in the PHG implies that order�p�� � order�p��.

The PHG is called complete for a pattern p if it contains p and all possible subpatterns
pi of p and is complete for all pi.

Usually, a pattern has only a few predecessors and a few successors in the PHG.
The pattern matching algorithm only needs to inspect the PHG successor’s templates
of an already matched pattern p when looking for a possible pattern containing p as
a subpattern. That results in a large increase in matching speed compared with simple
testing of all predefined templates.

�We do not consider loop–carried dependences here because all patterns provided so far allow depen-
dence cycles only from a statement to itself. This is sufficient for most applications if we have applied the
restructuring transformations listed in section 8.2 before.

120 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

8.4.3 The Matching Algorithm

Starting with stmtdescend(root), the matching algorithm descends the syntax tree as fol-
lows:

function stmtdescend(node)
if node is not a leaf then forall sons s of node (in textual order) do stmtdescend(s) od fi
forall expressions e occurring in node do exprdescend(e) od
/� now all vertical predecessors (substatements, subexpressions) of node are known �/
/� possible patterns p for node are all direct PHG successors (superpatterns)

of the patterns already computed for the sons s of node �/
forall possible patterns p for node
do test by match(p,node) whether there is an instance q of p that matches node od
replace node by q just computed;
reset pointers to and from node correctly;
repeat

forall direct cross predecessors x of node in this block
do /� x has been visited earlier than node �/

test by merge(x,node) whether there is an instance y
of a pattern that consists exactly of x and node

od
replace x and node by y just computed;
reset edges to or from x and node to or from y, respectively;
rename y by node

until there are no mergeable predecessors for node left.
end stmtdescend()

The function exprdescend() traverses the expression trees in a similar way.
Each node of the syntax tree is visited exactly once. For each matched node, there

is only a constant number of possibilities for choosing a superpattern, and these are
tested deterministically one after another, until one of them matches or all fail. Successful
matching along a vertical edge or along a cross edge reduces the number of inner nodes
in the syntax tree. Thus, the entire algorithm runs in linear time.

This pattern matcher is similar to other bottom–up pattern matching algorithms such
as used in automatically generated code generators, e.g. BURG ([14]), TXL ([8]) or OP-
TRAN ([38]). These systems automatically generate a tree automaton whose state table
– if deterministic – corresponds roughly to our PHG. Unfortunately, all automatic sys-
tems work only on (syntax) trees; this disables matching along cross edges as required
here. Another advantage of our simple pattern matcher is that it can locally deviate from
the general scheme to save patterns and matching time, such as we do e.g. for match-
ing difference stars. The high degree of flexibility required for our purpose cannot be
supplied by current tree pattern matching kits.

�This would make the pattern specification easier if there were many intermediate patterns which only
propagate information upwards and never occur in a final matched program. But this does not really occur
in our case.

8.4 Pattern Recognition: A Detailed View 121

MM(3)

MMO(3)

MADDVV(2) VM(2) MV(2) MINIT(2)

VMO(2) MVO(2)

VADDMUL(1) VINIT(1)

SSP(1)

SSPO(1)

AADDMUL(0) SINIT(0)

� �

� �

� �

� �

�

�

�

�

���
���

���
��

	
	

	
	
	I

�

	
	

	
	
	I

�

�
�
�
�
�
��

A
A
A
A
A
AAK

�

	
	

	
	

	
		I

��
��
��

HH
HH

HH
HH

HH
HH

HY

HH
HHY

HH
HH

HH
HHY

HH
HH

H

Figure 8.1 The pattern hierarchy graph of Matrix Multiplication. It covers all possible ways
how matrix multiplication may be coded without using an auxiliary variable.

8.4.4 Standard Pattern Matching: A simple example

Let us start with a simple example. Matrix multiplication is well suited for this purpose
since it is not so trivial but is not made up of too many subpatterns so that its pattern
hierarchy graph (Fig. 8.1) remains quite handy.

Suppose the programmer has coded a matrix multiplication in the following way:

do i=1,n
do j=1,m

S1: c(i,j)=0.0
enddo
do j=1,m

do k=1,r
S2: c(i,j)=c(i,j)+a(i,k)*b(k,j)

enddo
enddo

enddo

do i

do j

assign

c(i,j) 0.0

do j

do k

assign

c(i,j) ...

�
���

Q
QQk

� �

�

�

�

	
	I

	
	I

�

The pattern matcher traverses the syntax tree (see above) by a leftmost depth–first–
search. First the assignment node corresponding to S1 will be replaced by the pattern
instance SINIT (c,i,j, 0.0) since this is the leftmost leaf of the syntax tree (deter-
mined by the cross edge caused by the data flow dependence from S1 to S2).

122 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

Pursuing this back towards the root, the do j loop around S1 will be matched with
the SINIT(0) node, resulting in a new pattern instance VINIT(c(i,*), j,m, 0.0)
(vector initialization).

Then the algorithm descends further towards S2, replaces the assignment statement
leaf corresponding to S2 by a pattern instanceAADDMUL(c(i,j),a(i,k),b(k,j))
(accumulatively adding products) and, following the suitable edge in the PHG, merges
this with the do k loop yielding an SSPO(1) instance (standard scalar product with
offset). Now the program corresponding to the modified syntax tree looks as follows:

do i=1,n
VINIT(c(i,*),j,m,0.0)
do j=1,m
SSPO(c(i,j),a(i,*),b(*,j),k,r)
enddo

enddo

do i

VINIT do j

SSPO

�
���

Q
QQk

�

�

The do j loop can be merged with the SSPO(1) instance resulting in an instance
VMO (c(i,*), a(i,*),b, k,r, j,m) (vector–matrix multiply with offset). Now
the VINIT(1) instance is a mergeable cross predecessor of the VMO(2) instance. Merging
them yields a new pattern instance VM (c(i,*), a(i,*),b, k,r, j,m) (vector–
matrix multiply), which, in turn, can be matched with the do i loop resulting in an
instance MM(c,a,b, k,r,j,m,i,n) (matrix multiply) representing this entire piece
of code.

We remark that in this small example, no loop distribution had been applied before.
This did not matter since the PHG covers all sensible codings of matrix multiplication,
with and without loops being distributed, at the expense of a few more patterns and
edges in the PHG. In general, we will have to test whether it is more useful to put more
intelligence into the PHG (and thus, perhaps, wasting some space and (compile) time),
or to rely on non–failing basic transformations such as loop distribution.

It is clearly no problem to include FORTRAN90’s array features and intrinsic array
manipulation functions. These just occur as additional templates of their corresponding
PARAMAT patterns.

The pattern matcher of PARAMAT is able to detect and undo several former machine-
specific optimizations that ‘encrypt’ the meaning of the code, such as redundant IF con-
ditions, loop blocking, loop unrolling, statement reordering and expression reordering.
The next subsections give some examples.

8.4.5 Removing redundant IF statements

This example is taken from the MATMUL routine of the Perfect Club Benchmark pro-
gram DYFESM (see also [3]) and has already been prepared for pattern matching by the
techniques of section 8.2:

DO 400 K = 1, N
DO 100 I = 1, L
C(I,K) = 0.0

8.4 Pattern Recognition: A Detailed View 123

100 CONTINUE
DO 300 J = 1, M
IF (B(J,K) .NE. 0.) THEN
DO 200 I = 1, L
C(I,K) = C(I,K) + A(I,J)*B(J,K)

200 CONTINUE
300 CONTINUE
400 CONTINUE

The program author has inserted the IF statement during former optimizations. In our
case, however, the IF statement - which is obviously redundant regarding semantics -
makes the job for pattern recognition unnecessarily harder. But it is no problem to elim-
inate such a redundant IF statement if we just add a self cycle in the PHG from the
VADDMUL(1) pattern to itself which leaves the VADDMUL(1) instance unchanged when
encountering such an IF condition on one of the operands. After that, we can proceed
matching as in the example above.

8.4.6 Loop Rerolling

Since the BLAS routines ([28, 12]) are widely used, it is very important that they are
completely recognized by our tool.

Matching has there additionally been made difficult by loop unrolling. Unrolling can
appear

� as replication at the expression level.

For an example, consider the following level-1-BLAS routine (after the preprocess-
ing of section 8.2)��:

dtemp = 0.0d0
do 30 i = 1,mod(n,6)
dtemp = dtemp + dabs(dx(i))

30 continue
do 50 i = mod(n,6) + 1, n, 6
dtemp = dtemp + dabs(dx(i)) + dabs(dx(i+1))

* + dabs(dx(i+2)) + dabs(dx(i+3))
* + dabs(dx(i+4)) + dabs(dx(i+5))

50 continue

The original vector sum has been unrolled 5 times for some reason and written
as one single expression. To recognize loop 50 as an occurrence of the VSUM(1)

pattern, we must reroll the loop, i.e. undo the former optimization.

�	At the pattern matching stage, n may be known by constant propagation, and so were mod(n,6). If
this expression were zero, then the cleanup loop would disappear. For simplicity let us assume here that n
is either unknown at compile–time (symbolic constant), or that n is greater than 6 and mod(n,6) is not
zero.

124 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

Technically, we handle such long right-hand-side expressions by a pattern called
MULTIADD(0). MULTIADD(k,s�,. . .,sk) matches a sum of k expressions whose
order in summation does not matter��. The operands are ordered lexically in the
MULTIADD(0) instance. In the example above, this yields that the dabs(dx(i))
operands appear in ascending order. MULTIADD(0) may refine (specialize) to sev-
eral other patterns, e.g. here to an accumulating adding sequence AASUM(0).
Matching then proceeds via the i loop to the corresponding vector instruction
VAASUMO(1), and this finally collapses to VSUMO(1) via a refining PHG edge:

VSUM(i,1,mod(n,6),1, dtemp,dx(i), abs)
VSUMO(i,mod(n,6)+1,n,1, dtemp,dx(i), abs)

Via new PHG edges from VSUMO(1) and VSUM(1) to VSUM(1), these two instances
can easily be merged.

� as replication at the statement level.

Consider e.g. the following level-1-BLAS routine (after the preprocessing of section
8.2)��:

do 30 i = 1,mod(n,4)
dy(i) = dy(i) + da*dx(i)

30 continue
do 50 i = mod(n,4)+1,n,4
dy(i) = dy(i) + da*dx(i)
dy(i+1) = dy(i+1) + da*dx(i+1)
dy(i+2) = dy(i+2) + da*dx(i+2)
dy(i+3) = dy(i+3) + da*dx(i+3)

50 continue

The original daxpy loop has been unrolled 3 times for some reason. To recognize
this as an occurrence of the VADDMUL(1) pattern, we must reroll the loop. Loop
distribution and pattern matching as before generate

VADDMUL(1,mod(n,4),1, dy,da,dx)
VADDMUL(mod(n,4)+1,n,4, dy,da,dx)
VADDMUL(mod(n,4)+2,n,4, dy,da,dx)
VADDMUL(mod(n,4)+3,n,4, dy,da,dx)
VADDMUL(mod(n,4)+4,n,4, dy,da,dx)

Now we must first merge the last four VADDMUL(1) instances to get

��This is sometimes a problem in FORTRAN since addition or multiplication is in general not com-
mutative, sometimes even not associative for FORTRAN reals. We however remind that (1) this is only
for easier pattern recognition, and the original operand order may be rearranged at code generation time,
and (2) this problem is also ignored for many parallelizing transformations such as summing up the VSUM
operands in a tree-like fashion for parallel execution.

��For simplicity let us assume again that n is symbolic or greater than 4 and mod(n,4) is not zero.

8.4 Pattern Recognition: A Detailed View 125

VADDMUL(1,mod(n,4),1, dy,da,dx)
VADDMUL(mod(n,4)+1,n,1, dy,da,dx)

this is technically arranged by a self-cycle in the PHG from VADDMUL(1) to itself��.
After that, it is no problem to merge these two instances into a single VADDMUL(1)

instance via another PHG-self-cycle for VADDMUL(1).

� as blocking at the loop level (also known as strip mining (one-dimensional) or
tiling (more-dimensional)).

This often occurs in old codes which have been tuned for efficient use of caches or
vector registers (see e.g. [22]). For daxpy, this looks as follows:

if(mod(n,k) .ne. 0) then
do 30 i = 1,mod(n,k)
dy(i) = dy(i) + da*dx(i)

30 continue
do 50 i = mod(n,k)+1,n,k
do 40 j=i,i+k-1
dy(j) = dy(j) + da*dx(j)

40 continue
50 continue

Here matching of the second loop nest is also enabled via a PHG self-cycle of the
VADDMUL(1) pattern��:

VADDMUL(i,1,mod(n,k),1, dy,da,dx)
do 50 i = mod(n,k)+1,n,k
VADDMUL(j,i,i+k-1,1, dy,da,dx)

50 continue

Via this PHG edge, the second VADDMUL(1) instance merges with the i loop into

VADDMUL(i,1,mod(n,k),1, dy,da,dx)
VADDMUL(i,mod(n,k),n,1, dy,da,dx)

which then collapses into a single VADDMUL(1) as in the previous example.

Using these techniques, we can completely match the Level 1 BLAS routines:

��More exactly: there is an auxiliary ‘collecting’ pattern for VADDMUL(1) (and, correspondingly, also
for other patterns such as VADD(1), VSUM(1), ...) which just tries to merge ‘similar’ VADDMUL(1) in-
stances and which is also robust against changes in the order of the sequence of VADDMUL(1) instances
within the program representation. It is also possible to have the cleanup loop at the end of the sequence,
as in [22].

��For simplicity, let us assume again that the value of mod(n,k) is unknown at compile time or not
zero.

126 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

BLAS1 routine pattern covering this routine

dasum VSUM(1)(with abs flag set)
daxpy VADDMUL(1)

dcopy VCOPY(1)

ddot VSUM(1)

dnrm2 ENORM(1)

drot VROT(1)

drotg (scalar computation)
dscal SV(1)

dswap VSWAP(1)

idamax VMAXLOC(1)(with abs flag set)

8.4.7 Difference Stars

Difference stars appear e.g. at PDE discretization (in the context of grid relaxations (Ja-
cobi, Gauß–Seidel), as coarser-to-finer grid interpolation and so on).

Example: (Jacobi relaxation)

do 10 j=2,n-1
do 10 i=2,n-1
uhelp(i,j) = (1-omega)*u(i,j) + omega*0.25*(f(i,j)

* + u(i-1,j) + u(i+1,j) + u(i,j+1) + u(i,j-1))
10 continue

PARAMAT provides difference star patterns for one (HSTAR(0)) and two (STAR(0))
dimensions on the expression level. These are both specializations of the MULTIADD(0)

pattern mentionned above. The most important relative grid positions of a 1D or 2D dif-
ference star are numbered from [i-1,j-1] (= pos. 1) to [i+1,j+1] (=pos. 9) in lexicographic
order:

[i-1] [i] [i+1] ---> HSTAR 4 5 6

[i-1,j-1] [i-1,j] [i-1,j+1] 1 2 3
[i,j-1] [i,j] [i,j+1] ---> STAR 4 5 6
[i+1,j-1] [i+1,j] [i+1,j+1] 7 8 9

The i’s and j’s in these index patterns may be preceded by a constant integer scaling
factor (restriction factor); in the example above, this factor is 1, but for coarser-to-finer
(or vice versa) grid interpolations occurring e.g. in multigrid programs, a factor of 2 can
occur.

The slots of both patterns are:
� C[1],...,C[9]: The immediate coefficient expressions. They may also contain arrays

indexed by [i,j]. They are zero if the corresponding star position is not present.
� Cges : common factor for all star positions
� C5 : coefficient of an extra occurrence of the rhs array
� LHS : lhs array name, may be equal to RHS

8.4 Pattern Recognition: A Detailed View 127

� starvar : rhs array indexed by this star
� F: additional quasiscalar array (
� starvar) access indexed in [i,j]
� CF: factor for F; 1.0 if not present
� RI, RJ: restriction factors (must occur in all rhs accesses)
� dim1, ivar1, dim2, ivar2 : dimensions and names of i and j.

The right–hand–side expression may be permuted in many variants, but in case it
should match a HSTAR(0) or STAR(0), there always must be an occurrence of MULTIADD(0).
A MULTIADD(0) instance which meets the condition that among its operands there is an
array occurring at least 2 times, with different indexing as permitted above, will be re-
fined to HSTAR(0)or STAR(0)instance by calling an auxiliary routine called stargazer.
This routine successively tries to fill in more slots while ascending the rhs expression
tree; it cycles to itself (while consuming text) as long as it can enter a new operand into
the slots, until it reaches the assignment��.

For the example above (Jacobi), the slots are filled as follows:
� C[1]=0.0, C[2]=1.0, C[3]=0.0, C[4]=1.0, C[5]= 0.0, � � �, C[8]=0.0, C[9]=1.0
� Cges=0.25*omega, C5=1-omega,
� LHS = uhelp, starvar = u, F = f, CF = 1.0
� RI=1, RJ=1, dim1=1, ivar1=i, dim2=2, ivar2=j

If successful, stargazer returns either a STAR(0) (full star) or a HSTAR(0) (half star,
i.e. there are only either positions 2,5,8 or 4,5,6 filled by operands). It is now no prob-
lem any more to detect Jacobi, Gauß–Seidel or other relaxation steps when going on
matching the indexing loops around the star.

8.4.8 Beyond standard matching: Identification of multigrid hierarchies

Multigrid programs (see e.g. [35]) operate on a grid hierarchy of several grids of different
size. For instance, in the figure below, G� is the finest grid (64 elements) and G� the
coarsest one (4 elements):

G� G� G�

The main components of multigrid programs are:
� a relaxation algorithm,
� a finer-to-coarser-grid restriction operator,
� a coarse grid solution algorithm, and

��This procedure deviates locally from the standard pattern matching method we described above. It
arises that standard pattern matching can recognize complex stars only with large space and time overhead.
By this tricky procedure, we make star recognition handy. One may regard stargazer as an ‘intelligent
pattern’ within the PHG.

128 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

� a coarser-to-finer-grid interpolation operation.
Continuing the example above, consider the following restriction operation (after pre-

processing):

do i=1,3
do j=1,3
G2(i,j)= f1(2*i,2*j) - 4.0*G1(2*i,2*j) + G1(2*i,2*j-1)

+ G1(2*i,2*j+1) + G1(2*i-1,2*j) + G1(2*i+1,2*j)

This code will be recognized by stargazer, as discussed above, as a full STAR(0)with
restriction factors RI=RJ=2 and finally matches with the surrounding indexing loops to a
RESTR(2) instance. This also establishes further knowledge on the grid hierarchy. This
additional knowledge may be used to find out the grid hierarchy. Our current research
investigates this direction.

Another difficulty may arise here due to former (space) optimizations of the underly-
ing code. Real multigrid programs are often coded by storing all grid hierarchy levels of
the same array into a large linear workarray:

G� G� G� � � �

Due to procedure inlining in the preprocessing phase, the code submitted to the pattern
matcher contains only one-dimensional grid accesses and looks quite awful. For this
case, PARAMAT must provide a second set of templates for all grid relaxation patterns
which handle the linearized versions�
. We are currently working on this issue. We are
confident that PARAMAT will finally be able to detect the whole underlying work space
concept of a multigrid code even in this case. Here, in particular, knowledge about the
hidden grid hierarchy is essential for the computation of efficient array distributions (see
also [16], there user directives tell the compiler (SUPERB) about the grid hierarchy
within the working array) since — if not detected — the linear array will most probably
be distributed over the processors as equally sized slices, and that results in suboptimal
load balancing and unnecessary communication.

8.5 A Parallel Algorithm for each Pattern

For each predefined pattern there exists a suitable parallel algorithm implementing this
pattern, parameterized by the problem size (e.g. matrix extents) and, if necessary, also
by the data partitionings for the arrays involved in this pattern.

A major benefit of this technique is that once the pattern is recognized, the best pos-
sible algorithm for this pattern will be chosen. For instance, if the programmer has im-
plemented a Gauß–Seidel relaxation in a wave–front manner, the system should choose

��If the workspace array is accessed indirectly via index vectors, pattern matching is disabled as depen-
dence analysis is unable to cope with index vectors unless constant (array) propagation supplies the values
of the index vector elements at compile time.

8.6 Alignment and Partitioning 129

another implementation which is better suited for efficient parallelization, e.g. a red–
black scheme (which has the same convergence property as the wavefront scheme) or
replace it by the double number of Jacobi– or Gauß–Seidel–Jacobi hybrid iterations��.

Another occasion for algorithm replacement are simple linear recurrences. Consider
for instance the following piece of code:

X[1] = A[1]
DO 1 I=2,1000

X[I] = A[I] + B[I] * X[I-1]
1 CONTINUE

Independent of the data partitioning, this code is doomed to sequential execution due
to the loop–carried data dependence on array X. Once recognized as an instance of the
FOLR(1) pattern (First Order Linear Recurrence), this piece of code will be replaced by
recursive doubling techniques�� described in [26].

For some patterns, the programming environment may supply highly–optimized par-
allel implementations, e.g. for VSUM(1) (global summation of vector elements). In such
a case the pattern instance is simply converted into a runtime library call.

If the target machine has, for example, pipelined vector units as e.g. the TMC CM5,
then there should be done code optimization for vector register allocation. This is partic-
ularly worth doing for vector operations, i.e. for instances of the VADD(1), VMUL(1), � � �,
GVOP(1) patterns. Especially for machines with small register files, the vector register
allocation and scheduling techniques from [22] can speed up execution of basic blocks
of vector instructions considerably.

Thus, algorithm replacement enables sophisticated target–machine specific code op-
timizations that are hidden for the non-expert user. As remarked above, it is no prob-
lem to re-introduce here optimizations that have been removed before or within the pat-
tern recognition phase. It is also possible to locally deviate here from the strict owner-
computes-rule by selecting suitable implementations.

For each parallel implementation of a pattern (located in a large implementation li-
brary) there is an assigned cost function which is also parameterized by problem size
and array partitionings. This function models the run time behaviour of the algorithm
under consideration. Section 8.7 explains how it is determined.

8.6 Alignment and Partitioning

The problem of array partitioning consists of two steps. First, it must be determined how
arrays should be aligned with each other, i.e. which elements of different arrays should
be mapped together to the same (virtual) processor (if possible) to minimize interpro-
cessor communication. The alignment preferences are induced by the array references

��The latter replacements should be a priori allowed by the user. We expect that the average user does
not want to compare Gauß–Seidel with Jacobi but to get the actually fastest parallel implementation —
independent of a particular relaxation coding.

��The optimal number of recursive doubling steps depends on the number of iterations and on the
message startup time of the target machine. For small problem sizes, sequential execution will be faster.

130 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

pattern algorithm alignment recomm. distribution recomm.

MCOPY(2)
�A�B� matrix copy A � B arbitrarily

VCOPY(1)
�V�W � vector copy V �W arbitrarily

MJACOBI(2)
�A�B� one Jacobian relax. step A � B quadratic blocks

MM(3)
�C�A�B� matrix multiplication A � C � B � C A by row, B by col

MTRANSP(2)
�A�B� matrix transpose A ��� B arbitrarily

VSUM(1)
�s� V � vector summation arbitrarily arbitrarily

SSP(1)
�s� V�W � standard scalar product V �W arbitrarily

Table 8.3 Array alignment and distribution recommendations for some patterns

occurring in the source program. Second, the array elements must be distributed, i.e.
actually mapped to a concrete processing element of the (physical) target machine. At
this stage, aligned array sections can be handled as an entity.

For alignment and partitioning issues, we will use well–known techniques introduced
by Li and Chen ([29]), Knobe et al. ([24, 25]) or Wholey ([37]). The cost estimate func-
tions in these approaches will be replaced by our own cost functions being described in
the next section.

The problem of determining optimal data alignment and distribution is well–known
to be NP–complete (cf. [29]), thus automatic partitioning may take exponential time in
the worst case. That is why we intend to limit the number of distribution alternatives
severely�. Furthermore, we limit the number of partitionable array dimensions to 2. To-
gether with the simplification of the source program by pattern matching, these restric-
tions enable the application of a branch–and–bound search for the optimal distribution,
as done in [19].

For each pattern there generally exists one locally optimal data distribution scheme.
E.g. for matrix multiplication C � A � B, matrix A should be distributed by row and
matrix B should be distributed by column, and furthermore, C should be aligned with
either A or B. PARAMAT provides a default recommendation for alignment and one
for array distribution for each pattern��. If these recommendations cause an alignment
or distribution conflict throughout the program (and they will usually do), the given rec-
ommendations will be the first choices when searching for the optimal data distribution.

Some recommendation examples are summarized in Tab. 8.3.
The points between the pattern instances in the final matched program representation

are natural places for possible redistribution of arrays. In [21] an interesting method for
(static) redistribution has been presented (see also [7] in this volume). We will include it

��In fact we will only allow the following six possibilities (for two-dimensional arrays): row-/column-
/block-contiguous and row- or column–cyclic (cf. e.g. [17]). For all the applications considered so far
these are enough to supply good distributions.

�	Note that the alignment recommendation depends only on the pattern itself whereas the distribution
recommendation is, in general, also dependent on the target machine and on the problem size (cf. [21]).

8.7 Determining Cost Functions: Estimating and Benchmarking 131

into the PARAMAT system with small modifications. The details will be given in a later
paper.

8.7 Determining Cost Functions: Estimating and Benchmarking

A simple way to determine the run time of a given parallel algorithm parameterized
by problem size and array partitions is to estimate it from the basic computation and
communication statements occurring in that algorithm (see e.g. [13]).

