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Abstract. The constraint satisfaction problem (CSP) is a widely studied
problem with numerous applications in computer science. For infinite-
domain CSPs, there are many results separating tractable and NP-hard
cases while upper bounds on the time complexity of hard cases are
virtually unexplored. Hence, we initiate a study of the worst-case time
complexity of such CSPs. We analyse backtracking algorithms and show
that they can be improved by exploiting sparsification. We present even
faster algorithms based on enumerating finite structures. Last, we prove
non-trivial lower bounds applicable to many interesting CSPs, under the
assumption that the strong exponential-time hypothesis is true.

1 Introduction

The constraint satisfaction problem over a constraint language Γ (CSP(Γ )) is
the problem of finding a variable assignment which satisfies a set of constraints,
where each constraint is constructed from a relation in Γ . This problem is a
widely studied computational problem and it can be used to model many classical
problems such as k-colouring and the Boolean satisfiability problem. In the
context of artificial intelligence, CSPs have been used for formalizing a wide
range of problems, cf. Rossi et al. [30]. Efficient algorithms for CSP problems
are hence of great practical interest. If the domain D is finite, then a CSP(Γ )
instance I with variable set V can be solved in O(|D||V | · poly(||I||)) time by
enumerating all possible assignments. Hence, we have an obvious upper bound on
the time complexity. This bound can, in many cases, be improved if additional
information about Γ is known, cf. the survey by Woeginger [36] or the textbook
by Gaspers [14]. There is also a growing body of literature concerning lower
bounds [16, 20, 21, 33].

When it comes to CSPs over infinite domains, there is a large number of results
that identify polynomial-time solvable cases, cf. Ligozat [23] or Rossi et al. [30].
However, almost nothing is known about the time complexity of solving NP-hard
CSP problems. One may conjecture that a large number of practically relevant
CSP problems do not fall into the tractable cases, and this motivates a closer
study of the time complexity of hard problems. Thus, we initiate such a study in
this paper. Throughout the paper, we measure time complexity in the number of
variables. Historically, this has been the most common way of measuring time



complexity. One reason is that an instance may be massively larger than the
number of variables — a SAT instance with n variables may contain up to 22n

distinct clauses if repeated literals are disallowed — and measuring in the instance
size may give far too optimistic figures, especially since naturally appearing test
examples tend to contain a moderate number of constraints. Another reason is
that in the finite-domain case, the size of the search space is very closely related
to the number of variables. We show that one can reason in a similar way when
it comes to the complexity of many infinite-domain CSPs.

The relations in finite-domain CSPs are easy to represent by simply listing
the allowed tuples. When considering infinite-domain CSPs, the relations need to
be implicitly represented. A natural way is to consider disjunctive formulas over
a finite set of basic relations. Let B denote some finite set of basic relations such
that CSP(B) is tractable. Let B∨∞ denote the closure of B under disjunctions,
and let B∨k be the subset of B∨∞ containing only disjunctions of length at
most k. Consider the following example: let D = {true, false} and let B =
{B1, B2} where B1 = {true} and B2 = {false}. It is easy to see that CSP(B∨∞)
corresponds to the Boolean SAT problem while CSP(B∨k) corresponds to the
k-SAT problem.

CSPs in certain applications such as AI are often based on binary basic
relations and unions of them (instead of free disjunctive formulas). Clearly, such
relations are a subset of the relations in B∨k and we let B∨= denote this set
of relations. We do not explicitly bound the length of disjunctions since they
are bounded by |B|. The literature on such CSPs is voluminous and we refer
the reader to Renz and Nebel [29] for an introduction. The languages B∨∞
and B∨k have been studied to a smaller extent in the literature. There are
both works studying disjunctive constraints from a general point of view [9, 11]
and application-oriented studies; examples include temporal reasoning [19, 31],
interactive graphics [27], rule-based reasoning [25], and set constraints (with
applications in descriptive logics) [4]. We also note (see Section 2.2 for details)
that there is a connection to constraint languages containing first-order definable
relations. Assume Γ is a finite constraint language containing relations that are
first-order definable in B, and that the first order theory of B admits quantifier
elimination. Then, upper bounds on CSP(Γ ) can be inferred from results such as
those that will be presented in Sections 3 and 4. This indicates that studying the
time complexity of CSP(B∨∞) is worthwhile, especially since our understanding
of first-order definable constraint languages is rapidly increasing [3].

To solve infinite-domain CSPs, backtracking algorithms are usually employed.
Unfortunately, such algorithms can be highly inefficient in the worst case. Let
p denote the maximum arity of the relations in B, let m = |B|, and let |V |
denote the number of variables in a given CSP instance. We show (in Section 3.1)

that the time complexity ranges from O(22m·|V |p ·log(m·|V |p) · poly(||I||)) (which
is doubly exponential with respect to the number of variables) for CSP(B∨∞)
to O(22m·|V |p·logm · poly(||I||)) time for B∨= (and the markedly better bound of
O(2|V |

p logm · poly(||I||)) if B consists of pairwise disjoint relations.) The use of
heuristics can probably improve these figures in some cases, but we have not been



able to find such results in the literature and it is not obvious how to analyse
backtracking combined with heuristics. At this stage, we are mostly interested
in obtaining a baseline: we need to know the performance of simple algorithms
before we start studying more sophisticated ones. However, some of these bounds
can be improved by combining backtracking search with methods for reducing the
number of constraints. We demonstrate this with sparsification [18] in Section 3.2.