In reality, however, it seems that these estimations very rarely meet the actual run time
since a parallel computer such as the INTEL iPSC/860 behaves as a chaotic system, its
performance heavily depending on the actual network traffic, which, in turn, depends
on the algorithm under consideration. This problem has been adressed in [2]. There
performance estimation is based on benchmarking of simple communication patterns
and propagating this information ’up’ through the program’s syntax tree.

PARAMAT will be able to inspect precomputed tables of really measured run times
for all pattern implementations (especially, for high–level patterns!), as indicated above.
We expect the accuracy of performance prediction being substantially improved by this
method.

Problems with performance prediction arise if the target machine has a cache. Then,
run time also depends on whether operands (arrays or parts thereof) already reside in
the cache or must be reloaded first. This scenario is influenced by all former operations.
Here more research has to be done.

8.8 Implementation and Future Extensions

The overall PARAMAT system is outlined in Fig. 8.2. Note that the time–consuming
work concerning parallel algorithm development (either optimized SPMD routines or
just operating system calls) and benchmarking their run times for all possible array dis-
tributions has not to be performed at compile time but at an earlier stage (at compiler
generation time). We intend to develop an automatic benchmarking tool that does this
tedious job for us.

Furthermore it will be useful to arrange the Pattern Library as a hierarchical collection
of modules which may be individually composed for special application areas.

The pattern recognition tool — as described in this paper — has been implemented
and tested. The current (July 1993) implementation consists of around 10000 lines of
C code and reliably recognizes 68 nontrivial patterns with 117 nontrivial templates��,
including special routines for loop rerolling and identification of difference stars. The
high degree of robustness against loop interchange, loop distribution, loop unrolling and
statement reordering has been exemplified in practice.

��Each template is technically represented by a C routine of around 20 to 50 lines that tests syntactic
and semantic conditions and, if successful, generates the pattern instance and fills in the slot entries.

132 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

FRONTEND
parser and data dependence analyzer generate program representation

procedure inlining and other preprocessing transformations

test for ’forbidden constructs’

simple optimizations

Pattern
Recognition

Residual adaptation: insert masks and communication

where not yet included in parallel implementation

templates
�

pattern

library

(PHG)

parallel
pattern

implem.

(param.)

measured
cost fns

for
par. impl.

on target m.

pattern

benchmarking

(prior to compile time)

Automatic partitioning: vary parameters

replace pattern instances by parallel implem.

BACKEND for the target machine

’good’ parameters

program representation

source code: F77.F (later on also F90.f, C.c)

matched program representation parameter
data distr.

global
cost fn.

�

�

�

�

�

�

�

�

�

�

�

� �

�

�
�
�
����

�
�
��R

�

�
�

�

Figure 8.2 Block diagram of the overall PARAMAT system. Only the components enclosed
in the dashed rectangle (and the back end, of course) are dependent on the target machine.
Parallel algorithms for each pattern and their run–time approximations, parameterized by the
data partitionings of the arrays involved in the resp. pattern instance, have to be precomputed
once for each hardware constellation (pattern benchmarking) before compile time.

In order to determine cross edges properly, we have implemented a simple version of
exact array data flow analysis. This (in general very problematic) analysis is here highly

8.9 Conclusions 133

simplified by the exact data flow information�� supplied with the instances of recognized
patterns.

More patterns can easily be added. We plan to implement patterns from image pro-
cessing algorithms in the near future. We will also try to integrate loop distribution into
the pattern recognition tool.

8.9 Conclusions

We have outlined the PARAMAT system which performs automatic parallelization of
a restricted but quite important class of numerical programs. Parallelization is done by
pattern recognition and local algorithm replacement. The pattern recognition algorithm
with the hierarchical pattern base described above is robust against common semantics
preserving code modifications and even decrypts many former optimization transfor-
mations of dusty deck sources. Pattern recognition simplifies the program graph and
thus alleviates global optimizations such as determining optimal array alignment and
partitioning. Pattern recognition enables optimal use of the highly optimized operating
system routines supplied with the target hardware environment. It also supports better
performance prediction accuracy by benchmarking higher–level patterns. Beyond auto-
matic parallelization, pattern recognition may be of great use at reengineering sequential
dusty–deck codes for porting them to other languages or target machines.

Algorithm replacement also means automatically performing optimizing transforma-
tions of the code. The combination of pattern recognition and algorithm replacement
makes the experience of parallel programming and optimization experts accessible to all
scientific Fortran programmers and thus avoids re-inventing the wheel for each program
parallelization project.

PARAMAT is not interactive. This is not necessary either because the user has not
to recognize his code during and after parallelization for selecting transformations or
further tuning by hand. On the other hand, this ‘non-WYSIWYG’ system offers many
more possibilities for code modifications and hides the parallelization details from the
user.

The PARAMAT system is limited in some ways. First, it is unable to process all source
programs. This is taken into account to obtain a really automatic parallelizing compiler
without any interaction or directives supplied by the user at compile time. Second, the
search space for possible array distributions has to be severely restricted to maintain
acceptable compile time. In general, heuristics will have to be applied.

A prototype of PARAMAT is currently being implemented at Saarbrücken university.
The implementation of the pattern recognition tool has reached the state described in this
paper. The first target machine will be the Intel iPSC/860.

The PARAMAT system is open for extensions. The pattern library can be extended by
adding more pattern modules according to individual application areas. The computation
of run time approximation functions can be automated by a universal benchmarking tool.

��For each (array) slot, there is an associated descriptor that exactly (symbolically) describes which
elements are accessed in the array.

134 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

Changing the hardware platform means only to load another base of parallel pattern
implementations and their run time functions. Thus the PARAMAT system will always
be up to date for the latest hardware environments available.

Acknowledgements

We would like to thank Prof. A. K. Louis, Prof. W. J. Paul, Prof. R. Wilhelm, Prof. H. Zima,
Barbara Chapman, Christian Ferdinand and all AP’93 participants for their comments
and suggestions to this work.

References

[1] David H. Bailey and John T. Barton. The NAS Kernel Benchmark Program. Numerical
Aerodynamic Simulations Systems Division, NASA Ames Research Center, June 1986.

[2] Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy, and Ulrich Kremer. A Static Perfor-
mance Estimator to Guide Data Partitioning Decisions. In ACM SIGPLAN Symposium on
Principles and Practices of Parallel Programming, volume 3, pages 213–223, 1991.

[3] Michael Berry (Editor). Scientific Workload Characterization by Loop Based Analyses.
Performance Evaluation Review, 19, February 1992.

[4] Pradip Bose. Heuristic Rule-Based Program Transformations for Enhanced Vectorization.
In Proc. of Int. Conf. on Parallel Processing, 1988.

[5] Pradip Bose. Interactive Program Improvement via EAVE: An Expert Adviser for Vector-
ization. In Proc. Int. Conf. on Supercomputing, pages 119–130, July 1988.

[6] Thomas Brandes and Manfred Sommer. A Knowledge-Based Parallelization Tool in a Pro-
gramming Environment. In 16th Int. Conf. on Parallel Processing, pages 446–448, 1987.

[7] Alan Carle, Ken Kennedy, Ulrich Kremer, and John Mellor–Crummey. Automatic Data
Layout for Distributed Memory Machines in the D Programming Environment. In
Proc. of AP’93 Int. Workshop on Automatic Distributed Memory Parallelization, Automatic
Data Distribution and Automatic Parallel Performance Prediction, Saarbrücken, Germany,
March 1993.

[8] Ian A. Carmichael and James R. Cordy. TXL - Tree Transformational Language Syntax and
Informal Semantics. Dept. of Computing and Information Science, Queen’s University at
Kingston, Canada, February 1992.

[9] Barbara Chapman, Piyush Mehrotra, and Hans Zima. Programming in Vienna Fortran. In
Third Workshop on Compilers for Parallel Computers, 1992.

[10] Barbara M. Chapman, Heinz Herbeck, and Hans P. Zima. Automatic Support for Data
Distribution. Technical Report ACPC/TR 91-14, Austrian Center for Parallel Computation,
July 1991.

8.9 Conclusions 135

[11] Barbara M. Chapman, Heinz Herbeck, and Hans P. Zima. Knowledge-based Parallelization
for Distributed Memory Systems. Technical Report ACPC/TR 91-11, Austrian Center for
Parallel Computation, April 1991.

[12] J. J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson. An Extended Set of Fortran
Basic Linear Algebra Subprograms. ACM Trans. on Math. Software, 14(1):1–32, 1988.

[13] Thomas Fahringer, Roman Blasko, and Hans Zima. Automatic Performance Prediction to
Support Parallelization of Fortran Programs for Massively Parallel Systems. In Int. ACM
Conference on Supercomputing, 1992. Washington DC.

[14] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG — Fast Optimal
Instruction Selection and Tree Parsing. SIGPLAN Notices, 27(4):68–76, April 1992.

[15] Hans Michael Gerndt. Automatic Parallelization for Distributed-Memory Multiprocessing
Systems. PhD thesis, Universität Bonn, 1989.

[16] Michael Gerndt. Parallelization of Multigrid Programs in SUPERB. Technical Report
ACPC/TR 90-6, Austrian Center for Parallel Computation, October 1990.

[17] Manish Gupta and Prithviraj Banerjee. Automatic Data Partitioning on Distributed Mem-
ory Multiprocessors. Technical Report CRHC-90-14, Center for Reliable and High-
Performance Computing, University of Illinois at Urbana-Champaign, Oct. 1990.

[18] Mehdi T. Harandi and Jim Q. Ning. Knowledge-based program analysis. IEEE Software,
pages 74–81, January 1990.

[19] Roman Hayer. Automatische Parallelisierung, Teil 2: Automatische Datenaufteilung für
Parallelrechner mit verteiltem Speicher. Master thesis, Universität Saarbrücken, 1993.

[20] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler–Support for Machine–
Independent Parallel Programming in Fortran-D. Technical Report Rice COMP TR91-149,
Rice University, March 1991.

[21] Ken Kennedy and Ulrich Kremer. Automatic Data Alignment and Distribution for Loosely
Synchronous Problems in an Interactive Programming Environment. Technical Report
COMP TR91-155, Rice University, April 1991. See also this volume.

[22] C.W. Keßler, W.J. Paul, and T. Rauber. Scheduling Vector Straight Line Code on Vector
Processors. In R. Giegerich and S.L. Graham, editors, Code Generation – Concepts, Tools,
Techniques, Springer Workshops in Computing Series, pages 77–91, 1992.

[23] Christoph W. Keßler. The Basic PARAMAT Pattern Library, May 1993.

[24] Kathleen Knobe, Joan D. Lukas, and Guy L. Steele. Data Optimization: Allocation of
Arrays to Reduce Communication on SIMD Machines. Journal of Parallel and Distributed
Computing, 8:102–118, 1990.

[25] Kathleen Knobe and Venkataraman Natarajan. Data Optimization: Minimizing Residual
Interprocessor Data Motion on SIMD machines. In Third Symposium on the Frontiers of
Massively Parallel Computation, pages 416–423, 1990.

[26] Peter M. Kogge and Harold S. Stone. A Parallel Algorithm for the Efficient Solution of a
General Class of Recurrence Equations. IEEE Transactions on Computers, C-22(8), August
1973.

136 8 Knowledge–Based Automatic Parallelization by Pattern Recognition

[27] Wojtek Kozaczynski, Jim Ning, and Tom Sarver. Program concept recognition. In Proc.
of KBSE’92 Seventh Knowledge-Based Software Engineering Conference, pages 216–225,
1992.

[28] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms for
Fortran Usage. ACM Trans. on Math. Software, 5:308–325, 1979.

[29] Jingke Li and Marina Chen. Index Domain Alignment: Minimizing Cost of Cross–
referencing between Distributed Arrays. In Third Symposium on the Frontiers of Massively
Parallel Computation, pages 424–433, 1990.

[30] A. K. Louis. Parallele Numerik. Course script and selected programs, unpublished, Univer-
sität Saarbrücken, 1992.

[31] Frank McMahon. The Livermore Fortran Kernels: A Test of the Numeric Performance
Range. Technical report, Lawrence Livermore National Laboratory, 1986.

[32] Silvia M. Müller. Die Auswirkung der Startup-Zeit auf die Leistung paralleler Rechner bei
numerischen Anwendungen. Master thesis, Universität Saarbrücken, 1989.

[33] Shlomit S. Pinter and Ron Y. Pinter. Program Optimization and Parallelization Using Id-
ioms. In Principles of Programming Languages, pages 79–92, 1991.

[34] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Runtime Scheduling and Execu-
tion of Loops on Message Passing Machines. Journal of Parallel and Distributed Comput-
ing, 8:303–312, 1990.

[35] Klaus Stüben and Ulrich Trottenberg. Multigrid methods: Fundamental algorithms, model
problem analysis and applications. In Springer Lecture Notes in Mathematics, Vol. 960,
1982.

[36] Ko-Yang Wang and Dennis Gannon. Applying AI Techniques to Program Optimization
for Parallel Computers. In Kai Hwang and D. DeGroot, editors, Parallel Processing for
Supercomputers and Artificial Intelligence, pages 441–485, 1989.

[37] Skef Wholey. Automatic Data Mapping for Distributed-Memory Parallel Computers. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA 15213, 1991.

[38] Reinhard Wilhelm. Computation and Use of Data Flow Information in Optimizing Compil-
ers. Acta Informatica, 12:209–225, 1979.

[39] Hans Zima and Barbara Chapman. Supercompilers for Parallel and Vector Computers.
ACM Press Frontier Series. Addison–Wesley, 1990.

137

9 Automatic Data Layout for Distributed–
Memory Machines in the D Programming
Environment

Ulrich Kremer � John Mellor-Crummey Ken Kennedy Alan Carle
DEPARTMENT OF COMPUTER SCIENCE

RICE UNIVERSITY, HOUSTON, TEXAS

email: kremer@cs.rice.edu

Abstract: Although distributed-memory message-passing parallel computers are among the
most cost-effective high performance machines available, scientists find them extremely difficult
to program. Most programmers feel uncomfortable working with a distributed-memory program-
ming model that requires explicit management of local name spaces. To address this problem,
researchers have proposed using languages based on a global name space annotated with di-
rectives specifying how the data should be mapped onto a distributed memory machine. Using
these annotations, a sophisticated compiler can automatically transform a code into a message-
passing program suitable for execution on a distributed-memory machine. The Fortran77D and
Fortran90D languages support this programming style. Given a Fortran D program, the compiler
uses data layout directives to automatically generate a single-program, multiple data (SPMD)
node program for a given distributed-memory target machine.

To achieve high performance with such programs, programmers must select a good data lay-
out. Current tools provide little or no support for this selection process. This paper describes an
automatic data layout strategy being investigated for use in the D programming tools currently
under development at Rice University. The proposed technique considers the profitability of dy-
namic data remapping as it explores a rich search space of reasonable alignment and distribution
schemes.

9.1 Introduction

The goal of the D programming tools project is to develop techniques and tools that aid
scientists in the construction of programs in abstract parallel languages such as Fortran D
[11] and High Performance Fortran (HPF) [15]. A short introduction to the Fortran D
language is given in the appendix. Developing efficient programs in languages such as
HPF or Fortran D can be challenging since understanding the performance implications
of small perturbations of the program at the source level requires a deep understanding of
the compiler technology upon which the language implementation is based. In particular,

�Corresponding author; e-mail: kremer@cs.rice.edu. This research was supported by the Center for
Research on Parallel Computation (CRPC), a Science and Technology Center funded by NSF through
Cooperative Agreement Number CCR-9120008. This work was also sponsored by DARPA under contract
#DABT63-92-C-0038, and the IBM corporation. The content of this paper does not necessarily reflect the
position or the policy of the U.S. Government and no official endorsement should be inferred.

138 9 Automatic Data Layout in the D Programming Environment

understanding the impact of data distributions on the data parallelism that will be realized
by the compiler is vitally important for users to be able to write efficient programs.

The primary focus of the D project is on developing program analysis infrastructure to
support an intelligent editor that will provide users with detailed information about how
effectively an underlying compiler implementation can exploit data parallelism in the
program. The D editor will bring together a wide range of program analysis technology
including program dependence analysis to identify inherently sequential constraints on
the order in which values must be computed, static performance estimation to determine
the relative merits of particular data distribution alternatives, dynamic performance in-
formation to refine the costs associated with particular design alternatives, and automatic
data layout.

A proposed automatic data layout tool for the D system will first determine a set of
efficient data decomposition schemes for the entire program. Subsequently, the user will
be able to select a region of the input program and the system will respond with a set of
potential decomposition schemes and their performance characteristics for the selected
region. For each scheme, the tool will provide information about the location and type
of the communication operations generated by the compiler. This will enable the user
to obtain insight into the characteristics of the program when executed on a distributed
memory machine, and the capabilities of the underlying compilation system.

In this paper we focus on automatic data layout techniques for regular problems in the
context of an advanced compilation system that allows dynamic data decompositions.
We describe an initial analysis framework for reasoning about dynamic data layouts
at compile time for programs without subroutine calls. The paper is structured as fol-
lows. Section 9.2 provides a short introduction to the Fortran D compilation system.
Section 9.3 contains examples that motivate the need for dynamic data decomposition in
an automatic tool. Section 9.4 discusses an initial framework to solve the dynamic data
decomposition problem. The paper concludes with a discussion of related work and our
future plans.

9.2 Compilation system

The choice of a good data decomposition scheme for a program depends on the com-
pilation system, the target machine and its size, and the problem size [3, 4, 29, 13, 39].
Advances in compiler technology make it even more difficult for a programmer to predict
the performance resulting from a given data decomposition scheme without compiling
and running the program on the specific target system. State-of-the-art compilers per-
form a variety of intra- and inter-procedural optimizations. The applicability and prof-
itability of these optimizations depend on the specified data decomposition schemes.

Compilation of a Fortran D program involves translating it into a Fortran 77 SPMD
node program that contains calls to library primitives for interprocessor communication.
A vendor-supplied Fortran 77 node compiler is used to generate an executable that will
run on each node of the distributed-memory target machine. A Fortran D compiler may
support optimizations that reduce or hide communication overhead, exploit parallelism,

9.3 Dynamic Data Layout: Two Examples 139

or reduce memory requirements. Procedure cloning or inlining may be applied under
certain conditions to improve context for optimization [17, 18, 14, 37]. Node compil-
ers may perform optimizations to exploit the memory hierarchy and instruction-level
parallelism available on the target node processor [6, 40, 5].

At present, the principal target of our prototype Fortran D compilation system [37] is
the Intel iPSC/860. Eventually, the compilation system will target a variety of distributed-
memory multiprocessors such as Intel’s iPSC/860 and Paragon, Ncube’s Ncube-1 and
Ncube-2, and Thinking Machine Corporation’s CM-5. Our proposed strategy for auto-
matic data decomposition is intended for use with our state-of-the-art Fortran D compi-
lation system.

9.3 Dynamic Data Layout: Two Examples

The following program examples illustrate the difficulty of predicting the performance
impact of dynamic remapping in the context of an advanced compilation system. For this
reason, we believe that an automatic tool is needed to determine when data remapping
can be used effectively.

The availability of fast collective communication routines is crucial for the profitabil-
ity of data realignment and redistribution. In our experiments we used a transpose library
routine distributed by Intel in a set of example programs for the iPSC/860.

Two-dimensional Fast Fourier Transform (2D-FFT)

The computation performed by a two-dimensional FFT can be described as a sequence
of one-dimensional FFTs (1D-FFTs) along each row of the input array, followed by
one-dimensional FFTs along each column. The input array in our example is of type
complex. The butterfly version of the 2D-FFT distributes the first dimension of the two-
dimensional array. This leads to communication during the computation of the 1D-FFTs
along each column. This communication can be avoided if the array is transposed after
all 1D-FFTs along each row have been performed. The transpose version uses a row-
distribution for the row-wise 1D-FFTs and a column-distribution for the column-wise
1D-FFTs. Both versions were compiled using if77 under -O4 option and executed on
the iPSC/860 at Rice (32 processors) and Caltech (64 processors). Both machines have
a two-way set associative instruction cache (4Kbytes) and data cache (8Kbytes). The
cache lines are 32 bytes long. Table 9.1 lists execution times in seconds for the butter-
fly and transpose implementation alternatives over a variety of data sizes and processor
configurations. For each implementation alternative, the table lists the total execution
time and the fraction of the time spent communicating. The last column lists the rela-
tive speed-ups of the transpose version over the butterfly version for different problem
sizes and processor configurations. In almost all cases redistribution leads to a better per-
formance as compared to a static row partitioning. The most significant improvements
occur for small problems and a high number of processors.

140 9 Automatic Data Layout in the D Programming Environment

#procs problem size butterfly transpose relative
total communic. only (% of total) total communic. only (% of total) speed-up

128 � 128
2 0.423 0.016 3.8% 0.432 0.019 4.4% 0.98
4 0.272 0.061 22.4% 0.217 0.015 6.9% 1.25
8 0.207 0.092 44.4% 0.113 0.012 10.6% 1.83
16 0.187 0.119 63.6% 0.062 0.011 17.7% 3.02
32 0.193 0.147 76.1% 0.042 0.017 40.5% 4.60
64 0.160 0.124 77.5% 0.035 0.022 62.8% 4.57

256 � 256
2 1.731 0.036 2.0% 1.819 0.070 3.8% 0.95
4 0.979 0.119 12.1% 0.903 0.050 5.5% 1.08
8 0.630 0.181 28.7% 0.459 0.031 6.7% 1.37
16 0.485 0.238 49.0% 0.237 0.023 9.7% 2.05
32 0.444 0.296 66.6% 0.130 0.023 17.7% 3.42
64 0.352 0.250 71.0% 0.081 0.026 32.0% 4.34

512 � 512
2 7.199 0.057 0.8% 7.822 0.299 3.8% 0.92
4 3.812 0.235 6.1% 3.814 0.194 5.0% 1.00
8 2.178 0.360 16.5% 1.919 0.108 5.6% 1.13
16 1.428 0.474 33.2% 0.969 0.064 6.6% 1.47
32 1.127 0.597 53.0% 0.498 0.046 9.2% 2.26
64 0.826 0.503 60.9% 0.270 0.040 14.8% 3.06

1024 � 1024
4 15.640 0.444 2.8% 16.561 0.836 5.0% 0.94
8 8.332 0.718 8.6% 8.274 0.432 5.2% 1.01
16 4.827 0.939 19.4% 4.156 0.238 5.7% 1.16
32 3.324 1.274 48.8% 2.097 0.137 6.5% 1.59
64 2.152 1.005 46.7% 1.083 0.090 8.3% 1.99

2048 � 2048
16 18.323 1.895 10.3% 18.360 0.893 4.9% 0.99
32 10.764 2.356 21.9% 9.215 0.487 5.3% 1.17
64 6.456 2.007 31.1% 4.687 0.277 5.9% 1.38

Table 9.1 Performance of two versions of 2D-FFT on the iPSC/860

If the compiler is not able to detect the FFT (butterfly) communication pattern, we
expect the compiler-generated program for the static row partitioning to run slower than
the butterfly version, increasing the benefits of the transpose version even more.

Alternating-Direction-Implicit Integration (ADI)

The sequential code is shown in Figure 9.1. Each iteration of the DO-loop in line 2 con-
sists of a forward and backward sweep along the rows of arrays x and b, followed by a
forward and backward sweep along the columns. The pipeline version of the code uses
a static column-wise partitioning of the perfectly aligned arrays x, a, and b. We spec-
ified this data layout using Fortran D language annotations and compiled the program
using the current Fortran D compiler prototype. The compiler generated a coarse-grain
pipelined loop for the forward and backward sweeps along the rows of arrays x and
b. The sweeps along columns do not require communication under this data layout, al-
though the row sweeps do. The transpose version transposes arrays x and b between the
row and column sweeps, i.e. twice per iteration of the outermost DO-loop (line 2). No
communication is needed during each sweep.

9.4 Towards Dynamic Data Layout 141

The execution times for 10 iterations (MAXITER = 10) for the iPSC/860 is shown in
Table 9.2. The timings are given in seconds. Since the selected problem sizes are powers
of two, cache conflicts lead to a significant increase of the total execution time for the
transpose version. To alleviate this problem, we added a single column or row to each
local segment of the arrays in the node SPMD program. We expect a sophisticated node
compiler to perform such an optimization. The performance of the modified node pro-
grams are listed under the problem sizes marked with asterisks in Table 9.2. In contrast
to the 2D-FFT example, redistribution leads to a decrease in performance in all cases.
The extent of improvement of the pipeline version over the transpose version depends
on the ability of the compiler to deal with the cache effects on the target machine.

Discussion

The 2D-FFT example shows that dynamic remapping can result in significant perfor-
mance improvements over a static data layout scheme. A programmer might have ex-
pected a similar performance improvement for the ADI example program. However, due
to the coarse grain pipelining optimization performed by the Fortran D compiler dynamic
data remapping is not profitable even if we ignore cache conflicts.

9.4 Towards Dynamic Data Layout

The first step of our proposed strategy for automatic data layout in the presence of dy-
namic remapping is to partition the program into code segments, called program phases.
Phases are intended to represent program segments that perform operations on entire data
objects. In the absence of procedure calls we operationally define a phase as follows: A
phase is a loop nest such that for each induction variable that occurs in a subscript posi-
tion of an array reference in the loop body the phase contains the surrounding loop that
defines the induction variable. A phase is minimal in the sense that it does not include
surrounding loops that do not define induction variables occurring in subscript positions.
Data remapping is allowed only between phases. Note that the strategies for identifying
program phases is a topic of current research.

Our strategy for investigating data layout with dynamic data remapping explores a rich
search space of possible alignment and distribution schemes for each phase. Pruning
heuristics will have to be developed to restrict the alignment and distribution search
spaces to manageable sizes. A first discussion of possible pruning heuristics and the
sizes of their resulting search spaces can be found in [21].

Here we describe an initial analysis framework suitable for programs without proce-
dure calls that contain no control flow other than loops. We assume that the problem size
and the number of processors used is known at compile time. Furthermore, we assume
that every alignment and distribution scheme specifies the data layout of all arrays in
the program that may be partitioned and mapped onto different local memories of the
machine.

142 9 Automatic Data Layout in the D Programming Environment

1 REAL x(N, N), a(N, N), b(N, N)

2 DO iter = 1, MAXITER

3 // ADI forward & backward sweeps along rows
4 DO j = 2, N
5 DO i = 1, N
6 x(i, j) = x(i, j) � x(i, j�1) � a(i, j) / b(i, j�1)
7 b(i, j) = b(i, j) � a(i, j) � a(i, j) / b(i, j�1)
8 ENDDO
9 ENDDO
10 DO i = 1, N
11 x(i, N) = x(i, N) / b(i, N)
12 ENDDO
13 DO j = N�1, 1, �1
14 DO i = 1, N
15 x(i, j) = (x(i, j) � a(i, j�1) � x(i, j�1)) / b(i, j)
16 ENDDO
17 ENDDO

18 // ADI forward & backward sweeps along columns
19 DO j = 1, N
20 DO i = 2, N
21 x(i, j) = x(i, j) � x(i�1, j) � a(i, j) / b(i�1, j)
22 b(i, j) = b(i, j) � a(i, j) � a(i, j) / b(i�1, j)
23 ENDDO
24 ENDDO
25 DO j = 1, N
26 x(N, j) = x(N, j) / b(N, j)
27 ENDDO
28 DO j = 1, N
29 DO i = N�1, 1, �1
30 x(i, j) = (x(i, j) � a(i�1, j) � x(i�1, j)) / b(i, j)
31 ENDDO
32 ENDDO

33 ENDDO

Figure 9.1 Sequential ADI code, REAL

9.4 Towards Dynamic Data Layout 143

#procs problem size pipeline transpose relative
total communic. only (% of total) total communic. only (% of total) speed-up

2 128 � 128 2.305 0.021 0.9% 3.894 0.371 9.5% 0.59
4 1.265 0.053 4.2% 1.547 0.298 19.3% 0.82
8 0.720 0.077 10.7% 1.371 0.246 17.9% 0.52

16 0.485 0.103 21.2% 0.617 0.280 45.4% 0.78
32 0.404 0.141 34.9% 1.137 0.444 39.0% 0.35
64 0.431 0.235 54.5% 1.130 0.821 72.6% 0.38
2 128 � 128* 2.283 0.020 0.9% 2.486 0.365 14.7% 0.92
4 1.281 0.053 4.1% 1.381 0.308 22.3% 0.93
8 0.715 0.080 11.1% 0.835 0.255 30.5% 0.85

16 0.505 0.116 23.0% 0.614 0.348 56.7% 0.82
32 0.402 0.143 35.6% 0.596 0.454 76.2% 0.67
64 0.430 0.236 54.9% 0.921 0.845 91.7% 0.47

2 256 � 256 9.142 0.041 0.4% 21.585 1.351 6.2% 0.42
4 4.781 0.106 2.2% 10.261 1.009 9.8% 0.46
8 2.598 0.162 6.2% 4.250 0.677 15.9% 0.61

16 1.531 0.180 11.7% 3.192 0.532 16.6% 0.48
32 1.064 0.215 20.2% 2.050 0.607 29.6% 0.52
64 0.838 0.307 36.6% 3.046 0.921 30.2% 0.27
2 256 � 256* 9.045 0.042 0.5% 10.116 1.368 13.5% 0.89
4 4.758 0.106 2.2% 5.296 1.009 19.0% 0.90
8 2.566 0.167 6.5% 2.844 0.678 23.8% 0.90

16 1.566 0.204 13.0% 1.709 0.596 34.9% 0.92
32 0.986 0.220 22.3% 1.235 0.623 50.4% 0.80
64 0.828 0.320 38.6% 1.255 0.958 76.3% 0.66

2 512 � 512 39.553 0.084 0.2% 161.896 5.504 3.4% 0.24
4 20.270 0.209 1.0% 81.868 3.717 4.5% 0.25
8 10.612 0.308 2.9% 39.072 2.289 5.8% 0.27

16 5.780 0.352 6.0% 10.980 1.439 13.1% 0.53
32 3.406 0.379 11.1% 6.576 1.110 16.9% 0.52
64 2.289 0.468 20.4% 5.704 1.257 22.0% 0.40
2 512 � 512* 35.913 0.083 0.2% 144.500 5.561 3.8% 0.25
4 18.434 0.207 1.1% 21.365 3.768 17.6% 0.86
8 9.573 0.313 3.3% 10.795 2.270 21.0% 0.89

16 5.302 0.372 7.0% 5.799 1.497 25.8% 0.91
32 3.060 0.376 12.2% 3.329 1.132 34.0% 0.92
64 2.083 0.467 22.4% 2.402 1.296 54.0% 0.87

2 1024 � 1024 168.055 0.175 0.1% 949.241 27.171 2.9% 0.18
4 85.106 0.411 0.5% 388.358 15.016 3.9% 0.22
8 43.605 0.602 1.4% 237.368 8.449 3.5% 0.18

16 22.860 0.678 3.0% 98.511 4.854 4.9% 0.23
32 12.509 0.686 5.5% 52.708 2.969 5.6% 0.24
64 7.351 0.788 10.7% 13.927 2.283 16.4% 0.53
2 1024 � 1024* 147.682 0.177 0.1% 752.135 27.400 3.6% 0.20
4 73.467 0.410 0.5% 352.282 15.162 4.3% 0.21
8 37.484 0.608 1.6% 43.869 8.534 19.4% 0.85

16 19.860 0.714 3.6% 22.066 4.866 22.0% 0.90
32 10.820 0.683 6.3% 11.629 2.980 25.6% 0.93
64 6.466 0.786 12.1% 6.727 2.325 34.6% 0.96

4 2048 � 2048 337.115 0.909 0.3% *memory* *memory*
8 170.599 1.219 0.7% 815.495 34.042 4.2% 0.21

16 87.407 1.365 1.6% 602.598 17.979 3.0% 0.14
32 45.911 1.353 2.9% 193.612 10.004 5.2% 0.24
64 25.098 1.452 5.8% 131.027 6.052 4.6% 0.19
4 2048 � 2048* *memory* *memory* *memory* *memory*
8 146.694 1.241 0.8% 671.508 34.311 5.1% 0.22

16 75.563 1.414 1.9% 89.174 18.161 20.4% 0.85
32 39.464 1.353 3.4% 44.293 9.913 22.4% 0.89
64 21.691 1.450 6.7% 23.345 6.078 26.0% 0.93

Table 9.2 Performance of pipeline and transpose versions of ADI on the iPSC/860

144 9 Automatic Data Layout in the D Programming Environment

A data layout for a program is determined in three steps. First, alignment analysis
builds a search space of reasonable alignment schemes for each phase. Then, distribu-
tion analysis uses the alignment search spaces to build decomposition search spaces of
reasonable alignments and distributions for each phase. Finally, a decomposition scheme
for each phase is selected, resulting in a data layout for the entire program. Our three step
approach to automatic data layout is described in more detail in the following sections.
A summary of the basic algorithm is shown in Figure 9.4.

9.4.1 Alignment Analysis

Alignment analysis is used to prune the search space of all possible array alignments
by selecting only those alignments that minimize data movement. Alignment analysis
is largely machine-independent; it is performed by analyzing the array access patterns
of computations in each individual program phase and across the entire program. All
alignment schemes are specified relative to the alignment space of the program. The
alignment space of a program is unique. It is determined by the maximal dimensionalities
and maximal dimensional extents of the arrays in the program.

We intend to build on the inter-dimensional and intra-dimensional alignment tech-
niques of Li and Chen [28], Knobe et al. [22], and Chatterjee, Gilbert, Schreiber, and
Teng [9]. In contrast to previous work, we will not limit ourselves to a single alignment
as the result of the alignment analysis. Rather than eliminating one candidate alignment
in the presence of an alignment conflict, both schemes may be added to the alignment
search space [21]. The candidate alignments computed for each phase, will serve as input
to distribution analysis.

9.4.2 Distribution Analysis

Distribution analysis will consider a rich set of distribution schemes for each of the align-
ment schemes determined in the alignment analysis. Each dimension of a decomposition
can have a block, cyclic, or block-cyclic distribution [11]. Block-cyclic distributions can
have different block sizes. In addition, distributions with varying numbers of proces-
sors in each of the distributed dimensions of a decomposition are part of the distribution
search space. We are currently developing strategies to prune the search space by elim-
inating candidate distributions that are poorly matched to the program being analyzed.
The result of distribution analysis will be a set of candidate decomposition schemes for
each single phase in the program. For each phase, a static performance estimator will be
invoked to predict the performance of each candidate scheme. The resulting performance
estimates will be recorded with each decomposition scheme. A performance estimator
suitable for our needs is described in detail elsewhere [4, 16].

9.4.3 Inter-Phase Decomposition Analysis

After computing a set of data decomposition schemes and estimates of their performance
for each phase, the automatic data partitioner must solve the inter-phase decomposi-

9.4 Towards Dynamic Data Layout 145

tion problem to choose the best data decomposition for each phase. It must consider
array remapping between computational phases to reduce communication costs within
the computational phases or to better exploit available parallelism. Inter-phase analysis
is performed on a phase control flow graph. A phase control flow graph is a control
flow graph [1] in which all nodes in a phase have been collapsed into a single node.
Inter-phase analysis first detects the strongly connected components of the phase con-
trol flow graph in a hierarchical fashion using, for example, Tarjan intervals [35]. For
each innermost loop, the inter-phase decomposition selection problem is formulated as
a single-source shortest path problem over the acyclic decomposition graph associated
with the loop body. The decomposition graph is similar to the phase control flow graph
except that each phase node is replaced by the candidate set of decompositions for that
phase, and for each cycle in the graph a shadow copy of the first phase in the cycle
is added after the last phase in the cycle. Each decomposition node is labeled with its
estimated overall cost for the phase. The overall cost is determined by computational
costs and costs due to synchronization and communication inside the phase. Shadow de-
composition nodes are assigned a weight of zero. The flow edges in the phase control
flow graph are replaced by the set of all possible edges between decomposition nodes
of adjacent phases. The edges are labeled with the realignment and redistribution costs
to map between the source and sink decomposition schemes. Edge weights will be de-
termined based on the training set approach [4]. An example phase control flow graph
with a single loop and the decomposition graph associated with the loop body is shown
in Figure 9.2. For clarity the weights of nodes and edges have been omitted.

The root nodes in the decomposition graph represent entry/exit decomposition schemes
for the loop. For each root node a single-source shortest path problem is solved. The
length of the shortest path between the root node and its shadow copy multiplied by the
number of iterations of the loop gives the cost estimate of the loop for the associated
entry/exit decomposition scheme�. After determining the costs of each decomposition
scheme for an innermost loop, the loop is collapsed into a single loop summary node
in the phase control flow graph. The algorithm records with the loop summary phase
the costs for each entry/exit decomposition scheme and their associated shortest paths.
Subsequently, the process of detecting innermost loops, solving the single-source short-
est paths problem, and collapsing the loops into single nodes continues until the phase
control flow graph is acyclic. The final step of the merging algorithm consists of solving
a single single-source shortest paths problem on a decomposition graph for the entire
program with added entry and exit decomposition nodes. The added nodes and their ad-
jacent edges have zero weight. For our example program in Figure 9.2 the final step is
illustrated in Figure 9.3.

Inter-phase analysis selects the decomposition schemes that lie on the shortest path
from the added entry decomposition node to the added exit node. Decomposition nodes
that represent a loop summary phase are expanded into their associated shortest paths.
Following the selected shortest path, dynamic remapping is required if the decomposi-
tion at the source of an edge is different from the decomposition at the sink.

�The length of a path includes the weights on the nodes as well as the weights of the edges along the
path.

146 9 Automatic Data Layout in the D Programming Environment

entry/exit decompositions of loop

with 4 decomposition nodes per phase

loop:

decomposition graph of loop
with single loop

Phase control flow graph

4. Phase

3. Phase

2. Phase

2. Phase

(shadow copy)

3. Phase

2. Phase

1. Phase

4. Phase

5. Phase

Figure 9.2 Inter-phase decomposition problem with realignment and redistribution

A solution to the single-source shortest paths problem in a directed acyclic graph is
given in [10]. Let k denote the maximal number of decomposition schemes for each
phase and p the number of phases. The resulting time complexity is O�pk��. The identi-
fication of innermost loops takes time proportional to the number of edges in the phase
control flow graph. For our class of control flow graphs O�edges� � O�nodes� holds,
resulting in O�p� time for Tarjan’s algorithm [35]. Therefore, the entire algorithm for
merging decomposition schemes across phases has time complexity O�pk��.

It is important to note that the presented solution to the merging problem assumes
that each decomposition scheme specifies the data layout of every array in the program
that may be partitioned across the machine. If we relax this restriction, for instance by
allowing each decomposition scheme for a phase to only specify the layout of arrays
actually referenced in the phase, the dynamic data layout problem becomes NP-complete
[27]. A study of real programs will show when the restriction has to be relaxed in order to
limit the number of candidate decomposition schemes for each phase. We are currently
working on heuristics that will generate efficient, but possibly suboptimal data layouts
under the relaxed restriction.

9.5 Related Work 147

Phase
Loop Summary

with added entry and exit nodes
decomposition graph

added exit node

added entry node

with loop summary phase

5. Phase

1. Phase

Loop Phase

Phase control flow graph

1. Phase

5. Phase

Figure 9.3 Inter-phase decomposition problem with realignment and redistribution (cont.)

9.5 Related Work

The problem of finding an efficient data layout for a distributed-memory multiprocessor
has been addressed by many researchers [28, 30, 22, 24, 23, 12, 38, 9, 2, 7, 32, 31, 19,
33, 34, 20]. The presented solutions differ significantly in the assumptions that are made
about the input language, the possible set of data decompositions, the compilation sys-
tem, and the target distributed-memory machine. A more detailed discussion of some of
the related work can be found in [26]. Our work is one of the first to provide a framework
for automatic data layout that considers dynamic remapping. However, many researchers
have recognized the need for dynamic remapping and are planning to develop solutions.

Knobe, Lukas, and Dally [23], and Chatterjee, Gilbert, Schreiber, and Teng [9] ad-
dress the problem of dynamic alignment in a framework particularly suitable for SIMD
machines. More recently, Anderson and Lam [2] have proposed techniques for automatic
data layout for distributed and shared address space machines. Their approach considers
dynamic remapping.

148 9 Automatic Data Layout in the D Programming Environment

Algorithm DECOMP

Input: program without procedure calls;
problem sizes and number of processors to be used.
Output: data layout for data objects referenced in the input program

Determine program phases of input program; build phase control flow graph.

Perform alignment and distribution analysis for input program; each resulting
decompositition scheme specifies data layout of all arrays that may be partitioned.

while phase control flow graph contains a loop do
Identify innermost loop (e.g. using Tarjan intervals).
Build decomposition graph for innermost loop body.
Solve single-source shortest paths problem on decomposition graph.
Replace loop by its summary phase in the phase control flow graph; record
cost of entry/exit decomposition schemes together with their shortest paths.

endwhile

Build decomposition graph for collapsed phase control flow graph.
Add entry and exit decomposition nodes.
Solve single-source shortest paths problem on decomposition graph.

Determine data layout for entire program by traversing the lowest cost
shortest path from entry node to exit node, expanding loop summary
phases by their associated shortest paths.

Figure 9.4 Automatic Data Layout Algorithm

9.6 Summary and Future Work

This paper presents an initial framework for automatic data decomposition that allows
dynamic remapping between program phases. Our proposed strategy explores a rich
search space of alignment and distribution schemes for each program phase. The costs
of decomposition schemes for program phases and the data remapping costs between
phases will be computed by a static performance estimator. The data layout for the en-
tire program is determined based on solutions to single-source shortest paths problems.
These solutions require that each decomposition scheme specifies the layout of all arrays
in the program that may be partitioned. For the proposed approach to be feasible, we will
need to develop algorithms that will prune the alignment and distribution search spaces.

9.6 Summary and Future Work 149

Relaxing the requirement for decompositions, i.e. allowing decomposition schemes to
only specify the layout of a subset of the arrays in the program, makes the inter-phase
decomposition problem NP-complete. We will need to explore whether the proposed
framework will be practical for real programs or whether heuristics will have to be used
to solve the inter-phase decomposition problem. The framework will be extended to
handle intra-phase and inter-phase control flow, and to allow programs that consist of a
collection of procedures.

We propose using data layout analysis as the basis for a tool that will enable a user to
select a region of the input program and have the tool respond with the set of decompo-
sition schemes in its search space and their performance characteristics for the selected
region. Such a tool will help the user to understand the impact of data layout schemes
on the performance of the program executed on a target distributed-memory machine,
and the characteristics of the underlying compilation system. The exact design and func-
tionality of the interface between the user and the automatic data layout tool is currently
under development.

References

[1] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA, second edition, 1986.

[2] J. Anderson and M. Lam. Global optimizations for parallelism and locality on scalable
parallel machines. In Proceedings of the SIGPLAN ’93 Conference on Program Language
Design and Implementation, Albuquerque, NM, June 1993.

[3] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An interactive environment for data
partitioning and distribution. In Proceedings of the 5th Distributed Memory Computing
Conference, Charleston, SC, April 1990.

[4] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static performance estimator to
guide data partitioning decisions. In Proceedings of the Third ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, Williamsburg, VA, April 1991.

[5] P. Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University, April 1992.

[6] S. Carr. Memory-Hierarchy Management. PhD thesis, Rice University, September 1992.

[7] B. Chapman, H. Herbeck, and H. Zima. Automatic support for data distribution. In Pro-
ceedings of the 6th Distributed Memory Computing Conference, Portland, OR, April 1991.

[8] B. Chapman, P. Mehrotra, and H. Zima. Vienna Fortran - a Fortran language extension
for distributed memory multiprocessors. In J. Saltz and P. Mehrotra, editors, Languages,
Compilers, and Run-Time Environments for Distributed Memory Machines. North-Holland,
Amsterdam, The Netherlands, 1992.

[9] S. Chatterjee, J.R. Gilbert, R. Schreiber, and S-H. Teng. Automatic array alignment in
data-parallel programs. In Proceedings of the Twentieth Annual ACM Symposium on the
Principles of Programming Languages, Albuquerque, NM, January 1993.

150 9 Automatic Data Layout in the D Programming Environment

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1990.

[11] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran
D language specification. Technical Report TR90-141, Dept. of Computer Science, Rice
University, December 1990.

[12] M. Gupta. Automatic Data Partitioning on Distributed Memory Multicomputers. PhD
thesis, University of Illinois at Urbana-Champaign, September 1992.

[13] M. Gupta and P. Banerjee. Demonstration of automatic data partitioning techniques for
parallelizing compilers on multicomputers. IEEE Transactions on Parallel and Distributed
Systems, April 1992.

[14] M. W. Hall, S. Hiranandani, K. Kennedy, and C. Tseng. Interprocedural compilation of
Fortran D for MIMD distributed-memory machines. Technical Report TR91-169, Dept. of
Computer Science, Rice University, November 1991.

[15] High Performance Fortran Forum. High Performance Fortran language specification, ver-
sion 1.0. Technical Report CRPC-TR92225, Center for Research on Parallel Computation,
Rice University, Houston, TX, May 1993. To appear in Scientific Programming, vol. 2, no.
1.

[16] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An overview of the
Fortran D programming system. In Proceedings of the Fourth Workshop on Languages and
Compilers for Parallel Computing, Santa Clara, CA, August 1991.

[17] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimizations for Fortran D on MIMD
distributed-memory machines. In Proceedings of Supercomputing ’91, Albuquerque, NM,
November 1991.

[18] S. Hiranandani, K. Kennedy, and C. Tseng. Evaluation of compiler optimizations for Fortran
D on MIMD distributed-memory machines. In Proceedings of the 1992 ACM International
Conference on Supercomputing, Washington, DC, July 1992.

[19] D. Hudak and S. Abraham. Compiler techniques for data partitioning of sequentially iterated
parallel loops. In Proceedings of the 1990 ACM International Conference on Supercomput-
ing, Amsterdam, The Netherlands, June 1990.

[20] K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An automatic and symbolic parallelization
system for distributed memory parallel computers. In Proceedings of the 5th Distributed
Memory Computing Conference, Charleston, SC, April 1990.

[21] K. Kennedy and U. Kremer. Initial framework for automatic data layout in Fortran D: A
short update on a case study. Technical Report CRPC-TR93-324-S, Center for Research on
Parallel Computation, Rice University, July 1993.

[22] K. Knobe, J. Lukas, and G. Steele, Jr. Data optimization: Allocation of arrays to reduce com-
munication on SIMD machines. Journal of Parallel and Distributed Computing, 8(2):102–
118, February 1990.

[23] K. Knobe, J.D. Lukas, and W.J. Dally. Dynamic alignment on distributed memory sys-
tems. In Proceedings of the Third Workshop on Compilers for Parallel Computers, Vienna,
Austria, July 1992.

9.6 Summary and Future Work 151

[24] K. Knobe and V. Natarajan. Data optimization: Minimizing residual interprocessor data mo-
tion on SIMD machines. In Frontiers90: The 3rd Symposium on the Frontiers of Massively
Parallel Computation, College Park, MD, October 1990.

[25] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed
execution. IEEE Transactions on Parallel and Distributed Systems, 2(4):440–451, October
1991.

[26] U. Kremer. Automatic data layout for distributed-memory machines. Technical Report
CRPC-TR93-299-S, Center for Research on Parallel Computation, Rice University, Febru-
ary 1993. (thesis proposal).

[27] U. Kremer. NP-completeness of dynamic remapping. Technical Report CRPC-TR93-330-S,
Center for Research on Parallel Computation, Rice University, August 1993. (also available
as D Newsletter #8).

[28] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing between
distributed arrays. In Frontiers90: The 3rd Symposium on the Frontiers of Massively Parallel
Computation, College Park, MD, October 1990.

[29] J. Li and M. Chen. Synthesis of explicit communication from shared-memory program
references. Technical Report YALEU/DCS/TR-755, Dept. of Computer Science, Yale Uni-
versity, New Haven, CT, May 1990.

[30] J. Li and M. Chen. The data alignment phase in compiling programs for distributed-memory
machines. Journal of Parallel and Distributed Computing, 13(4):213–221, August 1991.

[31] J. Ramanujam. Compile-time Techniques for Parallel Execution of Loops on Distributed
Memory Multiprocessors. PhD thesis, Department of Computer and Information Science,
Ohio State University, Columbus, OH, 1990.

[32] J. Ramanujam and P. Sadayappan. A methodology for parallelizing programs for multi-
computers and complex memory multiprocessors. In Proceedings of Supercomputing ’89,
Reno, NV, November 1989.

[33] L. Snyder and D. Socha. An algorithm producing balanced partitionings of data arrays. In
Proceedings of the 5th Distributed Memory Computing Conference, Charleston, SC, April
1990.

[34] A. Sussman. Model-Driven Mapping onto Distributed Memory Parallel Computers. PhD
thesis, School of Computer Science, Carnegie Mellon University, September 1991.

[35] R. E. Tarjan. Testing flow graph reducibility. Journal of Computer and System Sciences,
9:355–365, 1974.

[36] Thinking Machines Corporation, Cambridge, MA. CM Fortran Reference Manual, version
5.2-0.6 edition, September 1989.

[37] C. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory Machines.
PhD thesis, Rice University, Houston, TX, January 1993. Rice COMP TR93-199.

[38] S. Wholey. Automatic Data Mapping for Distributed-Memory Parallel Computers. PhD
thesis, School of Computer Science, Carnegie Mellon University, May 1991.

152 9 Automatic Data Layout in the D Programming Environment

[39] S. Wholey. Automatic data mapping for distributed-memory parallel computers. In Pro-
ceedings of the 1992 ACM International Conference on Supercomputing, Washington, DC,
July 1992.

[40] M.E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis, Stanford
University, August 1992.

Appendix: Fortran D Language

The task of distributing data across processors can be approached by considering the
two levels of parallelism in data-parallel applications. First, there is the question of how
arrays should be aligned with respect to one another, both within and across array di-
mensions. We call this the problem mapping induced by the structure of the underlying
computation. It represents the minimal requirements for reducing data movement for the
program, and is largely independent of any machine considerations. The alignment of
arrays in the program depends on the natural fine-grain parallelism defined by individual
members of data arrays.

Second, there is the question of how arrays should be distributed onto the actual par-
allel machine. We call this the machine mapping caused by translating the problem onto
the finite resources of the machine. It is affected by the topology, communication mech-
anisms, size of local memory, and number of processors of the underlying machine. The
distribution of arrays in the program depends on the coarse-grain parallelism defined by
the physical parallel machine.

Fortran D is a version of Fortran that provides data decomposition specifications for
these two levels of parallelism using DECOMPOSITION, ALIGN, and DISTRIBUTE
statements. A decomposition is an abstract problem or index domain; it does not require
any storage. Each element of a decomposition represents a unit of computation. The
DECOMPOSITION statement declares the name, dimensionality, and size of a decom-
position.