In Section 4 we switch strategy and show that disjunctive CSP problems can
be solved significantly more efficiently via a method we call structure enumeration.
This method is inspired by the enumerative method for solving finite-domain
CSPs. With this algorithm, we obtain the upper bound O(2|V |

p·m · poly(||I||)) for
CSP(B∨∞). If we additionally assume that B is jointly exhaustive and pairwise
disjoint then the running time is improved further to O(2|V |

p·logm · poly(||I||)).
This bound beats or equals every bound presented in Section 3. We then proceed
to show even better bounds for certain choices of B. In Section 4.2 we consider
equality constraint languages over a countably infinite domain and show that
such CSP problems are solvable in O(|V |B|V | · poly(||I||) time, where B|V | is
the |V |-th Bell number. In Section 4.3 we focus on three well-known temporal
reasoning problems and obtain significantly improved running times.

We tackle the problem of determining lower bounds for CSP(B∨∞) in Section 5,
i.e. identifying functions f such that no algorithm for CSP(B∨∞) has a better
running time than O(f(|V |)). We accomplish this by relating CSP problems and
certain complexity-theoretical conjectures, and obtain strong lower bounds for the
majority of the problems considered in Section 4. As an example, we show that the
temporal CSP({<,>,=}∨∞) problem is solvable in time O(2|V | log |V | ·poly(||I||))
but, assuming a conjecture known as the strong exponential time hypothesis
(SETH), not solvable in O(c|V |) time for any c > 1. Hence, even though the
algorithms we present are rather straightforward, there is, in many cases, very
little room for improvement, unless the SETH fails.

2 Preliminaries

We begin by defining the constraint satisfaction problem and continue by dis-
cussing first-order definable relations.

2.1 Constraint Satisfaction

Definition 1. Let Γ be a set of finitary relations over some set D of values.
The constraint satisfaction problem over Γ (CSP(Γ )) is defined as follows:

Instance: A set V of variables and a set C of constraints of the form R(v1, . . . , vk),
where k is the arity of R, v1, . . . , vk ∈ V and R ∈ Γ .
Question: Is there a function f : V → D such that (f(v1), . . . , f(vk)) ∈ R for
every R(v1, . . . , vk) ∈ C?

The set Γ is referred to as the constraint language. Observe that we do
not require Γ or D to be finite. Given an instance I of CSP(Γ ) we write ||I||



for the number of bits required to represent I. We now turn our attention
to constraint languages based on disjunctions. Let D be a set of values and
let B = {B1, . . . , Bm} denote a finite set of relations over D, i.e. Bi ⊆ Dj

for some j ≥ 1. Let the set B∨∞ denote the set of relations defined by dis-
junctions over B. That is, B∨∞ contains every relation R(x1, . . . , xp) such that
R(x1, . . . , xp) if and only if Bi1(x1)∨· · ·∨Bit(xt) where x1, . . . ,xt are sequences
of variables from {x1, . . . , xp} such that the length of xj equals the arity of Bij .
We refer to Bi1(x1), . . . , Bit(xt) as the disjuncts of R. We assume, without loss
of generality, that a disjunct occurs at most once in a disjunction. We define B∨k,
k ≥ 1, as the subset of B∨∞ where each relation is defined by a disjunction of
length at most k. It is common, especially in qualitative temporal and spatial
constraint reasoning, to study a restricted variant of B∨k when all relations
in B has the same arity p. Define B∨= to contain every relation R such that
R(x) if and only if Bi1(x) ∨ · · · ∨ Bit(x), where x = (x1, . . . , xp). For examples
of basic relations, we refer the reader to Sections 4.2 and 4.3.

We adopt a simple representation of relations in B∨∞: every relation R in
B∨∞ is represented by its defining disjunctive formula. Note that two objects
R,R′ ∈ B∨∞ may denote the same relation. Hence, B∨∞ is not a constraint
language in the sense of Definition 1. We avoid tedious technicalities by ignoring
this issue and view constraint languages as multisets. Given an instance I = (V,C)
of CSP(B∨∞) under this representation, we let Disj(I) = {Bi1(x1), . . . , Bit(xt) |
Bi1(x1) ∨ · · · ∨Bit(xt) ∈ C} denote the set of all disjuncts appearing in C.

We close this section by recapitulating some terminology. Let B = {B1, . . . , Bm}
be a set of relations (over a domain D) such that all B1, . . . , Bm have arity p. We
say that B is jointly exhaustive (JE) if

⋃
B = Dp and that B is pairwise disjoint

(PD) if Bi ∩ Bj = ∅ whenever i 6= j. If B is both JE and PD we say that it is
JEPD. Observe that if B1, . . . , Bm have different arity then these properties are
clearly not relevant since the intersection between two such relations is always
empty. These assumptions are common in for example qualitative spatial and
temporal reasoning, cf. [24]. Let Γ be an arbitrary set of relations with arity
p ≥ 1. We say that Γ is closed under intersection if R1 ∩R2 ∈ Γ for all choices
of R1, R2 ∈ Γ . Let R be an arbitrary binary relation. We define the converse R^

of R such that R^ = {(y, x) | (x, y) ∈ R}. If Γ is a set of binary relations, then
we say that Γ is closed under converse if R^ ∈ Γ for all R ∈ Γ .