The ALIGN statement maps arrays onto decompositions. Arrays mapped to the same
decomposition are automatically aligned with each other. Alignment can take place ei-
ther within or across dimensions. The alignment of arrays to decompositions is specified
by placeholders I, J, K, ... in the subscript expressions of both the array and
decomposition. In the example below,

REAL X(N,N)
DECOMPOSITION A(N,N)
ALIGN X(I,J) with A(J-2,I+3)

A is declared to be a two dimensional decomposition of size N � N . Array X is then
aligned with respect to A with the dimensions permuted and offsets within each dimen-
sion.

After arrays have been aligned with a decomposition, the DISTRIBUTE statement
maps the decomposition to the finite resources of the physical machine. Distributions are
specified by assigning an independent attribute to each dimension of a decomposition.

9.6 Summary and Future Work 153

ALIGN X(I,J)
with A(J-2,I+3)

A(N,N)
DECOMPOSITION REAL X(N,N)

p�
p�
p�
p�
p�
p�
p�
p�

p�
p�

p�
p�

DISTRIBUTE
A(:,BLOCK) A(CYCLIC,:)

DISTRIBUTE

Figure 9.5 Fortran D Data Decomposition Specifications

Predefined attributes are BLOCK, CYCLIC, and BLOCK CYCLIC. The symbol “:” marks
dimensions that are not distributed. Choosing the distribution for a decomposition maps
all arrays aligned with the decomposition to the machine. In the following example,

DECOMPOSITION A(N,N), B(N,N)
DISTRIBUTE A(:, BLOCK)
DISTRIBUTE B(CYCLIC,:)

distributing decomposition A by (:,BLOCK) results in a column partition of arrays
aligned with A. Distributing B by (CYCLIC,:) partitions the rows of B in a round-
robin fashion among processors. These sample data alignment and distributions are
shown in Figure 9.5.

We should note that the goal in designing Fortran D is not to support the most gen-
eral data decompositions possible. Instead, the intent is to provide decompositions that
are both powerful enough to express data parallelism in scientific programs, and simple
enough to permit the compiler to produce efficient programs. Fortran D is a language
with semantics very similar to sequential Fortran. As a result, it should be easy to use by
computational scientists. In addition, we believe that the two-phase strategy for specify-
ing data decomposition is natural and conducive to writing modular and portable code.
Fortran D bears similarities to CM Fortran [36], KALI [25], and Vienna Fortran [8]. The
complete language is described in detail elsewhere [11].

154

10 Subspace Optimizations

Kathleen Knobe� William J. Dally �

ARTIFICIAL INTELLIGENCE LAB

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MA
email: fkathyk billdg@ai.mit.edu

Abstract: We distinguish between two different types of communication; we will ignore com-
munication required to align two objects of the same shape. Such communication occurs, for
example, when two 2-dimensional arrays must align for an operation to be performed on corre-
sponding elements. Since all the communication can occur concurrently this is less of an effi-
ciency issue than shape changing.

Shape changing arises when an object of some dimensionality must align with multiple parts
of a higher dimensioned object. A shape change occurs, for example, when a vector is required to
align with each row of a matrix as in the code, a(i) + b(j,i). Since, after alignment, each
(virtual) processor holding an element of b will also contain the associated element of a, a has
become 2-dimensional (changing its shape).

A shape change that adds a dimension of extent n may require a number of communications
proportional to O(1), O(lg n), or O(n) communication, depending on related code within the
program. For example, it may be replicated or privatized along that dimension. Since optimizing
among O(1), O(lg n), and O(n) communication is much more significant than optimizing the
alignment of objects of the same shape, we have developed an abstraction that exposes shape
changes but ignores alignment. We show a number of optimization based on this abstraction.

10.1 Introduction

Achieving the potential computing power of massively parallel MIMD systems has been
difficult. One of the major issues is the cost of communication. In order to address the
communication problem, there has been a significant focus in the research community
both on techniques for automatically determining good layout strategies and on language
extensions for specifying data layout [2, 12, 5, 1, 11].

Some communication arises simply because a value is needed by a processor other
than the one on which it resides. Other communications are more complex. They arise
because an element at some point in an object is computed based on the value in some

�Massachusetts Institute of Technology, Artificial Intelligence Lab, 545 Technology Square, Cam-
bridge, MA 02139. The research described in this paper was supported in part by the Defense Advanced
Research Projects Agency under contracts N00014-88K-0738 and N00014-91J-1698, by Air Force Sys-
tems under contract F19628-92-C-0045 and by a National Science Foundation Presidential Young Inves-
tigator Award, grant MIP-8657531, with matching funds from General Electric Corporation, IBM Corpo-
ration, and AT&T.

10.1 Introduction 155

previously computed point in that object. For example, a row in a 2-dimensional object
might be computed from values in the previous row. In this case, a 1-dimensional object,
the first row, is becoming a 2-dimensional object as values propagate along the second
dimension. This is referred to as shape changing.

This paper distinguishes between communication that involves shape changing and
communication that does not. We present a categorization of shape changing operations
and show some optimizations facilitated by this view.

10.1.1 Data Optimization

Data optimization techniques [8, 9, 10] automatically determine good layout strategies.
They are designed to create locality and therefore minimize communication by analysis
of the source code. The approach is driven by preferences among array occurrences, ref-
erences to the array in the source. A preference between two array occurrences indicates
that if the two occurrences are not aligned, communication will be required. Three types
of preferences occur in MIMD programs

� Conformance Preference

The conformance preference occurs between two operands of an operation. For
example, in

do i = ...
... = a(i) + b(i+3)
enddo

if a(i) does not align with b(i+3) for each i within the specified range, com-
munication is required to perform the +.

� Identity Preference

The identity preference occurs between a definition and a use of the same array if
dependence analysis cannot prove independence. For example, in

do i = ...
a(i) = ...

= a(j)
enddo

if an element of the array a might be both defined by the definition and used by the
use, then a dependence exists. Such a dependence implies that communication is
required to make the defined value available at the use if the definition and the use
of that element are not performed on the same processor.

� Control Preference

The control preference occurs between a control expression and operations it con-
trols. For example, in

156 10 Subspace Optimizations

if a then
do i = 1,20
... = b(i) + c(i)
enddo
endif

the processors that might be executing the + require access to a. If the value of a is
not available at these processors, communication will be required.

The preference graph is the graph consisting of nodes in internal representation of the
program and the preferences among those nodes. The preference graph is processed by
honoring preferences in order to minimize communication.

One interesting aspect of this process is the creation of dynamic alignment [7] which
provides the ability to align objects of different dimensionality according to use. For
example, the conformance preference created by the code segment

a(i) + b(k,i)

requires alignment of a 1-dimensional vector with the kth row of a 2-dimensional ar-
ray. The vector a is said to be dynamically aligned with respect to the variable k since
the function representing the alignment for a is a function of k. Notice that the same
alignment is created by the control preference between a and b in the code segment

do i = ...
do k = ...
if a(i) then
... = ... b(k,i)

endif
enddo

enddo

Previously we viewed dynamic alignment as alignment of two conforming objects,
a 1-dimensional vector and a row of a 2-dimensional array. However here we will view
this as a shape changing operation. The vector is promoted to a 2-dimensional array since
over time it will align with each row. �

10.1.2 Shapes

One of the significant challenges in compiling for parallel systems is transforming the
code to change the shape of the operations. For vector machines, the goal is to trans-
form operations that are expressed as a sequence of operations of dimensionality zero,
e.g., x(i) + y(i) in a loop on i, to fewer operations of dimensionality 1, e.g.,
x(1:n) + y(1:n), thus changing the shape of the operation. For SIMD machines,

�One advantage of the earlier view as conforming 1-dimensional objects is that lifetime analysis more
naturally views this situation as a set of smaller objects each with lifetimes within an iteration rather than
one larger object with a lifetime that spans all iterations.

10.1 Introduction 157

the result can include operations on multi-dimensional objects, e.g., a(1:n,1:k) +
b(1:n,1:k). In both cases the control flow over these operations remains sequential,
that is, this operation can occur in a sequential loop as follows

do i = 1, imax
z(i,1:n) = x(1:n) + y(1:n)
...
enddo

The shape of the iteration space for a loop nest determines the maximal dimensionality
of the shape of the operations within it. The do loops below imply a sequence of zero-
dimensional operations on this 2-dimensional space. It is up to the compiler to determine
the actual shape of the operations, but the maximum dimensionality of that shape is 2.

do i = imin, imax, istride
do j = jmin, jmax, jstride
a(i,j) = s1*s2 + b(i)
...

enddo
enddo

One way of viewing common SPMD compilation rules such as “scalars live on all pro-
cessors” and “owner computes” is that they are rules that effect the shape of the objects.
In the example above these rules imply that both the + and the * are 2-dimensional. The
scalars, s1 and s2, have been replicated since scalars live on all processors. For each i
and j in the appropriate range, b(i) is communicated to align with a(i,j). The oper-
ations are then performed in each of these locations. This is clearly more communication
than is required, and too many processors are performing the operations.

The term object as used here refers to an occurrence of an array such as b(i) above.
The term object also refers to an occurrence of an operation, focusing on the result rather
than the operation itself. In the code above s1*s2 is an object.

One way of viewing a common compiler optimization such as invariant code motion
is that it transforms the shape of an object. For example, moving the invariant s1*s2
out of the loop converts the example above to

t = s1*s2
do i = 1, imax
do j = 1, jmax
a(i,j) = t + b(i)
...
enddo
enddo

changing the shape of s1*s2 from a 2-dimensional object to a zero-dimensional object.
Section 10.2 describes the subspace abstraction which captures the notion of shapes. Sec-
tion 10.3 categorizes the ways in which objects can be transformed from one subspace
to another. Section 10.4 describes optimizing transformations based on the subspace ab-
straction. Section 10.5 describes how this work relates to alignment.

158 10 Subspace Optimizations

10.2 Subspaces

[5, 8] distinguish between the virtual machine level and the physical machine level.
(Alignment is a virtual machine concept whereas decomposition is a physical machine
concept.) The virtual machine is of unbounded size and the specifics of the geometry
are abstracted. Improved alignment at the virtual machine level leads to improved effi-
ciency when the code is stripped to the physical machine level. This discussion focuses
on compiler optimizations at the subspaces level before the compiler transforms the in-
termediate representation to the virtual machine level since improvements at this level
lead to more significant improvements, as shown in section 10.4.

In this paper, we consider a small language that includes expressions on scalars and
subscripted arrays, do loops and if statements. The abstract machine for this language
includes arithmetic operations and communication. if statements are handled by an ad-
ditional boolean argument, a guard, based on if conditions, which determines if a par-
ticular instance of the operation or a sequence of operations should be executed. Guards
are also used to limit operations to processors holding elements of the objects specified.

Because the data is totally distributed across the virtual machine, guards and commu-
nication maintain the semantics of loops from the source code. Therefore no loops occur
at this level. Loops are reintroduced later in the compiler when the machine size is taken
into account in order to sequence through multiple elements mapped to a single physical
processor.

The virtual machine level considers alignment across the unbounded machine deal-
ing with all the details required to align, for example, a(i) with b(2*i), c(i+3),
d(i,j) or e(n-i).

The subspace abstraction, introduced here, hides these details.
Consider the space Zn with basis vector fe�� e�� ���eng where each ei is an index in

the iteration space. This set has �n subsets. Each subset spans a subspace of the iteration
space.

For example, objects within loops on i, j and k may be in one of the following eight
distinct subspaces of the iteration space: fg, fig, fjg, fkg, fi, jg, fi, kg, fj, kg and fi, j,
kg. These correspond geometrically to the origin of the cube (fg), the axes of the cube
(fig, fjg, fkg), the faces of the cube (fi, jg, fi, kg, fj, kg) and the whole cube (fi, j, kg)
as seen in Figure 10.1.

Notice that there is a distinction among, for example, the 3 different 2-dimensional
planes that have different orientations but there is not a distinction among different po-
sitions of parallel planes with the same orientation.

This abstraction focuses on conforming subspaces and on the transformations of ob-
jects from one subspace to another. It abstracts away the specifics of alignment within a
subspace. In the example

do k ...
do j ...
do i ...
...a(i,j) op b(j*2,i+1,6)
...c(i) op d(k-1)
enddo

10.3 Subspace Changes 159

{i}

{j}

{k}

{i, j}

{i,k}

{j,k}

 { }

Figure 10.1 Geometric view of the subspaces of the space fi, j, kg

enddo
enddo

since a and b reference the same indices and are therefore in the same subspace, we
say they conform. They both reference a 2-dimensional object (i by j) within a 3-
dimensional iteration space fi, j, kg.� In this example, c and d do not conform since
they are in different subspaces.

10.3 Subspace Changes

When objects of different subspaces are operated on together, one object must expand to
conform to a subspace of higher dimensionality. In the invariant code motion example in
section 10.1.2, t in subspace f g must expand to conform to subspace fig.

Critical within the subspace level of abstraction is the type of communication required
for such an expansion. In the examples above, objects were expanded by replication
only. In fact, objects may expand in different ways, called expansion categories. Each
expansion category has its own semantic restrictions and its own costs. We will begin
with a discussion of expansion of scalars and then consider expansion of array sections.

10.3.1 Scalars

Scalars fall into expansion categories based on the characteristics of the communication
they require to expand.

�We assume that each subscript refers to 1 or 0 loop indices. It may not be a function of 2 indices. Here
we will deal with a(i*h,j,3) for scalar h and loop indices i and j, but not with a(i*j,h,3).

160 10 Subspace Optimizations

� Replicated: If the value of the scalar is the same for all iterations, the scalar can
be communicated via a fan out tree in O(lg N) time, where N is the extent of the
replication. For example,

s = ...
...

do i = ...
= ... s ...

enddo

� Privatized: If, for each iteration, the values of the scalar are computed indepen-
dently, no communication is required between iterations. For example,

do i = ...
s = ...
= ... s ...

enddo

� Scanned: If the scalar is defined by a recurrence that can be computed by a par-
allel prefix operation, the communication can be performed in O(lg N) time. For
example,�

do i = ...
s = s + a(i)
... = s ...
enddo

� Hopping: If the value of the scalar in one iteration is determined from the value
in a previous iteration, the value must be moved from one processor to another.
Expansion via hopping requires O(N) time. Hopping results either from a recurrence
not computable via a parallel prefix operation or from a conditional assignment to
the scalar. For example

do i =
if
s = ...
endif
... = s ...

enddo
�There is potentially some confusion of jargon here. The example above is normally termed a reduction

since we are reducing all the values stored in a to a single value stored in s. Here we are using the term
expansion to show that if s is distributed with respect to i, to align with each element of a, then the single
object s will live, although not necessarily at the same time, at all of the locations holding a value of a. It
has become, in some sense, a 1-dimensional object.

10.3 Subspace Changes 161

or

do i =
s = user_func(s)
... = s ...
enddo

� Implicitly distributed: If the scalar is the index of the loop or computable directly
from that index, then it is not necessarily stored on any processor. If the value re-
quired can be computed by inverting the alignment function on the processor ad-
dress. For example, in

do i ...
... = a(i) + i ...
enddo

since each processor can determine which element of the array a it holds, it can
compute the value of the variable i without communication.

Notice that the worst case here is hopping, O(N). However, in the SPMD model, the
“scalars are owned by all processors” rule requires O(N*P) messages, where N is the
iteration count and P is the number of processors, whenever there is a definition of the
scalar within a loop.

10.3.2 Control Expressions

An if statement gives rise to control preferences that treat the condition as an additional
operand of the operations it controls. This minimizes the communication of control ex-
pressions. The availability of the condition may slow up the operation in exactly the
same way that the availability of one of the operands might. Condition values may fall
into any of the expansion categories as shown in the following code.

� Replicated:

do i
if a then ...
... = x(i)

enddo

� Scanned:

do i
a1 = a1 + b(i)
if a1 then ...
... = x(i)

enddo

162 10 Subspace Optimizations

� Privatized:

do i
a2 = ...
if a2 then ...
... = x(i)

enddo

� Hopping:

do i
a3 = user_func(a3)
if a3 then ...
... = x(i)

enddo

� Implicitly distributed:

do i
do j
...
if i.gt.j then ...
... = y(i,j)
endif
...

enddo

10.3.3 Array Sections

Just as the expansion categories above show how a scalar expands to conform to an
object of larger dimensionality, an array section of a given dimensionality can expand to
conform to an array section of a larger dimensionality.

For example,

do i
do j
...
... a(i) + b(i,j)
enddo
enddo

Here a(i) is dynamically aligned with respect to j. Expansion of a(i) to conform
with subspace fi, jg might be privatized, hopping, replicated or scanned depending on
other code within the loop nest. See [13] for discussion of computation of array privati-
zation and [3] for a discussion of its importance.

Array sections may also expand due to control preferences as shown below.

10.3 Subspace Changes 163

do i
do j
if a(i) then
...
... b(i,j)
endif
enddo
enddo

10.3.4 Explicit Dimensions

Code can be written with the expanded index explicit in the source. For example,

� Privatized:

do i
a(i) = ...
... = ... a(i)

enddo

� Hopping:

do i
b(i) = ... b(i-1)
enddo

or

do i
if ...

c(i) =
endif
... = ... c(i)

enddo

Notice that these categories are consistent with the expansion categories discussed
above but the examples do not really exhibit changes in subspace per se.

Picture this situation not as an object expanding to a subspace that includes an addi-
tional index but rather as new values propagating along an existing dimension within a
subspace. The communication costs are comparable and the situations are treated iden-
tically. For example, an object in fi, jg that expands via hopping to become an object in
fi, j, kg incurs a communication cost similar to that of an object in fi, j, kg whose values
propagate via hopping along its k axis.

Given this modified view of expansion, we need to modify our view of conforming to
deal with explicit dimensions of this type. For example, in

164 10 Subspace Optimizations

do i
do j
c(i,j) = ... c(i,j-1)
... = c(i,j) + d(i)
enddo
enddo

the first statement defines the value of c(i,j) from the value of c(i,j-1). Therefore
c hops along the j dimension. So c is treated as a 1-dimensional object expanding to a
2-dimensional object via hopping, even though the j dimension is explicit in this case.
Therefore, c(i,j) + d(i) is conforming even though the indices referenced are not
identical. Whereas in

do i
do j
c(i,j) = ... c(i,j-1)
... = c(i,j) + e(i,j)
enddo
enddo

because c hops with respect to its explicit second dimension, j, c(i,j) + e(i,j)
is non-conforming even though the indices referenced are identical.

10.3.5 Reductions

The sections above have shown how expansions can appear in a variety of forms in
the source code and how the communication requirements for expansions depend on
other code within the same loops. However, when an object expands from subspace s�
to subspace s� on entry to a loop, then on exit from that loop, it must be reduced from
subspace s� to subspace s�.

One instance of the object along the promoted axis is taken to be the reduced object.
Specifically, if an object in fi, jg is promoted along axis k on loop entry, and klast is the
last iteration of the k loop actually executed, then on loop exit, the reduced object is an
object in fi, jg at the single point corresponding to klast on the k axis. At the subspace
level, this object simply conforms with other objects in subspace fi, jg even though at
the virtual machine level it may require communication to actually use it.

Since reductions cost nothing with respect to subspaces they are not addressed further.

10.4 Subspace Optimizations

This section introduces a cost model and shows several transformations on subspaces
that are optimizations with respect to this model. These optimizations are performed
prior to alignment. In other words, the compiler includes:

10.4 Subspace Optimizations 165

� a subspace optimizer that transforms the internal representation (IR) according to
the optimizations presented here, generating IR at the subspace level.

� a data optimizer that optimizes the alignment of the subspace IR, generating IR at
the virtual machine level.

� a strip miner [14] that maps IR at the virtual machine level to IR at the physical
machine level.

We will first consider a simple example that only includes objects that expand via
replication.

do i = 1, imax
do j = 1, jmax
do k = 1, kmax
x(i,j,k) = a(i,j) + e(i,j,k) +

c(i,j) + d(j) + b(j) + f(i)
enddo
enddo
enddo

Consider the naive approach of performing all the operations in the context of the left
hand side implied by the SPMD owner computes rule.

The subspace tree in Figure 10.2 shows the computation for the code above using
the owner computes rule. The subspace tree is a way of indicating operations within
subspaces. (Note that it is possible for a subspace tree to be a directed acyclic graph,
DAG, if common subexpressions are detected.)

The interpretation of this subspace tree is that it specifies the computations required
to compute the result for any given i, j and k.

Notice that this tree represents the dependences of a single statement through all the
loops controlling its execution. Although it represents only a single statement the op-
erations for this statement depend on other code in the loop. For example, the fact that
f(i) can be replicated across j here relies on knowledge about the entire loop nest.

The do loop representation in the source specifies the code that will be executed for
each iteration. It therefore makes apparent a set of optimizations consistent with this
view, i.e., the standard global optimizations. The subspace tree specifies what will be
executed for each statement over all the iterations of the loop. Its value is that it makes a
different set of optimizations apparent.

We see from this subspace tree that the owner computes rule results in the following
operations:

� expansions

– 2 replications from fjg to fi, jg
– 1 replication from fig to fi, jg
– 5 replications from fi, jg to fi, j, kg

� arithmetic operations

– 5 operations in fi, j, kg

166 10 Subspace Optimizations

replicate
across k

a(i, j)

c(i, j)

b(j)

e(i, j, k)

+

f(i)replicate
across j

replicate
across i

replicate
across k
replicate
across k
replicate
across k

replicate
across k

replicate
across i

{i, j}

{i, j}

{i, j}

{i, j}

{i, j}

{j}

d(j)
{j}

{i}

{i, j, k}

{i, j, k}

Figure 10.2 Subspace Tree

10.4.1 Relative Costs

For optimizations at the subspace level, we use a simple cost model that provides a partial
ordering among the costs of computing various expressions. We only require a relative
cost model here since the goal of the model is not to actually determine the costs but to
determine what constitutes an optimization.

Each arithmetic operation takes place in a subspace. The relative costs of a single node
therefore depends on the following:

� the subspace in which a computation is performed

For example, an addition performed in the 1-dimensional subspace fig is cheaper
than an addition performed in the 2-dimensional subspace fi, jg. We may not know
if an addition in fig is cheaper than an addition in fjg or fj, kg.

� the subspace of the source and of the target of an expansion

For example, the expansion from fig to fi, jg is cheaper than the expansion from fig
to fi, j, kg. The expansion from fi, jg to fi, j, kg is also cheaper than the expansion
form fig to fi, j, kg, but we may not know if the expansion from fig to fi, jg is
cheaper than the expansion from fjg to fi, jg.

� the category of a subspace changing transformation

For example, a hopping expansion from fig to fi, jg is more expensive than a
scanned expansion from fig to fi, jg, but we may not know if a hopping expan-
sion from fig to fi, jg is cheaper than a scanning expansion from fjg to fi, jg.

10.4 Subspace Optimizations 167

10.4.2 Subspace Minimization

Let us reexamine the example introduced at the beginning of this section. Considering
the fixed expression tree without reordering as produced by a possible parse of the source
expression (indicated below by the parentheses)

x(i,j,k) = (a(i,j) + (e(i,j,k) + (c(i,j) + (d(j)
+ ((b(j) + f(i)))))))

we can minimize the shape of the objects generated, the intermediate results, to their
natural shape by performing each operation in the smallest subspace appropriate for
the operands. For example, the smallest subspace for b(j) + f(i) is fi, jg. In fact,
we can compute (c(i,j) + (d(j) + ((b(j) + f(i))))) in subspace fi, jg.
The remainder of the expression must be performed in fi, j, kg. The result is

� expansions

– 2 replications from fjg to fi, jg
– 1 replication from fig to fi, jg
– 2 replications from fi, jg to fi, j, kg

� arithmetic operations

– 3 operations in fi, jg
– 2 operations in fi, j, kg

This optimization is similar in flavor to transformations performed in APL compilers to
limit the computations required in the presence of shape changes [4].

We can uncover further improvements if we allow the code to be reordered:

x(i,j,k) = e(i,j,k) + ((d(j) + b(j))
+ f(i) + c(i,j) + a(i,j))

For the reordered version the result is

� expansions

– 1 replication from fig to fi, jg
– 1 replication from fjg to fi, jg
– 1 replication fromfi, jg to fi, j, kg

� arithmetic operations

– 1 operation in fjg
– 3 operations in fi, jg
– 1 operation in fi, j, kg

168 10 Subspace Optimizations

replicate
across k

a(i, j)

c(i, j)

b(j)
e(i, j, k)

d(j)

{i, j, k} {i, j}

{j}

+ +

+

f(i)replicate
across j

replicate
across i

Figure 10.3 Improved Subspace Tree

To assess this optimization, we need a model for the relative cost of the tree based
on the relative costs of the nodes. The dilemma in determining the cost of the tree is
that its actual cost depends on the mapping. Therefore, we consider both the sum of the
nodes on any path and the total sum of the nodes. The most expensive path is a more
accurate measure if the mapping is such that siblings in the subspace tree are processed
in parallel, that is, if the virtual machine is a good approximation to the actual machine,
whereas the total cost of all operations is more accurate when the mapping is such that
siblings share processors and must be performed sequentially.

Notice that at the subspace level, the cost of communication due to misalignments
between two operands in the same subspace, for example, the cost of aligning a and
c within subspace fi, jg in Figure 10.3, does not appear in the cost model. The only
communication costs considered are those due to expansions. This is because, for repli-
cations, scans and hops, a given processor may have to wait for a series of other commu-
nications to occur before the communication it must perform is enabled. This constitutes
an inherent delay. Whereas all the messages due to a misalignment between two con-
forming objects can occur immediately and in parallel. At this level we will then assume
an O(1) cost for misalignments. Misalignments can, of course, be costly. In fact, it is pos-
sible for a misalignment to result in a longer delay than an expansion if it involves more
messages and is limited by throughput. This is why, following subspace optimizations,
the compiler performs data optimization to minimize such misalignments.