2.2 First-order Definable Relations

Languages of the form B∨∞ have a close connection with languages defined
over first-order structures admitting quantifier elimination, i.e. every first-order
definable relation can be defined by an equivalent formula without quantifiers.
We have the following lemma.

Lemma 2. Let Γ be a finite constraint language first-order definable over a rela-
tional structure (D,R1, . . . , Rm) admitting quantifier elimination, where R1, . . . , Rm
are JEPD. Then there exists a k such that (1) CSP(Γ ) is polynomial-time re-
ducible to CSP({R1, . . . , Rm}∨k) and (2) if CSP({R1, . . . , Rm}∨k) is solvable in
O(f(|V |) ·poly(||I||)) time then CSP(Γ ) is solvable in O(f(|V |) ·poly(||I||)) time.



Proof. Assume that every relation R ∈ Γ is definable through a quantifier-free
first-order formula φi over R1, . . . , Rm. Let ψi be φi rewritten in conjunctive
normal form. We need to show that every disjunction in ψi can be expressed as a
disjunction over R1, . . . , Rm. Clearly, if ψi only contains positive literals, then this
is trivial. Hence, assume there is at least one negative literal. Since R1, . . . , Rm
are JEPD it is easy to see that for any negated relation in {R1, . . . , Rm} there
exists Γ ⊆ {R1, . . . , Rm} such that the union of Γ equals the complemented
relation. We can then reduce CSP(Γ ) to CSP({R1, . . . , Rm}∨k) by replacing every
constraint by its conjunctive normal formula over R1, . . . , Rm. This reduction can
be done in polynomial time with respect to ||I|| since each such definition can be
stored in a table of fixed size. Moreover, since this reduction does not increase the
number of variables, it follows that CSP(Γ ) is solvable in O(f(|V |) · poly(||I||))
time whenever CSP(B∨k) is solvable in O(f(|V |) · poly(||I||)) time. ut

As we will see in Section 4, this result is useful since we can use upper
bounds for CSP(B∨k) to derive upper bounds for CSP(Γ ), where Γ consists
of first-order definable relations over B. There is a large number of structures
admitting quantifier elimination and interesting examples are presented in every
standard textbook on model theory, cf. Hodges [15]. A selection of problems that
are highly relevant for computer science and AI are discussed in Bodirsky [3].

3 Fundamental Algorithms

In this section we investigate the complexity of algorithms for CSP(B∨∞) and
CSP(B∨k) based on branching on the disjuncts in constraints (Section 3.1) and
the sparsification method (Section 3.2.) Throughout this section we assume that
B is a set of basic relations such that CSP(B) is in P.

3.1 Branching on Disjuncts

Let B = {B1, . . . , Bm} be a set of basic relations with maximum arity p ≥ 1. It is
easy to see that CSP(B∨∞) is in NP. Assume we have an instance I of CSP(B∨∞)
with variable set V . Such an instance contains at most 2m·|V |

p

distinct constraints.
Each such constraint contains at most m · |V |p disjuncts so the instance I can be
solved in

O((m · |V |p)2m·|V |p

· poly(||I||)) = O(22m·|V |p ·log(m·|V |p) · poly(||I||))

time by enumerating all possible choices of one disjunct out of every disjunctive
constraint. The satisfiability of the resulting sets of constraints can be checked in
polynomial time due to our initial assumptions. How does such an enumerative
approach compare to a branching search algorithm? In the worst case, a branching
algorithm without heuristic aid will go through all of these cases so the bound
above is valid for such algorithms. Analyzing the time complexity of branching
algorithms equipped with powerful heuristics is a very different (and presumably
very difficult) problem.



Assume instead that we have an instance I of CSP(B∨k) with variable
set V . There are at most m · |V |p different disjuncts which leads to at most∑k
i=0(m|V |p)i ≤ k · (m|V |p)k distinct constraints. We can thus solve instances

with |V | variables in O(kk·(m|V |
p)k · poly(||I||)) = O(2k·log k·(m|V |p)k · poly(||I||))

time.
Finally, let I be an instance of CSP(B∨=) with variable set V . It is not hard

to see that I contains at most 2m · |V |p distinct constraints, where each constraint
has length at most m. Non-deterministic guessing gives that instances of this
kind can be solved in

O(m2m·|V |p · poly(||I||)) = O(22m·|V |p·logm · poly(||I||))

time. This may appear to be surprisingly slow but this is mainly due to the
fact that we have not imposed any additional restrictions on the set B of basic
relations. Hence, assume that the relations in B are PD. Given two relations
R1, R2 ∈ B∨=, it is now clear that R1 ∩ R2 is a relation in B∨=, i.e. B∨= is
closed under intersection. Let I = (V,C) be an instance of CSP(B∨=). For
any sequence of variables (x1, . . . , xp), we can assume that there is at most
one constraint R(x1, . . . , xp) in C. This implies that we can solve CSP(B∨=) in
O(m|V |

p · poly(||I||)) = O(2|V |
p logm · poly(||I||)) time. Combining everything so

far we obtain the following upper bounds.