One additional observation about our use of relative costs: One statement in a loop
may produce values used by another statement. Although the analysis of the statement is
with respect to all its iterations and the expansion categories for the statement operands
are based on all computations within the loop nest, subspace minimization is performed
on each statement independently. The assumption is that improvements in the relative
costs of each statement improves the over all relative cost.

We now examine the cost of the statement above for both the owner computes version
and the version optimized by reordering. Assume that the extent of each dimension in fi,
j, kg is 128. Using the longest path cost model, the owner computes version will require 2

10.4 Subspace Optimizations 169

* lg 128 or 14 for communication time and 5 + operations for arithmetic. The optimized
version has the same longest path cost. This optimization reduces the total time, not the
time for the longest path.

Now consider the cost model that compares the sum of all operations. The cost of a
replication will be counted as the number of messages sent. This is the size of the target
shape minus the size of the source shape.

For owner computes:

� expansions

– 2 replications from fjg to fi, jg
2 * ((128 * 128) - 128) = 32,512 messages

– 1 replication from fig to fi, jg
1 * (128 * 128 - 128) = 16,256 messages

– 5 replications from fi, jg to fi, j, kg
5 * ((128 * 128 * 128) - (128 * 128)) = 10,403,840 messages

– total

10,452,608

� arithmetic operations

– 5 operations in fi, j, kg
5 * 128 * 128 * 128 = 10,485,760

– total

10,485,760

For the reordered version:

� expansions

– 1 replication from fig to fi, jg
1 * (128 * 128) - 128 = 16,256 messages

– 1 replication from fjg to fi, jg
1 * (128 * 128) - 128 = 16,256 messages

– 1 replication fromfi, jg to fi, j, kg
1 * ((128 * 128 * 128) - (128 * 128)) = 2,080,768 messages

– total

2,113,280

� arithmetic operations

– 1 operation in fjg
128

170 10 Subspace Optimizations

– 3 operations in fi, jg
16,384

– 1 operation in fi, j, kg
2,097,152

– total

2,113,664

In conclusion, subspace minimization reduced the number of messages from 10,452,608
to 2,113,280 and the number of arithmetic operations from 10,485,760 to 2,113,664 for
this statement.

10.4.3 Subspace Minimization with other Types of Expansion

In the example above all the objects that require expansion are expandable via replica-
tion. This is not always the case. Consider the following example.

do i = 1, imax
s = a(i) + b(i)
do j = 1, jmax
s = user_func(s)
do k = 1, kmax
s = s + c(i,j,k)
enddo

enddo
enddo

Here, s is privatized with respect to i, hopping with respect to j and scanned with
respect to k. Therefore, any particular use of s must be preceded by nodes for the scan,
the hop and the privatize in the subspace tree representation.

Consider the code:

a(i,j,k) = b(i) + c(i) + d(i,j)

We might assume from the subspace minimization discussion that the optimal organi-
zation for this code would be:

a(i,j,k) = (b(i) + c(i)) + d(i,j)

so that b(i) + c(i) could be performed in the minimal subspace, fig, prior to ex-
pansion. In fact, this is true if all the expansions to fi, j, kg are replications. However,
if other expansion categories are involved, they may restrict the application of subspace
minimization causing unexpected results.

10.4 Subspace Optimizations 171

+

replicate
across k

{i, j}

{i, j, k}

replicate
across k

privatize
across k

{i}

{i, j}

{i, j} privatize
across j

hop
across j

b(i)

c(i)
{i}

d(i, j)

Figure 10.4 Computations at owner with expansions other than replication

+

{i, j}

{i, j, k}

replicate
across k

privatize
across k

{i}

{i, j}

{i, j} privatize
across j

hop
across j

b(i)

c(i)
{i}

+
{i, j}

d(i, j)

Figure 10.5 Subspace minimization with expansions other than replication

Suppose the expansion categories are as shown in Figure 10.4. Then b(i) + c(i)
cannot be performed in subspace fig and replicated to fi, j, kg since the result has dif-
ferent values along both the j and the k axes for any given value of i. Thus, this or-
ganization simply fixes the ordering of additions within the multi-operand addition in
Figure 10.4. It does not result in any reduction of either communications or arithmetic
operations. However c(i) + d(i,j) can be computed in space fi, jg since, given
i and j, the value of c(i) + d(i,j) is identical for any k. This result can then be
expanded to subspace fi, j, kg via replication as shown in Figure 10.5. Therefore given
the expansion categories for this example, the best performance is achieved by:

a(i,j,k) = b(i) + (c(i) + d(i,j))

The number of messages saved by this approach is extent�i��extent�j��extent�k��
extent�i� � extent�j�. If each extent is 128, as in the previous example, 2,080,768 mes-
sages are saved. The number of additions saved is also 2,080,768.

10.4.4 Combining Multiple Expansions

Notice, in section 10.4.2, we were able to interchange the order of replications and local
operations to improve efficiency. This is not always semantically valid with other forms
of expansion. However, some optimizations are possible. Recall that we were able to
transform multiple replicates to a single replicate as shown in Figure 10.6.

172 10 Subspace Optimizations

+ x

y

replicate
across i

replicate
across i

{i} { }

{ }

replicate
across i

+

y

x
{ }

{ }

{ }
{i}

Figure 10.6 Interchange of replicates with a local computation

+ x

y

{i} { }

{ }

y

{ }
+ x

{ }

{ }
{i}

scan
across i

scan
across i

scan
across i

Figure 10.7 Interchange of scans with a local computation

10.4 Subspace Optimizations 173

We might be able to perform similar transformations as shown for the example in
Figure 10.7. Since both operands of the + are scanned across i prior to the addition,
it is be possible to perform the addition prior to expansion if the values at intermediate
iterations are only used in computing the final result.

10.4.5 Expansion Strength Reduction

Transforming an expansion from a communication category of higher cost to one of
lower cost is called expansion strength reduction.

For example, in the following code

do i ...
if a(i) then
b = b + c(i)
endif
enddo

the assignment could be computed via a O(lg N) scan operation, but since the value of
c(i) is conditionally added to the running sum we might naively generate expansion
via hopping, which takes O(N) time. However, the effect of the condition can be handled
by generating a scan with a mask in O(lg N) time.

Similarly, in the following code

do i =
b = b + 1
... = b + a(i)
...

enddo

the increment of b appears to be a scanned expansion, O(lg N), however, since each
processor holding a value of a can determine locally the corresponding value of i and
since b can be computed locally from i, we are able to reduce the O(lg N) scan to an
O(1) privatization.

10.4.6 Expansion Costs

Section 10.4.2 addressed subspace minimization. Before considering more complex op-
timizations we must discuss the cost of expansions that are more interesting than simple
replication.

We consider the cost of an expansion via hopping in somewhat more detail. The reason
the object must hop, as opposed to replicate, is that some local operation may be required
on the object in each iteration, at each processor, prior to sending the object on to the
next processor for the next iteration. The actual cost of the expansion is then

(the cost of the hops * the cost of the computation within each hop)

174 10 Subspace Optimizations

scan
across i

+=

L:

E:

b(i)
s

Figure 10.8 Computation within a hopping expansion

We can typically ignore the cost of the computation (as we do for the replicate) when
the cost is a small constant and just consider the cost of the communication only. How-
ever, if the cost of computing the next value is O(N) or O(lg N), this cost cannot be
ignored. Similarly, a sum scan is considered O(lg N) since communication takes O(lg N)
time and the sum itself on each processor takes O(1) time. However, if the computation
required by the scan is not O(1) then it must also be taken into account.

A node in the subspace tree for a replication simply contains the replication itself.
The cost of such a node is simply the cost of the communication. A node for a hop

or a scan, on the other hand, will include both the communication and an indication of
what part of the subtree below (to the right) is to be performed locally at each node. The
rest is considered input required to be available at a node when the hop or scan arrives
there.

For example,

do i ...
s = s + b(i)
enddo

will appear as shown in Figure 10.8.
Just as the + appeared within vertical bars to indicate the operation at a node in earlier

subspace trees, the larger vertical bars indicate the operation at the node here. “L:”
indicates the local computation required with each communication. The code to the right
of the vertical bars can be computed prior to arrival of the hop or scan. “E:” indicates
the expansion category. To compute the cost of a hop or a scan node such as that above,
compute the cost of the computation at the node (within brackets) times the cost of the
communication type. For this example the cost is O(lg N) * O(1) or O(lg N).

10.4.7 Reducing the Computation within Expansions

The formula for the cost of expansions leads us to consider reducing the cost of an
expansion by reducing the code that is required at each location prior to sending the

10.5 Subspaces Optimization Compared to Alignment 175

value on to the next location. One approach is to speculatively execute as much of that
code as possible on all processors concurrently instead of waiting for the serial control
to arrive at the processor before beginning execution. Consider the following

do i = 1, imax
if s.gt.a(i) then
do j = 1, jmax
s = s + b(i,j)
enddo
endif
enddo

Naively, s hops across i since the execution of the j loop that updates s depends on
the value of s in the current iteration. Therefore each of O(imax) instances of the j loop
takes O(lg jmax) time so the total cost is O(imax * lg jmax).

However if we execute the j loops for all iterations of the i loop saving the results in
temporaries, they can all take place in parallel summing b along all the columns in O(lg
(jmax)) time. The result, an object of subspace fig, is then conditionally added up. This
addition requires hopping (O(imax) time) to ensure availability of the condition. So the
total time is now O(imax + lg(jmax)) instead of O(imax * lg (jmax)).�

This is an optimization based on the shortest path cost model only. Although the num-
ber of computations performed increases, the total time is reduced by shortening the
critical path.

10.5 Subspaces Optimization Compared to Alignment

An expansion implies a delay of O(N) if the expansion is via hopping, O(lg N) if the
expansion is via replication or scanning or O(1) if the expansion is via privatization.
Reducing the number of subspace changes in the subspace tree, reducing the rank of
the subspace of the source and target of a subspace change or reducing the strength
(hopping to scanned, for example) are significant optimizations since they can affect the
availability of the result by O(N) or O(lg N).

Not all communication arises from subspace transformations. Some communication
results from unhonored conformance, identity and control preferences that did not in-
volve changes in subspace. If the operands of the + operations performed in subspace fi,
jg in the subspace tree in Figure 10.3 are unaligned, the communication to align them is
conformance communication and can take place in parallel in O(1) time. If the reference
to c(i,j) is needed in one set of processors for this computation but is defined in an-
other set of processors, the communication to realign c is identity communication and
can take place in parallel in O(1) time.

�This particular example is analogous to a carry-select adder [6].

176 10 Subspace Optimizations

In aligning two objects within the same subspace, a value in one location must move
to one other location whereas an expansion which adds an index of extent N to the
subspace, a value in one location may have to move to N other locations. Therefore, we
first perform transformations that optimize the distinction between communication that
takes O(N), O(lg N), or O(1) at the subspace level. Then, given the transformed code,
we optimize the alignments at the virtual machine level.

The notion of two objects conforming at the subspace level is analogous to the notion
of two objects aligning at the virtual machine level. The notion of expanding one object
to conform with another at the subspace level is analogous to moving an object to align
at the virtual machine level.

10.6 Summary

This paper introduces the subspace abstraction and provides evidence of its value. This
abstraction distinguishes between two types of communication, that required to align
objects within the same subspace of the iteration space and that required to expand an
object from one subspace to another. Since expansions are significantly more expensive
than alignments within a subspace, the subspace abstraction makes the first visible while
suppressing the second. This enables us to focus on optimizations at this level before an-
alyzing alignment on the transformed code. Several such optimizations presented above
include

� limiting the cost of expanding objects according to that required by their expansion
category (replicating, privatizing, hopping, scanning or implicitly distributing)

� minimizing the subspace for local operations and for expansions

� reducing the strength of expansion

� reducing the computations within expansions

This constitutes a preliminary investigation of the subspace abstraction. Current work
includes investigating the use of the subspace abstraction in

� predicting program performance

� driving automatic alignment and automatic decomposition

� generating non-SPMD code.

10.7 Acknowledgments

Thanks to Joan Lukas, Norm Rubin and Carl Offner for productive discussions and to
Ellen Spertus for several careful readings of the paper.

10.7 Acknowledgments 177

References

[1] Barbara Chapman, Piyush Mehrotra, and Hans Zima. Vienna Fortran - a Fortran language
extension for distributed memory multiprocessors. Technical report, Institute for Computer
Applications in Science and Engineering, Hampton, Virginia, Sept 1991.

[2] Siddhartha Chatterjee, John R. Gilbert, Robert Schreiber, and Shuang-Hua Teng. Automatic
array alignment in data-parallel programs. In Proceedings of the Twentieth Annual Sympo-
sium on Principles of Programming Languages, Charleston, SC, January 1993. Association
for Computing Machinery.

[3] R. Eigenmann, J. Hoefinger, Z. Li, and D. Padua. Experience in the automatic parallelization
of four Perfect-Benchmark programs. In Proceedings of the 4th workshop on Programming
Languages and Compilers for Parallel Computing. Pitman/MIT Press, AUG 1991.

[4] L. Guibas and D. Wyatt. Compilation and delayed evaluation in APL. In Proceedings
of the Fifth Annual Symposium on Principles of Programming Languages. Association for
Computing Machinery, January 1978.

[5] HPF language specification, version 1.0. Technical Report CRPC-TR 92225, Rice Univer-
sity, Houston, Texas, January 1993.

[6] Kai Hwang. Computer Arithmetic. Wiley, 1979.

[7] Kathleen Knobe, Joan D. Lukas, and William J. Dally. Dynamic alignment on distributed
memory systems. In Proceedings of the Third Workshop on Compilers for Parallel Com-
puters, Vienna, Austria, July 1992. Austrian Center for Parallel Computation. Published as
technical report ACPC/TR 92-8 of the Austrian Center for Parallel Computation.

[8] Kathleen Knobe, Joan D. Lukas, and Guy L. Steele Jr. Data optimization: Allocation of
arrays to reduce communication on SIMD machines. Journal of Parallel and Distributed
Computing, 8:102–118, 1990.

[9] Kathleen Knobe and Venkataraman Natarajan. Data optimization: Minimizing residual in-
terprocessor data motion on SIMD machines. In Frontiers ’90: The Third Symposium on the
Frontiers of Massively Parallel Computation, College Park, Maryland, Oct 1990. University
of Maryland.

[10] Kathleen Knobe and Venkataraman Natarajan. Automatic data allocation to mimimize data
motion on SIMD machines. Journal of Supercomputing, 1993. to appear.

[11] Jingke Li and Marina Chen. Index domain alignment: Minimizing costs of cross-referencing
between distributed arrays. In Frontiers ’90: The Third Symposium on the Frontiers of Mas-
sively Parallel Computation, College Park, Maryland, Oct 1990. University of Maryland.

[12] J. Ramanujam and P. Sadayappan. Compile-time techniques for data distribution in dis-
tributed memory machines. IEEE Transactions on Parallel and Distributed Systems, 2(4),
October 1991.

[13] Peng Tu and David Padua. Array privatization for shared and distributed memory machines.
ACM SIGPLAN Notices, 28(1), January 1993. Proceedings of the Workshop on Languages,
Compilers, and Run-Time Environments for Distributed Memory Multiprocessors.

178 10 Subspace Optimizations

[14] Michael Weiss. Strip mining on SIMD architectures. In International Conference on Su-
percomputing, Cologne, Germany, June 1991. ACM.

179

11 Data and Process Alignment in Modula-2*

Michael Philippsen Markus U. Mock
DEPARTMENT OF INFORMATICS

UNIVERSITY OF KARLSRUHE, GERMANY

email: (phlipp jmock)@ira.uka.de

Abstract: Exploiting locality is a central goal of translating problem-oriented parallel program-
ming languages for distributed memory parallel machines. Modula-2* places the burden of auto-
matically deriving good data and process distribution on the compiler.

In this paper we present a technique implemented in our optimizing compiler that enhances
locality in a source-to-source transformation. Analysis of data access patterns and parallel oper-
ations leads to an arrangement graph. Processing of this graph reveals conflicting arrangements.
Some assumptions and a heuristic based on dynamic programming enables the compiler to find
the best alignment in logarithmic time. The technique has improved runtime performance on
benchmarks by over 60%.

11.1 Introduction

Straightforward compilation of FORALL statements and allocation of array elements
onto massively parallel machines results in a significant amount of interprocessor data
motion. Therefore, data and process distribution is an essential problem of numerous
compiler projects targeting distributed memory machines.

There is widespread agreement about the two goals of data and process distribution:
(1) Data locality. To reduce the amount of communication and achieve minimal run-
time, all data elements which are used by a process should be store locally on the same
PE. (2) Parallelism. Using just one processor results in perfect data locality and minimal
communication cost. In general, however, the run-time can be improved by exploiting the
full degree of parallelism provided by the hardware. A trade-off between the conflicting
goals of data locality and parallelism must be found.

Whereas the goals are agreed upon, totally different approaches to reach them have
been developed. In many programming languages the user must explicitly provide the
data layout. Some languages require an explicit mapping of the data onto the topology
[1, 14, 11], others are more abstract and offer either sets of directives for the compiler or
interactive or knowledge-based environments that help determine the alignment of array
dimensions and mapping functions [4, 10, 8, 3, 2]. Recent work [6, 7, 5, 16, 9] focuses
on static compile-time analysis to automatically find a data decomposition that achieves
both goals for vector and data-parallel operations.

Modula-2* [17] is designed for high-level, problem-oriented, and machine-independ-
ent parallel programming. The programmer can focus on the problem he has to solve,

180 11 Data and Process Alignment in Modula-2*

abstracting from the available number of processors and the interconnection network.
Therefore, the compiler has to determine an appropriate data and process distribution.

Known approaches to automatically derive good data allocations have been targeting
pure data-parallel programming languages, i.e. the parallelism has come from vector
manipulations. In these approaches it is sufficient to find good data allocations. Locality
is achieved by applying the owner-computes rule to distribute the statement execution
onto the processors accordingly.

Modula-2*, however, is not a purely data-parallel programming language. When de-
signing Modula-2*, we wanted to preserve the main advantages of data-parallel lan-
guages while avoiding the drawbacks [13]. Although data-parallel programming is pos-
sible, the notion of process is present. Therefore, both data and process distribution must
be found by the compiler.

In this paper we present our approach to derive both data and process distribution for
Modula-2* programs. Our technique is based on the work of Knobe [7] but extends her
ideas with the consideration of process distribution and the clear separation of high-level
data arrangement and physical data layout.

In section 11.2 we present the basic characteristics of Modula-2*. Section 11.3 ex-
plains the general approach of the Modula-2* compiler. In sections 11.4 and 11.5 we
give some more details on the alignment graphs, the conflict detection, and the heuristic
search mechanism.

11.2 Modula-2*

The programming language Modula-2* was developed to allow for high-level, problem-
oriented and machine-independent parallel programming. As described in [17], it pro-
vides the following features:

� An arbitrary number of processes operate on data in the same single address space.
Note that shared memory is not required; a single address space merely permits all
memory to be addressed, but not necessarily at uniform speed.

� Synchronous and asynchronous parallel computations as well as arbitrary nestings
thereof can be formulated in a totally machine-independent way.

� Procedures may be called in any context (sequential, synchronous, or asynchronous)
at any nesting depth. Furthermore, additional parallel processes can be created in-
side procedures (recursive parallelism).

� All abstraction mechanisms of Modula-2 are available for parallel programming.

Modula-2* extends Modula-2 with just two language constructs:

1. The only way to introduce parallelism into Modula-2* programs is by means of the
FORALL statement, which has a synchronous and an asynchronous version.

11.2 Modula-2* 181

2. The distribution of array data is optionally specified by so-called allocators. These
machine-independent allocators do not have any semantic meaning. They are just
hints about data layout for the compiler.

Because of the compactness and simplicity of these extensions, they could easily be
incorporated into other imperative programming languages, such as Fortran, C, or Ada.

11.2.1 FORALL statement

In Modula-2*, the syntax of the FORALL statement is:

ForallStatement =
FORALL ident ":" SimpleType IN (PARALLEL | SYNC)

StatementSequence
END.

SimpleType is an enumeration or a possibly non-static subrange, i.e. the boundary ex-
pressions may contain variables. The FORALL creates as many (conceptual) processes as
there are elements in SimpleType. The identifier introduced by the FORALL statement
is local to it and serves as a runtime constant for every process created by the FORALL.
The runtime constant of each process is initialized to a unique value of SimpleType.

Each process created by a FORALL executes the statements in StatementSequence.
The END of a FORALL statement imposes a synchronization barrier on the participating
processes: the termination of the whole FORALL statement is delayed until all created
processes have finished their execution of StatementSequence.

In a synchronous FORALL, the created processes execute StatementSequence in
lock-step, while in the asynchronous case, they work concurrently.

The behavior of branches and loops inside synchronous FORALLs is defined with a
MSIMD (multiple SIMD) machine in mind. This means that Modula-2* does not re-
quire any synchronization between different branches of synchronous CASE or IF state-
ments. The exact synchronous semantics of all Modula-2* statements, including nested
FORALLs, are defined in [17].

11.2.2 Allocation of array data

Modula-2* provides a simple, machine-independent construct for controlling the allo-
cation of array data. This construct is optional and does not change the meaning of a
program. The modified declaration syntax for arrays is:

ArrayType =
ARRAY SimpleType [allocator]

{"," SimpleType [allocator]} OF type.
allocator =
LOCAL | SPREAD | CYCLE | RANDOM | SBLOCK | CBLOCK.

182 11 Data and Process Alignment in Modula-2*

Array elements whose indices differ only in dimensions that are marked LOCAL are
associated with the same processor. This facility is used to avoid distribution of data in a
given dimension.

Dimensions with allocator SPREAD are divided into segments, one for each of the
available processors. A vector with n elements is assigned to P processors by allocating
a segment of length dn�P e to each processor. While utilizing all available processors, it
minimizes the cost of nearest-neighbor communication.

Dimensions with allocator CYCLE are distributed in a round-robin fashion over the
available processors. Given P processors, the elements of a vector whose indices are
identical modulo P are associated with the same processor. In contrast to SPREAD,
CYCLE maximizes the cost of nearest-neighbor communication: neighboring array el-
ements are always on different processors, leading to better processor utilization if a
parallel algorithm operates on subsegments of a vector.

Dimensions with allocator RANDOM are distributed randomly over the available pro-
cessors. In contrast to CYCLE, RANDOM leads to a better processor utilization if a parallel
algorithms accesses the dimension in a random pattern.

If either SPREAD, CYCLE, or RANDOM apply to several successive dimensions, then
these dimensions are “unrolled” into one pseudo-vector with a length that is the product
of the lengths of the individual dimensions. This scheme idles fewer processors than
applying SPREAD, CYCLE, or RANDOM to individual dimensions.

Allocators SBLOCK and CBLOCK apply SPREAD and CYCLE resp. to each dimension
individually. For two successive dimensions, SBLOCK has the effect of creating rectan-
gular subarrays and assigning those to the processors. With this arrangement, nearest-
neighbor communication in all dimensions is best supported when the interconnection
network can be configured into the same number of dimensions as the arrays.
CBLOCK for two dimensions also creates two-dimensional subarrays, but the rows and

columns of these subarrays are then distributed in a round-robin fashion over the proces-
sor grid. Again, SBLOCK minimizes nearest-neighbor communication, while CBLOCK
allows high processor utilization if smaller subarrays are processed in parallel.

11.3 Alignment in Modula-2*

In this section we present the general ideas of our data and process alignment strategies.
Data layout is the decision which element of an array is physically stored on which

processor. Arrangement is the process of arranging array elements so that the elements
of different arrays which are used together will end up in the same processor.

Although arrangement and layout are seen as one step in the literature, we propose to
separate these issues into two phases:

Alignment = Arrangement + Layout

11.3 Alignment in Modula-2* 183

11.3.1 Data Alignment

In terms of Modula-2* we use a source-to-source transformation in the first phase to
achieve the arrangement. For the second phase we have developed an adequate layout
algorithm [12] that maps arrays onto the machine depending on their declarations. Con-
sider the following example:

VAR A: ARRAY [1..90] SPREAD OF INTEGER;
B: ARRAY [0..100] SPREAD OF INTEGER;

BEGIN
FORALL i:[1..90] IN SYNC
A[i] := B[i-1];
B[i] := 0

END
END

To arrange arrays A and B, array A is enlarged and shifted to the left. All index expres-
sions involved are transformed accordingly. After this, elements which are used together
have the same index. Note that the new array A is larger than the old one. Since the pri-
mary goal of our optimization is runtime performance we allow for moderate waste in
storage consumption.

VAR (* A: ARRAY [1..90] SPREAD OF INTEGER; *)
A,B : ARRAY [0..100] SPREAD OF INTEGER;

BEGIN
FORALL i:[1..90] IN SYNC
A[i-1] := B[i-1];
B[i] := 0

END
END

The analysis would not arrange arrays A and B if the programmer had used different
allocators. In this case, the compiler issues a performance warning, which suggests to
reconsider the used allocators. If the programmer does not use any allocator, the compiler
selects an appropriate one.