Lemma 3. Let B be a set of basic relations with maximum arity p and let
m = |B|. Then

– CSP(B∨∞) is solvable in O(22m·|V |p ·log(m·|V |p) · poly(||I||)) time,

– CSP(B∨k) is solvable in O(2k·log k·(m|V |p)k · poly(||I||)) time,
– CSP(B∨=) is solvable in O(22m·|V |p·logm · poly(||I||)) time, and
– CSP(B∨=) is solvable in O(2|V |

p logm · poly(||I||)) time if B is PD.

A bit of fine-tuning is often needed when applying highly general results like
Lemma 3 to concrete problems. For instance, Renz and Nebel [29] show that

the RCC-8 problem can be solved in O(c
|V |2

2 ) for some (unknown) c > 1. This
problem can be viewed as CSP(B∨=) where B contains JEPD binary relations

and |B| = 8. Lemma 3 implies that CSP(B∨=) can be solved in O(23|V |2) which
is significantly slower if c < 82. However, it is well known that B is closed under
converse. Let I = ({x1, . . . , xn}, C) be an instance of CSP(B∨=). Since B is closed
under converse, we can always assume that if R(xi, xj) ∈ C, then i ≤ j. Thus,

we can solve CSP(B∨=) in O(m
|V |2

2 · poly(||I||)) = O(2
|V |2

2 logm · poly(||I||)) time.
This figure matches the bound by Renz and Nebel better when c is small.

3.2 Sparsification

The complexity of the algorithms proposed in Section 3 is dominated by the
number of constraints. An idea for improving these running times is therefore to
reduce the number of constraints within instances. One way of accomplishing



this is by using sparsification [18]. Before presenting this method, we need a
few additional definitions. An instance of the k-Hitting Set problem consists of
a finite set U (the universe) and a collection C = {S1, . . . , Sm} where Si ⊆ U
and |Si| ≤ k, 1 ≤ i ≤ m. A hitting set for C is a set C ⊆ U such that C ∩ Si 6= ∅
for each Si ∈ C. Let σ(C) be the set of all hitting sets of C. The k-Hitting Set
problem is to find a minimal size hitting set. T is a restriction of C if for each
S ∈ C there is a T ∈ T with T ⊆ S. If T is a restriction of C, then σ(T ) ⊆ σ(C).
We then have the following result1.

Theorem 4 (Impagliazzo et al. [18]). For all ε > 0 and positive k, there is
a constant K and an algorithm that, given an instance C of k-Hitting Set on
a universe of size n, produces a list of t ≤ 2ε·n restrictions T1, . . . , Tt of C so
that σ(C) =

⋃t
i=1 σ(Ti) and so that for each Ti, |Ti| ≤ Kn. Furthermore, the

algorithm runs in time poly(n) · 2ε·n.

Lemma 5. Let B be a set of basic relations with maximum arity p and let
m = |B|. Then CSP(B∨k) is solvable in O(2(ε+K log k)·|V |p·m · poly(||I||)) time for
every ε > 0, where K is a constant depending only on ε and k.

Proof. Let I = (V,C) be an instance of CSP(B∨k). We can easily reduce
CSP(B∨k) to k-Hitting set by letting U = Disj(I) and C be the set corre-
sponding to all disjunctions in C. Then choose some ε > 0 and let {T1, . . . , Tt}
be the resulting sparsification. Let {T ′1 , . . . , T ′t } be the corresponding instances
of CSP(B∨k). Each instance T ′i contains at most K · |U | ≤ K · |V |p ·m distinct
constraints, where K is a constant depending on ε and k, and can therefore be
solved in time O(poly(||I||) · kK·|V |p·m) by exhaustive search à la Section 3.1.
Last, answer yes if and only if some T ′i is satisfiable. This gives a total running
time of

poly(|V |p ·m) · 2ε·|V |
p·m + 2ε·|V |

p·m · kK·|V |
p·m · poly(||I||) ∈

O(2ε·|V |
p·m · 2K·|V |

p·m·log k · poly(||I||)) = O(2(ε+K log k)·|V |p·m · poly(||I||))

since t ≤ 2ε·n. ut

This procedure can be implemented using only polynomial space, just as
the enumerative methods presented in Section 3.1. This follows from the fact
that the restrictions T1, . . . , Tt of C can be computed one after another with
polynomial delay [10, Theorem 5.15]. Although this running time still might
seem excessively slow observe that it is significantly more efficient than the

2k·log k·(m|V |p)k algorithm for CSP(B∨k) in Lemma 3.

4 Improved Upper Bounds

In this section, we show that it is possible to obtain markedly better upper bounds
than the ones presented in Section 3. In Section 4.1 we first consider general

1 We remark that Impagliazzo et al. [18] instead refer to the k-Hitting set problem as
the k-Set cover problem.



algorithms for CSP(B∨∞) based on structure enumeration, and in Sections 4.2
and 4.3, based on the same idea, we construct even better algorithms for equality
constraint languages and temporal reasoning problems.

4.1 Structure Enumeration

We begin by presenting a general algorithm for CSP(B∨∞) based on the idea of
enumerating all variable assignments that are implicitly described in instances.
As in the case of Section 3 we assume that B is a set of basic relations such that
CSP(B) is solvable in O(poly(||I||)) time.