In the second phase, the layout algorithm maps both arrays to the available processors
in the same way. Since both arrays have the same declaration, elements with the same
index end up in the same processor. Our layout algorithm, which is described in [12],
reaches the following goals: (a) Exploit fast communication patterns if there is special
hardware support, e.g. nearest-neighbor networks. (b) Perform simple address calcula-
tions. The computation of processor numbers and addresses of data elements are fast
shift and mask operations.

184 11 Data and Process Alignment in Modula-2*

11.3.2 Process Alignment

Up to now we have only dealt with the data alignment and its realization. Process align-
ment is also achieved by means of a source-to-source transformation. For this purpose,
we have augmented the FORALL statement as follows:

ForallStatement =
FORALL ident ":" SimpleType IN (PARALLEL | SYNC)
[ALIGNED WITH Designator]
StatementSequence

END.

The ALIGNED WITH term is not present in the original Modula-2* program. It is de-
rived by compile-time analysis. In the example the transformation results in:

VAR (* A: ARRAY [1..90] SPREAD OF INTEGER; *)
A,B : ARRAY [0..100] SPREAD OF INTEGER;

BEGIN
FORALL i:[0..89] IN SYNC ALIGNED WITH B[i]
A[i] := B[i]

END;
FORALL i:[1..90] IN SYNC ALIGNED WITH B[i]
B[i] := 0

END
END

The code generator then simply considers the range of the FORALL as an array and
invokes the layout algorithm to determine which processor has to simulate which of the
conceptual processes in a virtualization loop. In the above example the original FORALL
has been split into two parts. In both FORALLs the process with index i will be executed
where data element B[i] resides, resulting in purely local accesses. This could not be
achieved with a single FORALL. Furthermore, providing the code generator with exact
alignment information facilitates easy exploitation of nearest-neighbor communication
networks.

The arrangement does not always work that smoothly. In general, there are lots of
alignment preferences both for data usage and process alignment. Additionally, suitable
cost estimation is required. Depending of the overhead cost of splitting up a FORALL, it
may be advantageous on particular parallel hardware to accept some non-locality instead.

The following two sections are more specific and show our arrangement algorithm in
some detail.

11.4 Arrangement Graphs and Conflicts 185

11.4 Arrangement Graphs and Conflicts

During static compile-time analysis we create an arrangement graph. Nodes of this graph
are array references of arbitrary type and FORALL-variables. Edges express arrangement
preferences and are attributed with the type and the structure of the detected preference.

11.4.1 Type and Structure

We found four types of arrangement preferences to be necessary. The first two types
were introduced by Knobe and provide data arrangement information.

� An identity preference is an arrangement request that relates a defining occurrence
of an array to a using occurrence of the same array. It indicates a preference to align
identical elements of the array on the same processor for the two occurrences. The
idea is to avoid redistribution cost.

� A conformance preference relates two array occurrences that are operated on to-
gether in a parallel expression. The goal is to group elements of different arrays so
that all data accesses can be done locally.

Knobe has introduced a third preference for expressing data arrangement information.
An independence anti-preference is a property of specific array dimensions if these di-
mensions contain a potentially parallel subscript. For analysis of Modula-2*, this type
of preference is not necessary, because of (a) the allocators already indicate distributed
storage and (b) the explicitness of parallelism in array subscripts inside of FORALL
statements.

The next two types of arrangement preferences are used to gather information for
process alignment.

� A process preference relates the FORALL-variable to the leftmost occurrence (LMO)
of an array reference if the following conditions are fulfilled: (a) The LMO is in a
statement inside of the body of that FORALL and (b) the FORALL-variable appears
in the subscript expression of the LMO. Any other array occurrence fulfilling (a)
and (b) could be chosen as well.

Arranging the processes with all LMOs in the body of the FORALL will achieve
perfect locality of processes and data that is accessed in parallel. The process will
run where the data is located. Since conformance preferences already ensure that all
data which is operated on together will be arranged, only LMOs are considered.

� An LMO preference relates two successive LMOs of the same array in the body
of a FORALL if these are subscripted in the same dimension with an expression
using the same FORALL-variable. LMO preferences represent the cost of splitting
up FORALLs, i.e. the increased virtualization overhead. If all LMO preferences are
honored the FORALL will not be split up.

186 11 Data and Process Alignment in Modula-2*

The arrangement graph contains all four types of edges. If only the first or the last two
types are considered the graph is called either data arrangement graph or process ar-
rangement graph.

For affine index expressions, the edges are labeled with the preferred arrangement
structure. For two arrays A andB, this becomesALIGN (A,dA,sA,oA) WITH (B,dB,
sB,oB) for all types of preferences except process preferences. dA and dB are the num-
bers of the dimensions that impose the preference, and the subscript expressions sA� i+oA
and sB�i+oB denote elements that should be arranged in the specified array dimensions.
Normalization results in structure information of the form ALIGN (.,.,1,0) WITH
(.,.,c,d). For LMO preferences we have sA � � and oA � �. Analogously, process
preferences have the structure ALIGN i WITH (A,dA,sA,oA) since only one node is
an array occurrence.

11.4.2 Conflicts

The arrangement graph usually is not free of conflicts. In general, it is impossible to
arrange data elements and processes in a way that all accesses are local without any
redistribution of data or processes. We distinguish between data arrangement conflicts
and process arrangement conflicts.

11.4.2.1 Data Arrangement Conflicts

In the following example the data arrangement graph (see Figure 11.1) is cyclic.

A[.] := ...
B[.] := ...
FORALL i : [1..N] IN PARALLEL
s[i] := A[2*i] + B[i];
t[i] := A[i] + B[i]

END

We do not consider the edges to or from occurrences of s and t, since these do not
contribute to the cycle. There are two conformance preferences inside of the FORALL.
The first one is caused by the first assignment in the FORALL. It relates A[2*i] to
B�[i]. The second one relates the array occurrences A[i] and B�[i] of the second
assignment.

All array occurrences inside of the FORALL are related to their defining occurrences in
front of the FORALL with identity preferences. Thus, there are four identity preferences
between (A[.], A[2*i]), (A[.], A[i]), (B[.], B�[i]), and (B[.], B�[i]).

It is impossible to achieve locality between the elements A[2*i] and B�[i], de-
manded by the conformance preference of the first assignment, and at the same time
honor the second conformance preference between A[i] and B�[i].

11.4 Arrangement Graphs and Conflicts 187

A[2*i] B[i]

B[.]

B[i]

A[.]

A[i]

ALIGN (B,1,1,0)
 WITH (A,1,2,0)

ALIGN (B,1,1,0)
 WITH (A,1,1,0)

conformance

identity

conformance

identity

identity

identity

Figure 11.1 Data Arrangement
Graph

In our approach, we avoid data redistribution at run-time inside of FORALLs. There-
fore, there are two possible data arrangements. In both cases, one conformance prefer-
ence is honored, the other one is broken.
To determine all possible arrangements, we apply the following algorithm to each cycle
in the data arrangement graph:

1. Start with a:=1, b:= 0 at an arbitrary node N of the cycle. D denotes the dimension
of the array that is in the cycle.

2. Proceed to the next node in the cycle and change a and b as follows:

� If the edge is a normalized conformance preference that relates different ar-
ray occurrences and is attributed with the information ALIGN (.,.,1,0)
WITH (.,.,c,d) then replace a with a � c and b with b � c� d

� Otherwise, leave a and b unchanged.

3. Repeat step 2, as long as N is not reached again.

4. N is reached at dimension D�. There is

� an offset conflict if b
� � and D � D�,

� a stride conflict if a
� � and D � D�, and

� a dimension conflict if D
� D�.

Otherwise, there is no data arrangement conflict.

The compiler preserves all conflict free data arrangements and all conflicts, i.e. all pos-
sible data arrangements that require to break at least one data arrangement preference.
The way this information is used is presented in section 11.5.

188 11 Data and Process Alignment in Modula-2*

11.4.2.2 Process Arrangement Conflicts

In the following example the process arrangement graph (see Figure 11.2) is cyclic:

FORALL i : [1..N] IN SYNC
A[i] := t[i];
A[i+1] := A[i+1] + 1

END

Only process and LMO preferences are taken into account. In the example there are
two process preferences (i, A[i]) and (i, A[i+1]). Additionally, there is an LMO
preference between A[i] and A[i+1].

i

A[i] A[i+1]

ALIGN i
 WITH (A,1,1,0)

ALIGN i
 WITH (A,1,1,1)

ALIGN (A,1,1,0)
 WITH (A,1,1,0)

process

LMO

process

Figure 11.2 Process Arrange-
ment Graph

Although there are no data arrangement conflicts, there are process arrangement con-
flicts: process preferences to A[i] and A[i+1] contradict.

To determine all possible process arrangements, the process arrangement graph is
processed as follows:

1. The process alignment graph is divided into subgraphs that are processed in turn.
A subgraph consists of a FORALL-variable, and all LMOs that are related to that
FORALL-variable, either directly via process preference edges or indirectly via a
chain of LMO preferences.

2. For each cycle in each subgraph that contains the FORALL-variable exactly once,
execute steps 3–6:

3. Start with a:=1, b:= 0, and flag:=FALSE at the node of the FORALL-variable.

4. Proceed to the next node in the cycle. The edge is attributed with the normalized
structure ALIGN . WITH (.,.,c,d).

� If the edge is an LMO preference or flag �FALSE replace a with a � c and b
with b � c� d. In case of a process preference, set flag:=TRUE.

� The last edge in the cycle is a process preference with flag �TRUE. Replace
a with a�c and b with �b� d��c.

11.5 Cost Considerations 189

5. Repeat step 4, as long as the node of the FORALL-variable is not reached again.

6. There is

� an offset conflict if b
� � and

� a stride conflict if a
� �.

7. Consider all edges of a subgraph. There is a dimension conflict if among those there
is pair of process preference edges with differing dimensions in a single array.

The compiler keeps all conflict free process arrangements and all conflicts, i.e. all pos-
sible process arrangements that require to break at least one LMO preference. The way
this information is used is presented in the following section.

11.5 Cost Considerations

In the previous section the processing of the data arrangement graph has resulted in a col-
lection of several possible data arrangements for the whole program. For each FORALL
statement in this program the compiler has derived a collection of possible process dis-
tributions.

Finding an optimal process distribution with a brute force algorithm would involve
an exponential search space. A FORALL with n statements and p possible distributions
requires the cost estimation for pn different combinations.

Unfortunately, the combination of two optimal process distributions for the statement
sequences � � � � bn��c and bn��c � � � � � n does not necessarily result in a global opti-
mum, since redistribution of processes imposes additional costs. With the assumption
that the process redistribution cost, i.e., the cost of splitting up a FORALL into several
FORALLs, are small compared to the communication cost due to data access, the prob-
able loss of optimality can be tolerated. Therefore, a dynamic programming approach
with a time complexity of O(n log n) is feasible:

1. For each data arrangement perform steps 2–5.

2. For each process arrangement in each FORALL statement perform steps 3–4.

3. Derive the optimal process distribution and thus the appropriate splitting of the
FORALL by dynamic programming.

4. Select the best alternative for the given data arrangement.

5. Sum up the cost of all FORALL statements in the program for the given data ar-
rangement.

6. Select the data arrangement that results in the global optimum.

190 11 Data and Process Alignment in Modula-2*

The above is a high-level description of our technique. In reality the situation is more
complex: Loops and nested FORALLs require multidimensional cost vectors instead of
simple communication costs. The runtime of IF- and CASE-statements can be improved
if different data arrangements are chosen for different branches. To exploit this possibil-
ity, the algorithm considers dynamic array redistribution that ensures the unification of
different data arrangements after the branching statements. Details can be found in [15].

11.6 Example

Consider the following code fragment:

FORALL i : [1..N] IN SYNC
A[i+1] := T[i] + C[i];
A[i] := A[i+1] + T[i];
A[i+1] := T[i+1] + D[i];
A[i] := T[i] + A[i+1];

END

The data alignment analysis (see section 11.4.2.1) returns two possible patterns:

ALIGN (C,1,1,0) WITH (T,1,1,0)
ALIGN (C,1,1,0) WITH (A,1,1,1)
ALIGN (C,1,1,0) WITH (D,1,1,-1)

or

ALIGN (C,1,1,0) WITH (T,1,1,0)
ALIGN (C,1,1,0) WITH (A,1,1,0)
ALIGN (C,1,1,0) WITH (D,1,1,-1)

The process alignment analysis (see section 11.4.2.2) returns two possible patterns:

ALIGN i WITH (A,1,1,1)

or

ALIGN i WITH (A,1,1,0)

Although the compiler considers both possible data arrangements, in this example we
will only consider the second arrangement. Therefore, we will only present steps 2–5 of
the search algorithm from section 11.5.

11.7 Conclusion 191

line (A,1,1,1) (A,1,1,0) align cost
1 2g 1s 0 1s
2 1g+1s 1g 0 1g
3 1g 2g+1s 1 1g
4 1g+1s 1g 0 1g

1-2 3g+1s 0-0 1g+1s
3-4 2g+1s 3g+1s 1-0 2g+1f
1-4 5g+2s 6g+2s+1f 0-0-1-0 3g+1s+2f

In the above table s,g, and f denote the cost of a send operation, a get operation, and
the cost of splitting up a FORALL �. In the first step, the costs of executing individual
lines are computed for all process distributions. Merging lines 1 and 2 is obvious, since
in both lines (A,1,1,0) is superior. This is shown by 0—0 in the table. For merging
lines 3 and 4 there are three possibilities. All must be considered, since f is not zero. (1)
use (A,1,1,1) for both lines at a cost of �g � �s, (2) use (A,1,1,0) for both lines
at a cost of �g � �s, or (3) redistribute 1�0 at a cost of �g � �f , which is the cheapest.
When considering the whole FORALL statement in the last step, there are again three
options: (1) select data distribution (A,1,1,1) for all lines at a cost of �g � �s, (2)
select (A,1,1,0) for the first two lines and (A,1,1,1) for the last two lines at a
cost of g � �s� �f , or (3) redistribute again resulting in a cost of �g � �s� �f . Given
the values for g,s, and f , the best process distribution will split up the given FORALL
twice, after the second and after the third line.

Assuming the second data arrangement, the code fragment is transformed as follows.

FORALL i : [1..N] ALIGNED WITH A[i] IN SYNC
A[i+1] := T[i] + C[i];
A[i] := A[i+1] + T[i];

END;
FORALL i : [1..N] ALIGNED WITH A[i+1] IN SYNC

A[i+1] := T[i+1] + D[i];
END;
FORALL i : [1..N] ALIGNED WITH A[i] IN SYNC

A[i] := T[i] + A[i+1];
END

Note that for sake of clarity the transformations related to data arrangement are left out
in this example, i.e. all arrays are still presented in their original declaration with the
original subscripts.

11.7 Conclusion

In this paper we have presented a technique that enhances locality using a source-to-
source transformation. The result of this program transformation is a data and process

�In the example we set s � ���, g � ���, and f � �� time units.

192 11 Data and Process Alignment in Modula-2*

alignment that results in better performance: first benchmarking yields an improvement
of performance by at least 60% on the MasPar MP-1.

We consider this result to be initial evidence that automatic data and process distribu-
tion by the compiler is possible and can achieve attractive performance improvements.

References

[1] Thinking Machines Corporation, Cambridge, Massachusetts. C* Language Reference Man-
ual, April 1991.

[2] Barbara M. Chapman, Heinz Herbeck, and Hans P. Zima. Automatic support for data dis-
tribution. In Proc. of the 6th Distributed Memory Computing Conference, pages 51–58,
Portland, Oregon, April 28 – May 1, 1991.

[3] American National Standards Institute, Inc., Washington, D.C. ANSI, Programming Lan-
guage Fortran Extended (Fortran 90). ANSI X3.198-1992, 1992.

[4] Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Uli Kremer, Chau-Wen
Tseng, and Min-You Wu. Fortran D language specification. Technical Report CRPC-
TR90079, Center for Research on Parallel Computation, Rice University, December 1990.

[5] Manish Gupta and Prithviraj Banerjee. Automatic data partitioning on distributed memory
multiprocessors. In Proc. of the 6th Distributed Memory Computing Conference, pages
43–50, Portland, Oregon, April 28 – May 1, 1991.

[6] Kathleen Knobe, Joan D. Lukas, and Guy L. Steele. Data optimization: Allocation of ar-
rays to reduce communication on SIMD machines. Journal of Parallel and Distributed
Computing, 8(2):102–118, February 1990.

[7] Kathleen Knobe and Venkataraman Natarajan. Data optimization: Minimizing residual in-
terprocessor data motion on SIMD machines. In Frontiers ’90:The Third Symposium on
the Frontiers of Massively Parallel Computation, College Park, University of Maryland,
October 8–10, 1990.

[8] Charles Koelbel and Piyush Mehrotra. Supporting shared data structures and distributed
memory architectures. In Proc. of the 2nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 177–186, March 1990.

[9] Jingke Li and Marina Chen. Index domain alignment: Minimizing cost of cross-referencing
between distributed arrays. In Frontiers ’90: The Third Symposium on the Frontiers of
Massively Parallel Computation, pages 424–433, College Park, University of Maryland,
October 8–10, 1990.

[10] Piyush Mehrotra and John Van Rosendale. The BLAZE language: A parallel language for
scientific programming. Parallel Computing, 5:339–361, November 1987.

[11] Prentice Hall, Englewood Cliffs, New Jersey. INMOS Limited: Occam Programming Man-
ual, 1984.

11.7 Conclusion 193

[12] Michael Philippsen. Automatic data distribution for nearest neighbor networks. In Frontiers
’92:The Fourth Symposium on the Frontiers of Massively Parallel Computation, pages 178–
185, Mc Lean, Virginia, October 19–21, 1992.

[13] Michael Philippsen and Walter F. Tichy. Modula-2* and its compilation. In First Interna-
tional Conference of the Austrian Center for Parallel Computation, Salzburg, Austria, 1991,
pages 169–183. Springer Verlag, Lecture Notes in Computer Science 591, 1992.

[14] MasPar Computer Corporation. MasPar Parallel Application Language (MPL) Reference
Manual, September 1990.

[15] Markus U. Mock. Alignment in Modula-2*. Master’s thesis, University of Karlsruhe,
Department of Informatics, December 1992.

[16] J. Ramanujam and P. Sadayappan. Access based data decomposition for distributed memory
machines. In Proc. of the 6th Distributed Memory Computing Conference, pages 196–199,
Portland, Oregon, April 28 – May 1, 1991.

[17] Walter F. Tichy and Christian G. Herter. Modula-2*: An extension of Modula-2 for highly
parallel, portable programs. Technical Report No. 4/90, University of Karlsruhe, Depart-
ment of Informatics, January 1990.

194

12 Automatic Parallelization for Distributed
Memory Multiprocessors

Anne Dierstein� Roman Hayer� Thomas Rauber�
COMPUTER SCIENCE DEPARTMENT

SAARBRÜCKEN UNIVERSITY, GERMANY

email: rauber@cs.uni-sb.de

Abstract: This paper describes a framework for a parallelizing compiler for distributed mem-
ory multiprocessor machines (DMMs). The framework provides a compiler and a runtime sup-
port library which allows to use the DMMs with a sequential language. The compiler computes
a data distribution for the arrays of the source program and parallelizes the inner loops of the
program. The data distribution is computed by a branch–and–bound algorithm that uses a per-
formance estimator to evaluate the relative efficiency of different data decomposition schemes
for any given program. The performance estimation takes place at compile time and uses several
parameters of the used DMM like the startup time and the byte transfer time. The paper also
describes a prototype implementation of the framework on an Intel iPSC�860 for the language
Pascal and discusses some experimental evaluations.

12.1 Introduction

In current distributed memory computers like the Intel iPSC�860 or the CM-5 from
Thinking Machines, each processor has its own address space and inter–processor com-
munication takes place through sending and receiving messages. Typically, passing mes-
sages is several orders of magnitude slower than accessing the local memory. For the
programmer, this means that it is important to exploit locality of reference when pro-
gramming distributed memory computers and that the distribution of data plays a central
role for the efficiency of the parallel program. The concerns of locality must be balanced
against the overall goal of achieving parallel execution and a large speedup.

When using the standard message–passing languages that are provided by the manu-
facturers of the DMMs, the programmer has to control the distribution of data and code
across the processors. Each reference to a non–local data item and each synchroniza-
tion has to be coded as a call to a runtime library. Unfortunately, this is a very tedious
and error–prone process and the resulting parallel programs are extremely machine and

�research supported by the Commission of the European Community, ESPRIT Project #5399
(COMPARE)

�Corresponding author, email: rauber@cs.uni-sb.de. Research partially supported by DFG,
SFB 124 and the International Computer Science Institute, Berkeley, California

12.2 Related Work 195

operating system specific. Also, debugging a parallel program is much harder than de-
bugging a sequential program. There are several approaches making programming for
parallel computers easier:

1. new or extended languages like Fortran90 [21], Fortran D [15], Vienna Fortran [6],
Concurrent C [10], SR [1] or pSather [8] [9]. A good overview of existing parallel
languages can be found in [2].

2. intelligent runtime support and libraries like EXPRESS [23], Linda [22] or Jade [27]

3. parallelizing compilers like ASPAR [16], SUPERB [11] [12] or SIMPLE [25].

In this article, we pursue the last approach. By using a parallelizing compiler, the pro-
grammer can develop a sequential program and can run the program after the automatic
parallelization on a parallel machine without dealing with the architectural details of the
parallel computer. The programs remain portable and ’old’ sequential programs can be
transformed to run on the parallel machine. On the other hand, when using a parallelizing
compiler, the programmer might not get all possible speedup, because the compiler may
be not able to detect all potential parallelism in the sequential program. But the hope
is that the degree of parallelization obtained is increasing when the field of automatic
parallelization will be better explored.

Most of the parallelization strategies proposed for parallelizing compilers use a single–
program-multiple–data (SPMD) programming model: each processor executes the same
program on different parts of the program data. Parallelizing a sequential program into
a SPMD–style program for distributed memory multiprocessors consists mainly of two
steps:

1. distribute the program data among the processors

2. insert the necessary communication statements to access non–local data

Most of the existing parallelizing compilers like SUPERB [11] or MIMDizer [26] re-
quire the user to specify a data distribution. The task of the compiler then essentially
consists of adapting the program code in such a way that each processor executes all
assignments to its local data, inserting communication when necessary. Specifying the
data distribution is the most critical step in the parallelization process and the user must
have a detailed knowledge of the algorithm and the architecture of the parallel machine.
An unsuitable data distribution results in excessive communication and a slow target
program.

12.2 Related Work

There are several approaches to determine a data distribution automatically. [4] and [5]
give an outline of a knowledge–based software tool that provides automatic support for
the data distribution. The tool uses program analysis and knowledge–based techniques,
in particular pattern matching facilities in conjunction with the explicit representation
and retrieval of knowledge. According to [4], the tool is currently being developed, but
the implementation has not yet been finished.

196 12 Automatic Parallelization for Distributed Memory Multiprocessors

[19] describes a pattern matching approach that uses hierarchically organized patterns
and tries to combine the recognized patterns of the source program to larger patterns.
For each pattern there exists a suitable parallel algorithm implementing the pattern, pa-
rameterized by the data distribution for the involved arrays. The pattern matcher and the
corresponding patterns are currently being developed.

[18] proposes an interactive tool that allows the programmer to select regions of the
sequential program. The tool responds with a data decomposition scheme and diagnostic
information for the selected region. The tool outputs a FORTRAN D program that can be
translated by FORTRAN D compiler [15]. This tool is also not yet implemented.

[16] presents the ASPAR system that uses the EXPRESS runtime library and that is
able to compute a global data distribution. It uses a symbolic analysis to extract the
parallelism from the sequential program by adding suitable calls to the runtime library.
The data distribution is found by a knowledge–based approach. The disadvantage of this
system lies in the fact that the compiler is not able to arrange a redistribution of the data
during program execution. After distributing an array A column wise, it is not possible
to redistribute A in a later part of the program, although this might reduce the run time
considerably. All these approaches essentially focus on the distribution of arrays.

12.3 Overview

In this article, we present a framework for a parallelizing compiler for DMMs ([14],[7])
that provides a compiler and runtime support which allows to use the DMMs with a
sequential language. The compiler determines a data distribution for the arrays of the
source program by a branch–and–bound approach and inserts the necessary communi-
cation statements to access non–local data according to the computed distribution. The
system is able to compute a redistribution of an array, if this results in a better perfor-
mance. The branch–and–bound algorithm incrementally constructs paths in a decision
tree where each node of the path corresponds to the distribution of an array of the source
program. For each path, a performance estimator computes the communication costs re-
sulting, when the arrays are distributed in the considered way. The communication costs
are computed by determining the number and size of the messages that each processor
has to receive during program execution and by also taking sequentializations into ac-
count that are caused by data dependences. Based on the communication costs, the data
distribution algorithm tries to find the best data distribution by searching the cheapest
path from a leaf to the root of the decision tree. By rejecting expensive paths as early
as possible, only a few paths, corresponding to a small fraction of the decision tree, are
actually built. Therefore, the run time of the data distribution phase remains decent also
for larger input programs. Because the costs computed by the performance estimator are
quite accurate, the data distribution tool is able to compute very good data distributions
that are quite often optimal.

Section 12.4 gives an overview of the transformation steps that are executed to trans-
form a sequential source program into a parallel program. Section 12.5 describes how
the system computes the data distribution for a source program, section 12.6 describes

12.4 Parallelization Strategy 197

the performance estimator that is used to rate the different data distributions. Section
12.7 presents the tests that we made with a prototype implementation of the system on
an Intel iPSC�860 for the language Pascal.