Theorem 6. Let B be a set of basic relations with maximum arity p and let
m = |B|. Then CSP(B∨∞) is solvable in O(2m|V |

p · poly(||I||)) time.

Proof. Let I = (V,C) be an instance of CSP(B∨∞). Let S = Disj(I) and note
that |S| ≤ m|V |p. For each subset Si of S first determine whether Si is satisfiable.
Due to the initial assumption this can be done in O(poly(||I||)) time since this
set of disjuncts can be viewed as an instance of CSP(B). Next, check whether Si
satisfies I by, for each constraint in C, determine whether at least one disjunct is
included in Si. Each such step can determined in time O(poly(||I||)) time. The
total time for this algorithm is therefore O(2m|V |

p · poly(||I||)). ut

The advantage of this approach compared to the branching algorithm in
Section 3 is that enumeration of variable assignments is much less sensitive
to instances with a large number of constraints. We can speed up this result
even further by making additional assumptions on the set B. This allows us to
enumerate smaller sets of constraints than in Theorem 6.

Theorem 7. Let B be a set of basic relations with maximum arity p and let
m = |B|. Then

1. CSP(B∨∞) solvable in O(2|V |
p·logm · poly(||I||))) time if B is JEPD, and

2. CSP(B∨∞) is solvable in O(2|V |
p·log(m+1) · poly(||I||))) time if B is PD.

Proof. First assume that B is JEPD and let I = (V,C) be an instance of
CSP(B∨∞). Observe that every basic relation has the same arity p since B is
JEPD. Let F be the set of functions from |V |p to B. Clearly |F | ≤ 2|V |

p logm. For
every fi ∈ F let Sfi = {Bj(xj) | xj ∈ V p, fi(xj) = Bj}. For a set Sfi one can
then determine in O(poly(||I||)) time whether it satisfies I by, for every constraint
in C, check if at least one disjunct in every constraint is included in Sfi . Hence,
the algorithm is sound. To prove completeness, assume that g is a satisfying
assignment of I and let Sg be the set of disjuncts in C which are true in this
assignment. For every Bi(xi) ∈ Sg define the function f as f(xi) = Bi. Since B
is PD it cannot be the case that f(xi) = Bi = Bj for some Bj ∈ B distinct from
Bi. Next assume that there exists xi ∈ V p but no Bi ∈ B such that Bi(xi) ∈ Sg.
Let B = {B1, . . . , Bm} and let f1, . . . , fm be functions agreeing with f for every
value for which it is defined and such that fi(xi) = Bi. Since B is JE it holds
that f satisfies I if and only if some fi satisfies I.



Next assume that B is PD but not JE. In this case we use the same construction
but instead consider the set of functions F ′ from V p to B ∪ {Dp}. There are
2|V |

p·log(m+1)) such functions, which gives the desired bound O(2|V |
p·log(m+1) ·

poly(||I||)). The reason for adding the additional element Dp to the domains of
the functions is that if f ∈ F ′, and if f(x) = Dp for some x ∈ V p, then this
constraint does not enforce any particular values on x. ut

4.2 Equality Constraint Languages

Let E = {=, 6=} over some countably infinite domain D. The language E∨∞ is a
particular case of an equality constraint language [5], i.e. sets of relations definable
through first-order formulas over the structure (D,=). Such languages are of
fundamental interest in complexity classifications for infinite domain CSPs, since
a classification of CSP problems based on first-order definable relations over some
fixed structure, always includes the classification of equality constraint language
CSPs. We show that the O(2|V |

2 · poly(||I||)) time algorithm in Theorem 7 can
be improved upon quite easily. But first we need some additional machinery.
A partition of a set X with n elements is a pairwise disjoint set {X1, . . . , Xm},
m ≤ n such that

⋃m
i=1Xi = X. A set X with n elements has Bn partitions, where

Bn is the n-th Bell number. Let L(n) = 0.792n
ln(n+1) . It is known that Bn < L(n)n [1]

and that all partitions can be enumerated in O(nBn) time [13, 32].

Theorem 8. CSP(E∨∞) is solvable in O(|V |2|V |·logL(|V |) · poly(||I||)) time.

Proof. Let I = (V,C) be an instance of CSP(E∨∞). For every partition S1∪. . .∪Sn
of V we interpret the variables in Si as being equal and having the value i, i.e. a
constraint (x = y) holds if and only if x and y belong to the same set and (x 6= y)
holds if and only if x and y belong to different sets. Then check in poly(||I||) time
if this partition satisfies I using the above interpretation. The complexity of this
algorithm is therefore O(|V |B|V | · poly(||I||)) ⊆ O(|V |L(|V |)|V | · poly(||I||)) =

O(|V |2|V |·logL(|V |) · poly(||I||)). ut

Observe that this algorithm is much more efficient than the O(2|V |
2 ·poly(||I||))

algorithm in Theorem 7. It is well known that equality constraint languages admit
quantifier elimination [5]. Hence, we can use Lemma 2 to extend Theorem 8 to
cover arbitrary equality constraint languages.

Corollary 9. Let Γ be a finite set of relations first-order definable over (D,=).
Then CSP(Γ ) is solvable in O(|V |2|V |·logL(|V |) · poly(||I||)) time.