12.4 Parallelization Strategy

The proposed compiler uses a similar parallelization strategy as the SUPERB system
[11] [4] but includes a module to compute data distributions automatically. The com-
piler uses a single–program–multiple–data (SPMD) model. Each processor executes the
same program on different parts of the data domain. The sequential source program is
transformed into an explicitely parallel program that contains calls to a runtime library
executing the necessary communication operations. We give here only an overview of
the parallelization process. A detailed description is given by Dierstein [7], see also [11].
The parallelization process essentially consists of five steps:

1. Split the sequential input program into a host program and a node program. The
host program is executed by the host and performs all I/O–operations. The node
program is executed by all node processors and performs all computations.

2. Introduce a mask for each statement that assigns a new value to a distributed vari-
able. The mask ensures that the statement is only executed by a processor to which
the distributed variable is local.

3. Compute a data distribution.

4. Introduce communication statements for non–local accesses.

5. Optimize the communication statements.

Splitting the input program into a host and a node program is not a difficult task. The
node program is obtained by replacing the I/O–operations by communication statements.
The host program contains the I/O–operations of the source program. After each input
operation, a send to the processor that uses the input data is executed. Before each
output operation, a receive from the processor that has computed the values to be
output is executed.

Programs are parallelized by mapping the data of the sequential program to the pro-
cessors of the parallel system. Each processor p computes only data mapped to its local
memory. This concept is known as the owner computes rule. Scalar variables are repli-
cated so that each processor has its own copy of each scalar. An array A of the source
program can be replicated or distributed. Distributing A means that A is partitioned into
a number of subsets whose union isA. Each processor p gets one subset ofA. This subset
is said to be local to p. Each processor allocates storage for its private variables, i.e. for
its local variables and for private copies of non–local variables. Section 12.5 describes
how the arrays of the source program are partitioned.

In principle, each array A could be mapped arbitrarily to processors by a partitioning
function

198 12 Automatic Parallelization for Distributed Memory Multiprocessors

A � INdimA � P

where P � fp�� � � � � pmg are the processors and dimA is the number of dimensions of A.
To reduce the number of possible data distributions and the overhead for data accesses,
we have limited the distribution of an array A to distributions that can be decribed by
partition vectors of the form

npd � �n�� � � � � nd��

where ni is the number of processors in dimension i. Dimension i is divided up evenly
among the processors. If m is the total number of processors, then m �

Qd
i�� ni. Thus

all regular block partitions like distribution by block, row or column are allowed. Note
that this limitation is only for the current implementation. The approach for the array
distribution that is presented in the next section, is not limited to these distributions but
can easily be extended to other distributions e.g. the cyclic distributions described in
[15]. In any case, each processor is able to compute the owner of every element of any
distributed array. The distributions computed by the compiler are static and cannot be
adapted to input data at run time. Nevertheless, the distributions can be changed at run
time according to a redistribution computed at compile time.

A processor may have to access non–local variables to compute a new value for a
local variable. These accesses are implemented by calls to message passing routines of
the runtime system. The processor q which ownes the accessed data item executes a
send operation, p executes a receive operation.

syntax semantics

send(d,p) Send data element d to processor p . If p
is not ready to receive d, d is added to p’s
message queue. (non–blocking send)

receive(d,p) Receive a data element from processor p,
and store it in the variable d. The execut-
ing processor waits, if the data element
has not yet arrived. (blocking receive).

To store the received non–local array elements, p has to allocate space for private
copies of the non–local data items that are updated by the receive operation. The
additional space is determined by computing an overlap description [11] for every ac-
cess to a distributed array element. Each overlap description determines an overlap area
which surrounds the local segment of a processor. Elements in the overlap area are used
to compute new values for elements in the local area. The union of all overlap areas for
a distributed array A determines for each processor the private copies of non–local vari-
ables. Each processor allocates space for its local segment of A and for its surrounding
overlap area. The elements in the surrounding overlap area are received from the neigh-
boring processors. The local elements that are in the overlap area of the neighboring
processors are sent to these processors.

The parallelization strategy is outlined in [7, 11]. We illustrate the main ideas by an
example.

12.4 Parallelization Strategy 199

Example 12.4.1

for i �� � to 99 do
S� � s �� a�i � ���
S� � b�i� �� s�

od

According to the owner computes rule we have to guarantee that each processor p
executes S� only for iterations defining values of b�i� that are local to p. Therefore we
insert a conditional statement using the runtime function owned�b� i� which compares
the bounds of the local area of b with the current value of i in order to determine the
owner of b�i�. owned�b� i� returns true, if the executing processor p is the owner of b�i�.
We call the tuple �b� i� the mask of S� which specifies the execution condition. S� defines
a scalar variable s that is only used to compute b�i� in S�. Therefore, we can propagate
the mask �b� i� to S� by enclosing S� with the same conditional statement as S�. That
means that S� is only executed when S� is executed. Usually, a mask is propagated to an
assigment statement S for a scalar variable, if there is a data dependence from S to the
masked statement and the value computed by S is not used by another statement that has
a different mask or no mask at all. Note that mask propagation can cause a statement S
to have different masks. These have to be or–connected to guarantee that S is executed
for each iteration in which the computed value is used for an assignment statement to a
distributed variable.

If a processor p executes statement S� in example 12.4.1, it may have to communicate
with other processors to exchange data elements of array a. Therefore the read access
to a is preceded by the procedure call exch((a,i+1),(b,i)). This procedure checks first,
whether a�i� �� belongs to another processor q than b�i� that is supposed to belong to p.
In this case q sends the value of a�i � �� to p. p receives the value of a�i � �� from q. In
general, there is a call of exch() for each read access to a distributed array in a statement
S. These calls are inserted immediately before S. Note that masks can also be propagated
to exch() statements. Because there is a separate mask for each read access, an exch()
statement gets exactly one mask by propagation. Introducing the masks and inserting the
exch() statements results in the following parallelized version of the example program
12.4.1:

Example 12.4.2

for i �� � to 99 do
S� � exch��a� i� ��� �b� i���
S� � if owned�b� i� then s �� a�i� ���
S� � if owned�b� i� then b�i� �� s�

od

The communication statements introduced in the fourth step listed above executes the
communication element by element. For each data item, a new message is used. Figure
12.1 shows the amount of communication for 4 processors. Because the overhead for

200 12 Automatic Parallelization for Distributed Memory Multiprocessors

a

b

P�P�P�P�

P�P�P�P�

Figure 12.1 Communication amount for example 12.4.2

sending a message is usually very high, it is important that short messages are com-
bined to larger ones, thus reducing the overhead. This is performed by methods known
from vectorizing compilers. The compiler tries to apply the technique of loop distribu-
tion to separate the communication statements from the computation statements. If this
is successful, the loops containing the communication statements are vectorized, thus
combining short messages in the loop body to larger messages that are executed outside
the loop.

Another important optimization is the adaption of the loop bounds surrounding the
masked computation statements according to the mask. Without this adaption, every
processor executes every loop iteration. Most of these iterations are empty, because the
masks of the statements of the loop body prohibit the execution of the statement. The
empty iterations can be avoided by adapting the loop bounds according to the masks in
the loop body. Each processor only has to execute loop iterations that assign new values
to its local variables or that execute communication statements with other processors.
For each mask, we compute a lower and an upper loop bound by considering the local
area and the overlap area of the array in the mask on the executing processor. There may
be several masked statements in the loop body. In this case, the lower bound of the loop
has to be set to the minimum of the lower bounds that are computed for the different
masks to make sure that all assignments and communication statements are executed.
The upper bound has to be set to the maximum of the upper bounds that are computed
for the different masks. For example 12.4.2, vectorizing the communication statement
and adjusting the loop bounds results in the following program:

Example 12.4.3

exch area((a,2,100),(b,1,99));
for i �� lbb�p� to ubb�p� do

S� � if owned�b� i� then s �� a�i� ���
S� � if owned�b� i� then b�i� �� s�

od

lbb�p� and ubb�p� are the bounds of the local area of array b belonging to processor p.
Because no value of array a is changed inside the loop, we can execute all communica-
tion before the loop. This is performed by the procedure call exch area((a,2,100),(b,1,99))
which handles the exchange of whole array areas. A processor p executing this call first

12.5 Branch–and–Bound Algorithm 201

sends the elements of a in its local array section to the processors q that need these ele-
ments to evaluate their local elements of b. Then p receives the elements of a that it uses
to compute its local elements of b from other processors.

Other optimizations that are applied to the generated parallel program are the follow-
ing:

� If several statements in the loop body have the same mask, we can collect them in
the body of a single conditional statement with the common mask as condition.

� If all masks in the loop body are identical, we can omit them after having adapted
the loop bounds. This is possible, because the adaption of the loop bounds makes
sure that each processor executes only assignments to its local array elements. This
optimization can be applied to example 12.4.3.

� If there are several masks in the loop body, we can simplify the expressions for
the lower or upper bounds of the surrounding loops. These expressions specify a
minimum or maximum operation over several expressions that contain the original
loop bounds and the bounds of the local areas and the overlap areas of the arrays in
the loop body. Because we assume that the loop bounds are constant and because
the array distributions are fixed at compile time, we can evaluate the expressions
and can determine which one yields the minimal or maximal value.

12.5 Branch–and–Bound Algorithm

The main essential to find a good data distribution for the arrays ai of the source pro-
gram is an estimation of the run times of all possible data distributions. In the next sec-
tion we describe a performance estimator that computes a cost function. This function
estimates the run time of a parallelized program for a fixed data distribution. Given the
performance estimator, we describe in this section how a suitable data distribution for
the arrays can be found that minimizes the communication costs for the given sequential
program.

12.5.1 Basic Approach

Clearly, inspecting all possible data distributions will be far too expensive. By giving up
the strict separation of choosing a data distribution and estimating the run time we can
reduce the amount of the analysis.

We use a branch–and–bound algorithm that is based on a decision tree to compute
a data distribution. Each node of this tree represents the decisions for the distribution
of one array a of the program. Each level of the tree consists of nodes for one array.
Each path a� � � � � � an in the tree from the root to a leaf represents a complete data
distribution that consists of data distributions for all arrays a�� � � � � an on the path. The
edges of the tree are decorated with estimated costs for the communication instructions
that are provided by the performance estimator.

202 12 Automatic Parallelization for Distributed Memory Multiprocessors

It is not necessary to keep the complete tree in the main memory. It is not even nec-
essary to build the entire decision tree. Instead, we can build the tree incrementally by
storing at most two paths of the tree from a leaf to the root at a time and aborting ex-
pensive paths as early as possible. The two paths that are stored are the path Pc that is
currently being examined, and the cheapest complete path Pmin found so far. The costs
of the current path Pc are increasing with each edge added to the path. If the costs of Pc
exceed the cost of Pmin, we can abort the examination of Pc. If the costs of Pc are smaller
than the costs of Pmin when Pc has been constructed completely, we substitute Pmin by
Pc.

We define a set DNSET that contains a distribution node for each array of the source
program. The nodes of the decision tree correspond to the distribution nodes in such a
way that all nodes of the same tree level correspond to the same distribution node in
DNSET. In section 12.5.3 we describe that further nodes may be added to DNSET that
account for the redistribution of arrays. For each dni � DNSET we define the set of all
possible distributions as

DISTRIBUTIONSET�dni� � f�n�� � � � � nd� j �n�� � � � � nd� is a partition vector for
the array corresponding to dnig

In the last section, we have mentioned that there is a call of an exch() statement for
each read access of a source program statement S. The number of data items and thus
the run time delay that is caused by an exch() statement is determined by the distribution
of the corresponding array and the distribution of all arrays masking this instruction. We
call the pair (ra,msk) of a read access ra to an array and the masking information msk of
the access ra a communication producer (CP). The set of all communication producers
is called CPSET.

Example 12.5.1

for i :=2 to 100 do
for j := 1 to 99 do

B[i,j] := B[i,j+1];
C[i,j] := B[i,j];
A[i,j] := A[i-1,j];

od
od

In this case the set DNSET has three nodes for the three arrays A,B, and C:

DNSET � fdnA� dnB� dnCg
and the set of all communication producers is

CPSET � f��B� i� j � ��� �B� i� j��� ��B� i� j�� �C� i� j��� ��A� i� �� j�� �A� i� j��g�
In the following we use an abbreviation for the CP’s: ��X� e�� � � � � edX �� �Y� e

�
�� � � � � e

�
dY
��

is denoted by X � Y with the following meaning: elements of X are read to compute
elements of Y . Using this notation, we can represent the communication producers for
example 12.5.1 as

CPSET � fB � B�B � C�A� Ag�

12.5 Branch–and–Bound Algorithm 203

12.5.2 Distribution Graph

Before we can calculate the communication delay of a single cp � CPSET, we must
know the current distribution of some of the arrays of the source program. We call these
arrays associated with cp and collect them in the set A�cp�. To compute A�cp�, we must
consider the following three facts.

(1) Each cp � CPSET represents a communication instruction caused by an use of an
element of an array A. The distribution of A must be known, thus A � A�cp�

(2) Furthermore the statement containing the read access of cp is usually masked. We
must know the distribution of the arrays B�� � � � � Bk in the mask to be able to com-
pute the number of iterations in which the corresponding exch statement is executed.
Thus B�� � � � � Bk � A�cp�.

(3) A use of an array element can be involved in a loop carried dependence. In this
case, the communication instruction to a communication producer cpi may prevent
concurrent execution of loop iterations. We call the loop carrying the dependence
sequentialized by the related communication producer cpi. The distribution of the
arrays belonging to cpi determines the amount of the sequentialization.

In example 12.5.1, the CP A� A may sequentialize the i-loop: If array A is dis-
tributed by row, processor pi must wait for pi�� to complete its computations, before
it can start working. Thus, no other communication instructions in the loop can op-
erate concurrently. On the other hand, distribution by column does not affect any
instructions in the loop, because the CP A� A causes no communication. There-
fore, we must know the distribution of A to estimate the costs of any CP cp in the
i–loop, i.e. A � A�cp�.

The information whether a loop is sequentialized can be computed by the usual data
dependence tests (Banerjee test, GCD test, separability test, etc.), see [30].

The distributions that have to be known to compute the communication delay of a
cp � CPSET are summarized in the sets

INFOSET�cp� � fdn � DNSET � the array represented by dn is asso-
ciated to cp by (1), (2) or (3)g

INFLUENCESET�cp� � fcpi � CPSET � cpi influences cp acc. to (3)g � fcpg
These sets are computed for all cp � CPSET. Using these sets, we define the distribu-

tion graph as follows:

Definition 12.5.1 The distribution graph is a bipartite graph G � �V�E�.

� V � CPSET � DNSET

� E DNSET� CPSET
E � f�dnj� cpi� � DNSET� CPSET j dnj � INFOSET�cpi�g

204 12 Automatic Parallelization for Distributed Memory Multiprocessors

(1),(2)

(3)

(3)

(1)

(1),(2) (2)

DISTRIBUTE C

DISTRIBUTE B

DISTRIBUTE A

A� A

B � C

B � B

Figure 12.2 Distribution graph for example 12.5.1. The edges are labeled with numbers
referring to the cases listed above.

An edge �dnj� cpi� in the distribution graph indicates that the distribution of the array
corresponding to dnj has to be fixed to compute the costs of communication producer
cpi. Figure 12.2 illustrates the distribution graph for example 12.5.1.

To reduce the run time of the analysis algorithm we try to abort the constructed paths
in the decision tree as early as possible. Therefore we arrange the levels of the decision
tree so that we can compute the costs of as many CPs as possible when adding a new node
to the current path: With the information of the distribution graph we create a sorted list
DNLIST of DNs implying the order of distribution decisions. We sort the dn � DNSET
by the outdegree in the distribution graph, so that the arrays that influence more CPs
than others are distributed first. This makes sure that a lot of cost computations can be
executed as early as possible. This is performed by the procedure create(DNLIST). We
also determine for each dn � DNLIST the following set of CPs:

COSTSET�dn� � fcpj � CPSET j the costs of cpj can be computed when the dis-
tribution decision of dn is made and the compu-
tation was not possible before this decisiong

Figure 12.3 shows the order of the CP’s and the associated COSTSET for example
12.5.1.

The following algorithm 12.5.1 implements the described path construction by the re-
cursive procedure decide. The algorithm uses for each cp � CPSET a value CPCOST�cp�
representing the run time delay of cp. CPCOST�cp� is computed by the performance es-
timator as described in the next section. To consider the frequency of executions of the
communication instruction, we multiply CPCOST�cp� for each cp with a factor weightcp.
This factor is the product of factors fi, each one representing a surrounding control struc-
ture. The computation of the fi depends on the surrounding control structure:

� For loops with loop variables that are used in an access function of cp, we set fi � �.
Iterations of these loops are already considered by the cost function.

12.5 Branch–and–Bound Algorithm 205

DISTRIBUTE CDISTRIBUTE BDISTRIBUTE A

A� A B � B B � C

Figure 12.3 COSTSETs for example 12.5.1

� For loops with loop variables that are not used in an access function of cp, we set fi
to the number of loop iterations.

� For conditional statements, we set fi to a value between 0 and 1 that represents
the probability for the then or else part of the conditional to be executed. fi can be
obtained by profiling. If no profiling information is available, we assume that each
part of a conditional statements is executed equally often and set fi to 0.5.

Algorithm 12.5.1

var mincost: integer;
begin /* MAIN PROGRAM */

var DNLIST: list of distribution nodes;

create(DNLIST); /* see distribution graph */
mincost := �;
decide(0, DNLIST);

end

procedure decide(cost, LIST);
var cost: integer;
var LIST: list of distribution nodes;
begin

var dn: distribution node;
var SET: set of distribution vectors;
var �n� �nact: distribution vectors;
var cp: communication producer;
var CURRENTPATH, CHEAPPATH: subset of DNSET � DISTRIBUTIONSET(dn);

if (LIST
� �)
dn := head(LIST);
SET := DISTRIBUTIONSET(dn);
oldcost := cost;
forall �n � SET do

localcost�n �� �;
forall cp � COSTSET�dn� do

localcost�n �� localcost�n � weightcp � CPCOST�cp�;

206 12 Automatic Parallelization for Distributed Memory Multiprocessors

od
od
while (SET
� �) do

�nact �� select min�SET �� /* selects the vector �n with minimal localcost�n */
SET �� SET � f�nactg;
CURRENTPATH �� CURRENTPATH � f�dn� �nact�g;
cost �� cost � localcost�nact ;
if (cost � mincost) /* ! abort expensive paths ! */

cost := oldcost;
else decide(cost,tail(LIST)); fi
CURRENTPATH �� CURRENTPATH � f�dn� �nact�g;

od
else /* (LIST � �) */

if (cost � mincost)
CHEAPPATH � CURRENTPATH ;
mincost := cost;

fi
fi

end

Figure 12.4 shows the decision tree that is built by algorithm 12.5.1 for example 12.5.1
when using four processors. First A is distributed, because all cp � CPSET are influ-
enced by this decision. For 4 processors, there are 3 possible distributions: by row, by
block or by column. After A is distributed, we are able to compute CPCOST�A� A�
for the different distributions of A. Because distribution by column causes no costs we
follow this path. In the next step, B is distributed so that the costs of B � B can be
calculated. We again follow the cheapest path which is distribution by row. In the last
step we find that C should have the same distribution as B. By this, we have found a
distribution that causes no communication and can stop analyzing the decision tree. If
the distribution would cause communication, we would have to backtrack to the decision
of B.

12.5.3 Redistribution during Program Execution

Redistribution of arrays during program execution is quite an expensive operation that
causes a lot of communication. Nevertheless, for large input programs a redistribution of
some of the arrays might result in a smaller overall communication. This is true, if for
example an array is accessed differently in different parts of the program. Redistribution
of arrays during the execution of the program can be considered, if we change the algo-
rithm as follows: when building a new level of the decision tree, we not only consider
the arrays not yet distributed, but also the arrays to be redistributed. The costs of the re-
distribution are added to the costs of the tree edges. The arrays that may be redistributed
are added to the set DNSET and to the sorted list DNLIST. Note that the redistributions
computed in this way are static and cannot be adapted to input data at run time.

12.6 Performance Estimator 207

DISTRIBUTE A

�costs	��

�costs	��

�costs���
column row

�costs���
row

�costs	��
block

�costs	��
column

�costs	��
�costs	��

row
block�costs���

column

B � C

B � B

A� A

block

DISTRIBUTE C

DISTRIBUTE B

Figure 12.4 Decision tree for example 12.5.1 for 4 processors.

By allowing redistribution, the decision tree may get quite large. We can reduce the
size by allowing array redistributions only at certain program points: For example, it
surely makes no sense to redistribute an array within a basic block. In the current imple-
mentation, we only allow redistributions at the outermost loop level.

12.6 Performance Estimator

Algorithm 12.5.1 uses a cost function CPCOST() to estimate the run time delay caused
by the communication instruction of a CP. We describe the cost function in this section.
We assume that the loop bounds are constant and that the index functions are linear. Op-
timizations like constant propagation and profiling are used to reduce these restrictions.
A communication instruction causes a run time delay in two different ways:

1. The access to an array element via network is much slower than a local access.
Thus, the total number of array elements transferred through the net is significant
for the delay. Subsection 12.6.1.1 describes the computation of this number. With
respect to the restrictions for the loop bounds and the access functions we will be
able to compute this number exactly.

2. Moreover, we have to estimate the effects of sequentializing communication in-
structions caused by data dependencies. Dependent on the distribution of the arrays

208 12 Automatic Parallelization for Distributed Memory Multiprocessors

there may be time intervals during which some processors must wait for others. An
approach to estimate these waiting periods will be given in subsection 12.6.2.

12.6.1 Transfer costs

12.6.1.1 Computing the number of transferred data elements

An use of an array element can be preceded by several masks. We assume here that each
read access has only one mask. If there are more masks, we compose the results for each
single mask as described in [14].
A general read access to an array B has the following structure:

for i� �� lb� to ub� do
...

for im �� lbm to ubm do
...
A�f��i�� � � � � im�� � � � � fdA�i�� � � � � im�� �� B�g��i�� � � � � im�� � � � � gdB�i�� � � � � im���
...

od
...

od

Due to the restrictions above we assume that the index functions have the following
form:

fd�i�� � � � � im� � ad � ijd � a�d� d � ��� dA�� jd � ��� m�

gd�i�� � � � � im� � bd � ikd � b�d� d � ��� dB�� kd � ��� m��

where dX denotes the dimension of array X . We compute the number of the data
transferred separately for each processor p. This computation requires two steps.

1. In the first step, we compute the elements of A that are defined by processor p. The
index space is given by the bounds of the loop surrounding the access:

INDEX � ��lb�� ub��� � � � � �lbm� ubm���

The array elements of A accessed by processor p are determined by the current
distribution of A and the functions f�� � � � � fdA: We get the part of the index space
for which processor p executes the read access by solving the inequations

lbAd � fd�i�� � � � � im� � ubAd � � � d � dA

where

12.6 Performance Estimator 209

A�lbA� � ubA� � � � � � lb
A
dA

� ubAdA �

is the part of A local to p. We denote the part of the index space of p by

RANGEp � ��L�� U��� � � � � �Lm� Um���

2. In the second step, we apply the index functions g�� � � � � gdB to RANGEp. Thus, we
get the part of array B accessed by p. By intersecting this with the part of B owned
by p we can easily compute the number of the elements received by p from other
processors. We call this number TRANSp�cp�.

We illustrate these computations by an example:

Example 12.6.1

var i, j, k: integer;
var A, B: array[1..32,1..32] of integer;
begin

for i :=0 to 15 do
for j := 4 to 10 do

for k := 2 to 17 do
A�� � i� �� j � �� �� B�� � j� � � k � ���

od
od

od
end

The index space is

INDEX � ���� ���� �z �
i

� �
� ���� �z �
j

� ��� ���� �z �
k

�

Figure 12.5 shows the assumed distribution of A and B.
The computation for processor p � � results in

RANGE� � ���� ���� �
� ���� ��� ����

The accessed part of B is

B��� � ��� � � ����

Processor 5 owns

B��� � ��� � � ����

thus it must receive the 88 elements that are in the first set but not in the second. Processor
5 must receive in each iteration of the i–loop 88 elements of array B.

210 12 Automatic Parallelization for Distributed Memory Multiprocessors

array Barray A

��
P�P�

P

P�

P�P�

P�P�

P�P�P
P�

P�P�P�P�

��

�

�

�
���
���

��

�

�
���
��

Figure 12.5 Distributions for example 12.6.1

12.6.1.2 Computing the number of messages

Communication instructions can be vectorized so that several elements are transferred
by a single message. To estimate the total communication amount of a CP, we need to
know the number of transferred data elements and the number of messages required for
the transfer. Vectorization of communication leads to a better performance, because the
data transfer time for one message of length n in our programming model refers to the
following equation:

Transfertime�n� � SU � n � BTFT

SU ist the startup time for a message, BTFT is the time to transfer one byte. Each
processor p receives TRANSp�cp� elements from other processors. TRANSp�cp� is the
sum of all elements received by other processors q
� p. q sends TRANSqp�cp� array
elements to p, where

TRANSp�cp� �
X
q ��p

TRANSqp�cp��

Vectorization of the communication instruction allows to put several array elements in a
single message so that each q sends M q

p �cp� messages to p. To determine the number of
the required communication startups we add the number of messages passed to p.

SNp�cp� �
X
q ��p

M q
p �cp�

Thereafter we can calculate the costs for a cp to:

COSTp�cp� � SNp � SU � TRANSp�cp� � typesize�cp� � BTFT�

where typesize(cp) is a function that returns the size of an array element related to cp
in bytes.