4.3 Temporal Constraint Reasoning

Let T = {<,>,=} denote the JEPD order relations on Q and recall that
CSP(T ) is tractable [34]. Theorem 7 implies that CSP(T ∨∞) can be solved in

O(2|V |
2·log 3 · poly(||I||)) time. We improve this as follows.

Theorem 10. CSP(T ∨∞) is solvable in O(2|V | log |V | · poly(||I||)) time.



Proof. Let I = (V,C) be an instance of CSP(T ∨∞). Assume f : V → Q satis-
fies this instance. It is straightforward to see that there exists some g : V →
{1, . . . , |V |} which satisfies I, too. Hence, enumerate all 2|V | log |V | functions from
V to {1, . . . , |V |} and answer yes if any of these satisfy the instance. ut

It is well known that the first-order theory of (Q, <) admits quantifier elimi-
nation [6, 15]. Hence, we can exploit Lemma 2 to obtain the following corollary.

Corollary 11. Let Γ be a finite temporal constraint language over (Q, <). If
CSP(Γ ) is NP-complete, then it is solvable in O(2|V | log |V | · poly(||I||)) time.

We can also obtain strong bounds for Allen’s interval algebra, which is
a well-known formalism for temporal reasoning. Here, one considers relations
between intervals of the form [x, y], where x, y ∈ R is the starting and ending
point, respectively. Let Allen be the 213 = 8192 possible unions of the set of
the thirteen relations in Table 1. For convenience we write constraints such as
(p ∨m)(x, y) as x{p,m}y, using infix notation and omitting explicit disjunction
signs. The problem CSP(Allen) is NP-complete and all tractable fragments have
been identified [22].

Basic relation Example Endpoints

x precedes y p xxx xe < ys

y preceded by x p−1
yyy

x meets y m xxxx xe = ys

y met-by x m−1
yyyy

x overlaps y o xxxx xs < ys < xe,

y overl.-by x o−1
yyyy xe < ye

x during y d xxx xs > ys,

y includes x d−1
yyyyyyy xe < ye

x starts y s xxx xs = ys,

y started by x s−1
yyyyyyy xe < ye

x finishes y f xxx xe = ye,

y finished by x f−1 yyyyyyy xs > ys

x equals y ≡ xxxx xs = ys,
yyyy xe = ye

Table 1. The thirteen basic relations in Allen’s interval algebra. The endpoint relations
xs < xe and ys < ye that are valid for all relations have been omitted.

Given an instance I = (V,C) of CSP(Allen) we first create two fresh variables
xsi and xei for every x ∈ V , intended to represent the startpoint and endpoint of
the interval x. Then observe that a constraint x{r1, . . . , rm}y ∈ C, where each
ri is a basic relation, can be represented as a disjunction of temporal constraints
over xs, xe, ys and ye by using the definitions of each basic relation in Table 1.
Applying Theorem 10 to the resulting instance gives the following result.

Corollary 12. CSP(Allen) is solvable in O(22|V |(1+log |V |) · poly(||I||)) time.

Finally, we consider branching time. We define the following relations on
the set of all points in the forest containing all oriented, finite trees where the
in-degree of each node is at most one.



1. x = y if and only if there is a path from x to y and a path from y to x,
2. x < y if and only if and there is a path from x to y but no path from y to x,
3. x > y if and only if there is a path from y to x but no path from x to y,
4. x||y if and only if there is no path from x to y and no path from y to x,

These four basic relations are known as the point algebra for branching time.
We let P = {||, <,>,=}. The problem CSP(P∨∞) is NP-complete and many
tractable fragments have been identified [8].

Theorem 13. CSP(P∨∞) is solvable in O(2|V |+2|V | log |V | · poly(||I||)) time.

Proof. Let I = (V,C) be an instance of CSP(P∨∞). We use the following
algorithm.

1. enumerate all directed forests over V where the in-degree of each node is at
most one,

2. for every forest F , if at least one disjunct in every constraint in C is satisfied
by F , answer yes,

3. answer no.

It is readily seen that this algorithm is sound and complete for CSP(P∨∞). As
for the time complexity, recall that the number of directed labelled trees with
|V | vertices is equal to |V ||V |−2 by Cayley’s formula. These can be efficiently
enumerated by e.g. enumerating all Prüfer sequences [28] of length |V | − 2. To
enumerate all forests instead of trees, we can enumerate all labelled trees with
|V |+ 1 vertices and only consider the trees where the extra vertex is connected
to all other vertices. By removing this vertex we obtain a forest with |V | vertices.
Hence, there are at most 2|V ||V ||V |−1 directed forests over V . The factor 2|V |

stems from the observation that each forest contains at most |V | edges, where
each edge has two possible directions. We then filter out the directed forests
containing a tree where the in degree of any vertex is more than one. Last, for
each forest, we enumerate all |V ||V | functions from V to the forest, and check
in poly(||I||) time whether it satisfies I. Put together this gives a complexity of
O(2|V ||V ||V |−1|V ||V | · poly(||I||)) ⊆ O(2|V |+2|V | log |V | · poly(||I||)). ut

Branching time does not admit quantifier elimination [3, Section 4.2] so
Lemma 2 is not applicable. However, there are closely connected constraint
languages on trees that have this property. Examples include the triple consistency
problem with important applications in bioinformatics [7].