12.6 Performance Estimator 211

12.6.2 Combining the transfer costs

Now we are able to calculate for a given CP the number of bytes and the number of
messages a processor p must receive. These informations are not sufficient to estimate
the run time delay of a CP. Some processors may work in parallel, whereas other pro-
cessors are delayed by data dependencies. To illustrate our approach for combining the
COSTp�cp� we examine the following example.

Example 12.6.2

var i, j: integer;
var A, B: array[1..32,1..32] of integer;
begin

for i := 1 to 32 do
for j := 1 to 32 do

B[i,j] := i�j;
A[i,j] := B[i,j];

od
od

end

We assume A to be distributed by block and B by row to 4 processors. According to
section 12.6.1.1, each processor receives 32 elements from other processors. A more
detailed analysis shows the following behaviour:

G�

��

��

Figure 12.6 Dependencies of the processors for example 12.6.2

P� exchanges elements with P� and P� exchanges elements with P�. These two groups
of processors can work in parallel, so that we can express the COSTp�cp� as

max�COST��cp� � COST��cp��COST��cp� � COST��cp���

We generalize this idea by introducing the data transfer graph in the next section.

212 12 Automatic Parallelization for Distributed Memory Multiprocessors

12.6.3 Data Transfer Graph

To estimate the delay times of processors caused by data dependencies we need infor-
mation about the interprocessor communication behaviour. Therefore, we describe the
data transfer between processors by a graph, whose nodes represent processors. Our aim
is to combine the TRANSp�cp� for a given cp � CPSET in a useful way.

Definition 12.6.1 A data transfer graph DTG is a graph Gcp � �V�E�, where

� V � fP�� � � � � Png is the set of processors

� E V � V with

�Pi� Pj� � E � �cpk � INFLUENCESET�cp�, which causes Pi to
send data to Pj

Processors involved in cycles in the DTG usually cannot work in parallel because data
dependencies cause mutual communication of processors. That’s why we add all TRANSp�cp�
of all processors p in one strongly connected component (SCC) of the DTG. We define
the acylic data transfer graph:

Definition 12.6.2 Let Gcp � �V�E� be a DTG of a cp. Then AGcp � �AV�AE�, where

� AV � fs�� � � � � smg is the set of the SCC’s of the graph Gcp.

� AE � f�sx� sy� j x
� y � �Pi � sx� Pj � sy with �Pi� Pj� � Eg
AGcp is called the acyclic data transfer graph ADTG of cp.

Now we can define a cost function for SCC’s:

COSTscc�cp� �
X
p�scc

COSTp�cp�

Let us return to example 12.6.2. If we change the two accesses to B to B�i � �� j� or
B�i � �� j�, respectively, we obtain two pairs of graphs shown in figure 12.7 and figure
12.8.

If we examine the communication behaviour of these two examples in more detail, we
make the following observations:

Example (i) (figure 12.7)

P� and P� start their work by sending their first row of data elements of array B to P�

and P�. After this, the two groups of processors can work concurrently. Due to this fact
we can ignore the edge in the ADTG.

Example (ii) (figure 12.8)

P� and P� cannot start working until P� and P� have finished their work and have sent
their last rows to P� and P�. This means that the edge in the ADTG causes a sequential-
ization. The global costs are obtained by summing the costs of the SCC’s.
This suggests to distinguish two kinds of edges in the ADTG of a cp.

12.6 Performance Estimator 213

i� AG�

f3,4g

f1,2g

G�

��

��

Figure 12.7 DTG and ADTG according to access B�i� �� j�

G�ii� AG�

f3,4g

f1,2g

��

��

Figure 12.8 DTG and ADTG according to access B�i� �� j�

1. Delay edges force the destination processor of the edge to wait until the source
processor has completed its work. Delay edges have the direction of the outermost
loop, i.e. a delay edge represents a true data dependence carried by the outermost
loop of the current loop nest. Data dependencies in inner loops do not cause a pro-
cessor to wait until another processor has completely finished its work. An example
is given in section 12.7.3.

2. Parallel edges cause data transfer, but sender and receiver can work in parallel.

A formal definition of delay edges and parallel edges can be found in [14]. Because
parallel edges cause no data transfer, we can eliminate them from the ADTG AGcp . This
leads to a graph AG�

cp � �AV��AE��. With this graph we define the following functions:

CPCOSTsi�cp� � COSTsi�cp� � max
�si�sj	�AE�

CPCOSTsj�cp�

CPCOST�cp� � max
s�AV�

CPCOSTs�cp�

214 12 Automatic Parallelization for Distributed Memory Multiprocessors

CPCOST(cp) is used by algorithm 12.5.1 to estimate the cost of a data distribution for
all arrays.

12.7 Prototype Implementation and Results

12.7.1 Implementation

We have implemented an experimental version of the compiler for an Intel iPSC�860
with 32 nodes for the language Pascal. The main drawback of the implementation is
that it is not yet able to handle procedure calls. The implementation is designed for easy
modification for other languages such as C or Fortran. The transformations that are de-
scribed in section 12.4 are applied to the intermediate representation of the program,
and the resulting parallel program are emitted in C. The emitted program is then com-
piled with the standard compiler of the iPSC�860, thus giving an object program for the
iPSC�860. There is a loss in efficiency because of the straightforward translation of the
intermediate representation to C that uses a lot of goto statements. This prevents the
C compiler from applying most of the optimizations that could result in a better perfor-
mance. Depending on the source program, we determined a performance reduction by a
factor that lies between 1 and 4. A more careful translation that tries to reconstruct the
control structures of the original program like loops and conditional statements could
eliminate most of this decrease in performance.

12.7.2 Livermore Loops

To evaluate the prototype implementation, we made tests for different types of applica-
tions. Table 12.1 shows the results of applying the compiler to the Livermore kernels
that have been widely used to evaluate the performance of computer systems. Written
originally in Fortran, the benchmarks were converted in Pascal for this test. These tests
determine that 16 of the kernels were parallelized by the compiler. The speedup decrease
for some of the kernels for 32 processors is caused by the fact that the problem size is
not increased with the number of processors. For the affected kernels, the decrease in
the computation time that is reached by using more processors is overbalanced by the
increase in communication time that is caused by the fact, that more data has to be com-
municated to a larger number of processors, thus increasing the number of messages.
Examination of the failed cases showed that some were not parallelizable, even by hand.
In other cases, the kernel could be parallelized by rewriting it, e.g. kernel 6 or 17. Table
12.2 shows for one of the largest kernels that the number of nodes of the decision tree
that are really built is usually quite small. Tests with other input programs confirm this
observation.

To emphasize the effect of different distributions on the run time of a parallelized
program we give some concluding examples dealing with relaxation of two dimensional
arrays.

12.7 Prototype Implementation and Results 215

Speedup for x processors
nr. name 2 4 8 16 32

1 Hydrodynamics 1.9 3.6 6.0 9.2 12.5
2 Incomplete Cholesky not parallelized
3 Inner product 1.7 2.3 2.6 2.5 1.5
4 Banded linear equations not parallelized
5 Tridiagonal elimination 0.2 0.3 0.5 0.8 1.2
6 Recurrence elimination not parallelized
7 Equation of state 1.9 3.8 7.5 13.6 23.5
8 ADI 1.9 3.7 6.7 11.6 17.9
9 Numerical Intregration 1.9 3.5 6.1 9.7 13.5

10 Numerical Differentiation 1.9 3.5 6.4 10.1 14.1
11 Finite sum 0.1 0.2 0.4 0.6 0.9
12 Finite difference 2.0 3.8 7.3 13.3 15.8
13 2D particle in cell not parallelized
14 1D particle in cell not parallelized
15 Prime example 1.9 3.9 7.5 13.9 23.9
16 Monte Carlo not parallelized
17 Conditional computation not parallelized
18 2D Hydrodynamics 1.8 2.9 4.1 4.7 3.9
19 Linear recurrence relation not parallelized
20 Discrete ordinates transport 0.4 0.7 1.2 2.2 3.9
21 Matrix product 1.9 3.6 6.5 12.0 19.7
22 Planck distribution 2.0 4.0 7.9 15.7 30.9
23 2D implicit Hydrodynamics 1.5 2.6 4.8 8.3 12.9
24 Minimization 1.6 2.0 2.0 1.7 1.1

Table 12.1 Results of applying the compiler to the Livermore Loops

np nd nv
2 32 12
4 243 21
8 1024 32

16 3125 45
32 7776 60

Table 12.2 Run time of the data distribution tool for
kernel 15 that uses 5 two–dimensional arrays. np is the
number of processors, nd is the number of nodes of the
decision tree, nv is the number of nodes of the decision
tree that are visited by the algorithms.

12.7.3 Gauss–Seidel Relaxation

The computational kernel of Gauss–Seidel relaxation consists of the following loop nest:

Example 12.7.1

for L �� � to LP do
for i �� � to N � � do

216 12 Automatic Parallelization for Distributed Memory Multiprocessors

for j �� � to N � � do
a�i� j� �� a�i� j� � a�i� �� j� � a�i� j � �� � a�i� j � �� � a�i� �� j��

od
od

od

We ran a parallelized version of this program on an iPSC/860 with 32 nodes. The number
of iterations LP was set to 1000 and the size of array a was N � ���.

Table 12.3 shows the speedups for different distributions running the program on 8
processors.

npd–vector 8,1 4,2 2,4 1,8
Speedup 2.4 0.4 0.3 0.5

Table 12.3 Speedups for example 12.7.1 with 8 processors

Our decision algorithm chooses the npd–vector ��� ��. Table 12.3 shows that this is the
best distribution. In this case the data dependencies carried by the inner j–loop causes
no communication. Concerning the i–loop, processor Pi must wait for Pi�� to fininsh its
iterations, but after Pi has started its work, Pi�� begins to work on the next iteration of
the outermost L–loop so that the load is nearly balanced. Table 12.4 shows the speedups
resulting when distributing by row for different numbers of processors.

processors 2 4 8 16 32
speedup 0.9 1.5 2.4 3.5 4.4

Table 12.4 Speedups for example 12.7.1

12.7.4 Jacobi Relaxation

Jacobi relaxation differs from Gauss–Seidel relaxation by the use of two arrays, so that
there are no data dependencies concerning the two innermost loops. This makes the
parallelization easier.

Example 12.7.2

for L �� � to LP do
for i �� � to N � � do

for j �� � to N � � do
a�i� j� �� b �i� j� � b�i� �� j� � b�i� j � �� � b�i� j � �� � b�i � �� j��

od
od

12.8 Conclusions and Further Research 217

for i �� � to N � � do
for j �� � to N � � do

b�i� j� �� a�i� j��
od

od
od

Different distributions of the arrays a and b differ only in the amount of communi-
cation. Therefore, all distributions with a and b distributed in the same way, yield good
results. Tables 12.5 and 12.6 show the speedup values.

npd–vector 8,1 4,2 2,4 1,8
Speedup 5.2 5.3 5.2 5.0

Table 12.5 Speedups for example 12.7.2 (Jacobi relaxation) for 8 processors.

processors 2 4 8 16 32
speedup 1.8 3.2 5.3 7.5 17.7

Table 12.6 Speedups for example 12.7.2 (Jacobi relaxation)

12.8 Conclusions and Further Research

The presented compiler automatically parallelizes sequential programs for a distributed
memory computer. The compiler computes a data distribution for the source program
automatically and parallelizes the program according to this distribution. The compiler
can be applied to all programs having reference patterns that can be analyzed at compile
time.

Although the compiler works well on a large class of applications, it is limited to the
computation of data distribution for arrays. Future research may address the problem of
distributing other data structures like lists, tree, graphs, and so on.

We could also optimize the existing algorithm for the distribution of arrays in some
ways. Currently, it allows only regular block distributions for the arrays. Allowing more
general distributions could result in a better performance of the parallelized programs.
The resulting increase in the run time of the distribution tool might be outbalanced by
not always computing an optimal distribution but to include the option that a suboptimal
solution is sufficient. The number of input programs parallelizable by the compiler could
be increased quite easy by including a tool that applies normalization transformations
like induction variable substitution or scalar forward substitution to the input program.

218 12 Automatic Parallelization for Distributed Memory Multiprocessors

12.9 Acknowledgements

The authors would like to thank Prof. Dr. R. Wilhelm, Prof. Dr. W. Paul, Christoph
Keßler, Martin Alt, and Christian Ferdinand for their helpful support.

References

[1] G.R. Andews, R.A. Olsson, M. Coffin, I. Elshoff, K. Nilsen, T. Purdin, and G. Townsend.
An Overview of the SR Language and Implementation. ACM Transactions on Programming
Languages and Systems, pages 51–86, 1988.

[2] H.E. Bal, J.G. Steiner, A.S. Tanenbaum. Programming Languages for Distributed Comput-
ing Systems. ACM Computing Surveys, pages 261–322, 1989.

[3] V. Balasundaram, G. Fox, K. Kennedy, U. Kremer. An Interactive Environment for Data
Partitioning and Distribution. Proceedings of the 5th Distributed Memory Computing Con-
ference, 1990.

[4] B. Chapman, H. Herbeck, H. Zima. Automatic Support for Data Distribution. Technical
Report ACPC/TR 91-14, Austrian Center for Parallel Computation, July 1991.

[5] B. Chapman, H. Herbeck, H. Zima. Knowledge–based Parallelization for Distributed Mem-
ory Systems. Technical Report ACPC/TR 91-11, Austrian Center for Parallel Computation,
April 1991.

[6] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. In Third Workshop
on Compilers for Parallel Computers, pages 121–160, 1992.

[7] A. Dierstein. Parallelisierung mit automatischer Datenaufteilung für imperative Program-
miersprachen – Teil 1: Parallelisierungsstrategie. Diplomarbeit, Universität des Saarlandes,
1993.

[8] J.A. Feldmann, C.C. Lim, F. Mazzanti. pSather monitors: Design, Tutorial Rationale and
Implementation. Technical Report TR-91-031, International Computer Science Institut
Berkeley, CA, 1991.

[9] J.A. Feldmann, C.C. Lim, T. Rauber. The shared–memory language pSather on a
distributed–memory multiprocessor. In Second Workshop on Languages, Compilers, and
Run-Time Environments for Distributed Memory Multiprocessors, Boulder, CO, 1992.

[10] N.H. Gehani and W.D. Roome. Concurrent C. Software – Practice and Experience, pages
821–844, 1986.

[11] H.M. Gerndt. Automatic Parallelization for Distributed Memory Multiprocessing Systems.
Dissertation, University of Bonn, 1989.

[12] M. Gerndt, H.P. Zima. Superb: Experiences and Future Research. Technical Report
ACPC/TR90-5, Austrian Center for Parallel Computation, October 1990.

[13] M. Gupta and P. Banerjee. Automatic Data Partioning on Distributed Multiprocessors. Uni-
versity of Illinois, Technical Report CRHC-90-14, 1990.

12.9 Acknowledgements 219

[14] R. Hayer: Parallelisierung mit automatischer Datenaufteilung für imperative Programmier-
sprachen – Teil 2: Automatische Datenaufteilung. Diplomarbeit, Universität des Saarlandes,
1993.

[15] S. Hiranandani, K. Kennedy, C.W. Tseng. Compiler Support for Machine–Independent Par-
allel Programming in Fortran–D. Technical Report Rice COMP TR91-149, Rice University,
March 1991.

[16] K. Ikudome, D. Fox, A. Kolawa and J. Flower. An Automatic and Symbolic Parallelization
System for Distributed Memory Parallel Computers. Proceedings of the 5th Distributed
Memory Computing Conference, IEEE, pages 1105–1114, 1990.

[17] INMOS Ltd. OCCAM Programming Manual. Prentice Hall, Englewood Cliffs, NJ, 1984.

[18] K. Kennedy, U. Kremer. Automatic Data Alignment and Distribution for Loosely Syn-
chronous Problems in an Interactive Programming Environment. Technical Report COMP
TR91-155, Rice University, April 1991.

[19] C.W. Keßler: Knowledge–Based Automatic Parallelization by Pattern Recognition. This
volume.

[20] J. Li and M. Chen. Index Domain Alignment. Yale University, 1989.

[21] M. Metcalf. Fortran 90 Explained. Oxford Science Publications. Oxford University Press,
1990.

[22] R. Mirchandaney, J.H. Saltz, R.M. Smith, D.M. Nichol, K. Crowley. Principles of Runtime
Support for Parallel Processors. In Proceedings of the ACM, 1988.

[23] Parasoft Co. EXPRESS user manual. Parasoft Co., 1989.

[24] Reference Guide for iPSC/860. Intel, 1990.

[25] K. Pingali, A. Rogers. Compiler Parallelization of SIMPLE for a Distributed Memory
Machine. In Languages, Compilers and Run–Time Environments for Distributed Memory
Machines, pages 63–78. Elsevier, 1992.

[26] R. Sawdayi, G. Wagenbreth, J. Williamson. MIMDizer: Functional and Data decomposition.
In Compilers and Runtime Software for Scalable Multiprocessors. Elsevier, 1991.

[27] D. Scales, M. Rinard, M. Lam, J. Anderson. Hierachical Concurrency in Jade. 4th Inter-
national Workshop on Languages and Compilers for Parallel Computing. Santa Clara, CA,
August, 1991, Springer LNCS 589.

[28] User’s Guide for iPSC/860. Intel, 1990

[29] J. Wexler. Concurrent Programming in Occam-2. Wiley, 1989.

[30] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers, ACM Press
Frontier Series, Addison–Wesley, 1990.

220

A Trademarks

Some of the supercomputer or software names occuring in this book are (registered)
trademarks. We give a list of trademarks and corresponding companies and apologize if
we should have some omitted or acknowledged incorrectly. Names that do not occur in
this list can not be concluded not to be (registered) trademarks.

Ada is a trademark of U.S. Government Ada Joint Program Office.
Computing Surface is a trademark of Meiko Scientific Ltd.
Connection Machine, CM-2 and CM-5 are trademarks of Thinking Machines Corpo-
ration.
CM Fortran (CMF) and CMMD are trademarks of Thinking Machines Corporation.
Cray 1 is a trademark of Cray Research Incorporated.
Express is a trademark of Parasoft Incorporated.
FORGE is a trademark of Applied Parallel Research.
FX-2800 is a trademark of Alliant Computer Systems Corporation.
GC is a trademark of Parsytec GmbH.
i860 is a trademark of Intel Corporation.
iPSC is a trademark of Intel Corporation.
Jade is a trademark of Jade Simulations International Corp..
KSR-1 is a trademark of Kendall Square Research Corporation.
Linda is a trademark of Scientific Computing Associates.
MIMDizer is a trademark of Applied Parallel Research.
MIPS is a trademark of MIPS Computer Systems.
MP1 is a trademark of MasPar Computer Corporation.
nCUBE, nCUBE-1 and nCUBE-2 are trademarks of nCUBE Corporation.
Occam is a trademark of Inmos Limited.
OSF/Motif is a trademark of the Open Software Foundation Inc.
Paragon XP/S is a trademark of Intel Corporation.
Perfect Benchmarks is a trademark of the University of Illinois.
Silicon Graphics is a trademark of Silicon Graphics Inc.
SGI is a trademark of Silicon Graphics, Inc.
SP1 is a trademark of IBM Corporation.
Sun and X11 are trademarks of Sun Microsystems, Inc.
Touchstone is a trademark of Intel Corporation.
Transputer, T414, T212, T800 and T9000 are trademarks of Inmos Limited.
VP-100 is a trademark of Fujitsu Limited.
UNIX is a trademark of AT&T.
X-Windows is a trademark of Massachusetts Institute of Technology.
Windows-NT is a trademark of Microsoft.

Index 221

Index
Adaptor compilation system, 84–98
algorithm replacement, 3, 127
alignment, 4, 87, 102, 128, 142, 153–177,

180
—directives, 87
—of data and processes, 177
—preferences, 128, 183–184
—recommendation, 129
AP’93, 1, 4, 6
AP’94, 6
arrangement, 177, 180
—graph, 177, 183, 184
array
—distribution, see data distribution
—redistribution, 4
array distribution, 4, see data distribution
array redistribution, 136–152
array simplification, 114
ASPAR, 193, 194
automatic partitioning, see data distribu-

tion

barrier synchronization point, 3
benchmark programs, 5, 45–55, 90–91
BLAS, 124, 134, 135
block distribution, 196
branch-and-bound, 194, 199

Chameleon transputer family, 82
CM-5, 93, 192
code distribution, 3
code generation
—for distributed memory systems, 3
—for shared memory systems, 3
communication producer, 200
conflicting arrangement, 177, 183–185
conforming objects, 158, 163
conjugate gradient solver, 68, 115
Connection Machine Fortran, 84, 85
constant propagation, 113
cost function, 210
cross edge, 117
cyclic distribution, 196

data dependence, 2
data distribution, 2–4, 84, 102, 128, 136–

152, 192–217
—directives, 84
—recommendation, 129
data layout, see data distribution
data optimization, 154
data parallel programming, 84
data parallel sections, 102
data transfer graph, 210
data transfer time, 208
dead code elimination, 114
decision tree, 199
delay edge, 211
dependence analysis, 101, 112
difference star, 125
dimension conflict, 185
distributed memory multiprocessor (DMS),

2
distributed variables, 195
distribution graph, 201
distribution node, 200
dusty deck programs, 4, 110
dynamic alignment, 155
dynamic data layout, 136–152, 204

exchange operation, 197
expansion
—costs, 172
—of arrays, 161
—of scalars, 159
—strength reduction, 171

first order linear recurrence, 128
FORALL statement, 179
Fortran D Language, 150–152
Fortran90, 193
frequency, 10–13, 16, 17, 20, 21, 24, 202

Gauss–Seidel relaxation, 127, 213
genetic algorithms, 4, 102–108

High Performance Fortran, 82, 84, 85

222 Index

High Performance Fortran Benchmark Suite,
90

hopping, 159
host program, 195

i860 processor, 33
index space, 207
instrumentation, 9, 11–18
inter-phase decomposition problem, 143
interconnection network, 1, 2
interprocessor communication, 2, 3
iPSC/860, 192, 212
iteration space, 157

Jacobi relaxation, 125, 214

Livermore Loops, 37–43, 45, 46, 116, 212
local variables, 195
locality, 2
—of references, 192
loop blocking, 124
loop bound adaptation, 198
loop distribution, 20, 114, 121, 198
loop fusion, 20
loop interchange, 21
loop peeling, 22
loop rerolling, 122
loop skewing, 21
loop tiling, 23, 124
loop unrolling, 22, 81, 122

mask, 197
mask optimization, 199
massively parallel, 2
matrix multiplication, 113, 120
—with redundant IF, 121
message optimization, 198
message passing, 3
—libraries, 3, 81
micro measurements, 45–76
MIMD, 1, 84
MIPS R3000/3010 processor, 36
Modula-2*, 177
multigrid
—hierarchy, 126

—programs, 126

Ncube–2, 45–76
nested parallelism, 178
node program, 195
numerical applications, 2, 95–96, 111, 112

object, 156
Occam, 78, 79, 81, 82
offset conflict, 185, 186
optimization
—of instrumentation code, 11, 16–19
overlap area, 196
owner–computes rule, 3, 102, 128, 156, 164,

195

parallel algorithm, 3
parallel edge, 211
parallel loop, 2
parallel programming languages, 3, 4, 193
parallelization
—automatic, 4, 110–135, 192–217
—interactive, 3, 87, 132
—knowledge–based, 4, 110–135
—semi–automatic, 3, 4, 110
PARAMAT, 110–135
partial differential equation solvers, 69–71,

125
partition vector, 196
pattern, 112
—hierarchy graph (PHG), 118
—instance, 116
—library, 115, 116
—matching algorithm, 119
—recognition, 110–135
performance prediction, 4, 5, 7, 8, 19, 25,

32–76, 130, 143, 205–212
—execution time, 32
—Fortran-77, 33
—micro-analysis, 33
phase, 142
phase control flow graph, 143
PICL, 91
PRAM, 2
preference, 154

Index 223

—, LMO, 183
—, conformance, 154, 183
—, control, 154
—, identity, 154, 183
—, process, 183
—graph, 155
privatization, 159
procedure inlining, 101
profile data, 7–9, 11, 19, 25, 26
profiler, 7–31
program transformations, 2, 3, 8, 9, 19–24,

88, 89, 112–114, 132
—automatic guidance in, 3
—knowledge-based, 111, 127–128, 132
PVM, 89

receive operation, 3, 196
recognition
—of induction variables, 113
—of patterns, 110–135, 193
—of temporary variables, 113
recursive parallelism, 178
redistribution of arrays, 4, 136–152, 194,

204
replicated variables, 195
replication, 159
restructuring, see program transformations
run time prediction, see performance pre-

diction

scalability, 2
scan, 159
send operation, 3, 196
sequentialization, 206, 210
shape, 153
—changing, 153–176
shared memory multiprocessor (SMS), 1
SIMD, 1
slot, 116
SNAP! system, 99–109
speed–down, 4
speed–up, 1
splitting of FORALL, 182
SPMD, 3
stride conflict, 185, 187

strip mining, 124
subspace, 156
—abstraction, 157
—optimization, 153–176
—tree, 164
SUPERB, 3, 193, 195
supercomputer architecture, 1

T800 transputer, 33, 79–81
T9000 transputer, 81–82
template, 112
transputer, 78–83
true ratio, 10, 12, 14, 18, 24, 25

vector instruction, 1
vectorization, 198
vertical edge, 117
Vienna Fortran Compilation System (VFCS),

7
virtually shared memory (VSM), 2, 4, 100

Weight Finder, 7–31
workspace array, 127
workstation cluster, 2