5 Lower Bounds

The algorithms presented in Section 4 give new upper bounds for the complexity
of CSP(B∨∞). It is natural to also ask, given reasonable complexity theoretical
assumptions, how much room there is for improvement. This section is divided
into Section 5.1, where we obtain lower bounds for CSP(B∨∞) and CSP(B∨k) for
B that are JEPD, and in Section 5.2, where we obtain lower bounds for Allen’s
interval algebra.



5.1 Lower Bounds for JEPD Languages

One of the most well-known methods for obtaining lower bounds is to exploit
the exponential-time hypothesis (ETH). The ETH states that there exists a
δ > 0 such that 3-SAT is not solvable in O(2δ|V |) time by any deterministic
algorithm, i.e. it is not solvable in subexponential time [16]. If the ETH holds,
then there is an increasing sequence s3, s4, . . . of reals such that k-SAT cannot
be solved in time 2sk|V | but it can be solved in 2(sk+ε)|V | time for arbitrary
ε > 0. The strong exponential-time hypothesis (SETH) is the conjecture that the
limit of the sequence s3, s4, . . . equals 1, and, as a consequence, that SAT is not
solvable in time O(2δ|V |) for any δ < 1 [16]. These conjectures have in recent
years successfully been used for proving lower bounds of many NP-complete
problems [26].

Theorem 14. Let B = {R1, R2, . . . , Rm} be a JEPD set of nonempty basic
relations. If the SETH holds then CSP(B∨∞) cannot be solved in O(2δ|V |) time
for any δ < 1.

Proof. If the SETH holds then SAT cannot be solved in O(2δ|V |) time for any
δ < 1. We provide a polynomial-time many-one reduction from SAT to CSP(B∨∞)
which only increases the number of variables by a constant — hence, if CSP(B∨∞)
is solvable in O(2δ|V |) time for some δ < 1 then SAT is also solvable in O(2δ|V |)
time, contradicting the original assumption.

Let I = (V,C) be an instance of SAT, where V is a set of variables and C a set
of clauses. First observe that since m ≥ 2 and since B is JEPD, B must be defined
over a domain with two or more elements. Also note that the requirement that B is
JEPD implies that complement of R1(x) can be expressed as R2(x)∨ . . .∨Rm(x).
Now, let p denote the arity of the relations in B. We introduce p−1 fresh variables
T1, . . . , Tp−1 and then for every clause (`1 ∨ . . . ∨ `k) ∈ C create the constraint
(φ1(x1, T1, . . . , Tp−1) ∨ . . . ∨ φk(xk, T1, . . . , Tp−1)), where φi(xi, T1, . . . , Tp−1) =
R1(xi, T1, . . . , Tp−1) if `i = xi and φi(xi, T1, . . . , Tp−1) = R2(xi, T1, . . . , Tp−1) ∨
. . . ∨Rm(xi, T1, . . . , Tp−1) if `i = ¬xi. Hence, the resulting instance is satisfiable
if and only if I is satisfiable. Since the reduction only introduces p − 1 fresh
variables it follows that SAT is solvable in time O(2δ(|V |+p−1)) = O(2δ|V |). ut

Even though this theorem does not rule out the possibility that CSP(B∨k)
can be solved significantly faster for some k it is easy to see that CSP(B∨k)
cannot be solved in subexponential time for any k ≥ 3(|B| − 1). First assume
that the ETH holds. By following the proof of Theorem 14 we can reduce 3-SAT
to CSP(B∨3(|B|−1)), which implies that CSP(B∨3(|B|−1)) cannot be solved in 2δn

time either. The bound k = 3(|B| − 1) might obviously feel a bit unsatisfactory
and one might wonder if this can be improved. We can in fact make this much
more precise by adding further restrictions to the set B. As in the case of the
equality constraint languages in Section 4.2 we let = denote the equality relation
on a given countably infinite domain.

Theorem 15. Let B = {=, R1, . . . , Rm} be a set of binary PD, nonempty rela-
tions. If the ETH holds then CSP(B∨k) cannot be solved in O(2sk|V |) time.



Proof. We prove this result by reducing k-SAT to CSP(B∨k) in such a way
that we at most introduce one fresh variable. Let I = (V,C) be an instance
of k-SAT, where V is a set of variables and C a set of clauses. We know that
R1 ⊆ {(a, b) | a, b ∈ D and a 6= b} since B is PD. Introduce one fresh variable T .
For every clause (`1 ∨ . . . ∨ `k) ∈ C create the constraint (φ1 ∨ . . . ∨ φk), where
φi := xj = T if `i = xj and φi = R1(xj , T ) if `i = ¬xj . Let (V ′, C ′) be the
resulting instance of CSP(B∨k). We show that (V ′, C ′) has a solution if and only
if (V,C) has a solution.

Assume first that (V,C) has a solution f : V → {0, 1}. Arbitrarily choose
a tuple (a, b) ∈ R1. We construct a solution f ′ : V ′ → {a, b} for (V ′, C ′). Let
f ′(T ) = b, and for all v ∈ V let f ′(v) = b if f(v) = 1 and let f ′(v) = a if
f(v) = 0. Arbitrarily choose a clause (`1 ∨ . . . ∨ `k) ∈ C and assume for instance
that `1 evaluates to 1 under the solution f . If `1 = xi, then f(xi) = 1 and
the corresponding disjunct in the corresponding disjunctive constraint in C ′ is
xi = T . By definition, (f ′(xi), f

′(T )) = (b, b). If `1 = ¬xi, then f(xi) = 0 and
the corresponding disjunct in the corresponding disjunctive constraint in C ′ is
R1(xi, T ). By definition, (f ′(xi), f

′(T )) = (a, b) and (a, b) ∈ R1.
Assume instead that f ′ : V ′ → D is a solution to (V ′, C ′), and that f ′(T ) = c.

We construct a solution f : V → {0, 1} to (V,C) as follows. Arbitrarily choose a
disjunctive constraint (d1∨· · ·∨dk) ∈ C ′ and let (`1∨· · ·∨`k) be the corresponding
clause in C ′. Assume that `1 = xi. If d1 is true under f ′, then let f(xi) = 1
and, otherwise, f(xi) = 0. If `1 = ¬xi, then do the opposite: f(xi) = 0 if d1

is true and f(xi) = 1 otherwise. If the function f is well-defined, then f is
obviously a solution to (V,C). We need to prove that there is no variable that is
simultaneously assigned 0 and 1. Assume this is the case. Then there is some
variable xi such that the constraints xi = T and R1(xi, T ) are simultaneously
satisfied by f ′. This is of course impossible due to the fact that R1 contains no
tuple of the form (a, a). ut

If we in addition require that B is JE we obtain substantially better lower
bounds for CSP(B∨∞).

Theorem 16. Let B = {=, R1, . . . , Rm} be a set of binary JEPD relations over
a countably infinite domain. If the SETH holds then CSP(B∨∞) cannot be solved
in O(c|V |) time for any c > 1.

Proof. First observe that the binary inequality relation 6= over D can be defined as⋃m
i=1Ri since B is JEPD. In the the proof we therefore use 6= as an abbreviation for⋃m
i=1Ri. Let I = (V,C) be an instance of SAT with variables V = {x1, . . . , xn}

and the set of clauses C. Let K be an integer such that K > log c. Assume
without loss of generality that n is a multiple of K. We will construct an instance
of CSP(B∨∞) with n

K + 2K = n
K + O(1) variables. First, introduce 2K fresh

variables v1, . . . , v2K and make them different by imposing 6= constraints. Second,
introduce n

K fresh variables y1, . . . , y n
K

, and for each i ∈ {1, . . . , nK } impose the
constraint (yi = v1 ∨ yi = v2 ∨ · · · ∨ yi = v2k). Let V1, . . . , V n

K
be a partition of

V such that each |Vi| = K. We will represent each set Vi of Boolean variables by
one yi variable over D. To do this we will interpret each auxiliary variable zi as



a K-ary Boolean tuple. Let h : {v1, . . . , v2K} → {0, 1}K be an injective function
which assigns a Boolean K-tuple for every variable vi. Let g+ be a function from
{1, . . . ,K} to subsets of {v1, . . . , v2K} such that vi ∈ g(j) if and only if the j-th
element in h(vi) is equal to 1. Define g− in the analogous way. Observe that
|g+(j)| = |g−(j)| = 2K−1 for each j ∈ {1, . . . ,K}.

For the reduction, let (`i1 ∨ . . .∨`in′ ), `ij = xij or `ij = ¬xij , be a clause in C.
We assume that n′ ≤ n since the clause contains repeated literals otherwise. For
each literal `ij let Vi′ ⊆ V be the set of variables such that xij ∈ Vi′ . Each literal
`ij is then replaced by

∨
z∈g+(ij) yi′ = z if `ij = xij , and with

∨
z∈g−(ij) yi′ = z if

`ij = ¬xij . This reduction can be done in polynomial time since a clause with n′

literals is replaced by a disjunctive constraint with n′2K−1 disjuncts (since K is
a constant depending only on c). It follows that SAT can be solved in

O(c
n
K +O(1) · poly(||I||)) = O(2( n

K +O(1))·log c · poly(||I||)) = O(2δ·n · poly(||I||))

for some δ < 1, since K > log c . Thus, the SETH does not hold. ut

As an illustrative use of the theorem we see that the temporal problem
CSP(T ∨∞) is solvable in O(2|V | log |V | · poly(||I||)) time but not in O(c|V |) time
for any c > 1 if the SETH holds. Lower bounds can also be obtained for
the branching time problem CSP(P∨∞) since there is a trivial reduction from
CSP(T )∨∞ which does not increase the number of variables: simply add a
constraint (x < y ∨ x > y ∨ x = y) for every pair of variables in the instance.
Similarly, the equality constraint satisfaction problem CSP(E∨∞) is not solvable
in O(c|V |) time for any c > 1 either, unless the SETH fails. Hence, even though
the algorithms in Sections 4.2 and 4.3 might appear to be quite simple, there is
very little room for improvement.

5.2 Lower Bounds for Allen’s Interval Algebra

Theorems 14, 15 and 16 gives lower bounds for all the problems considered in
Sections 4.2 and 4.3 except for CSP(Allen) since unlimited use of disjunction is
not allowed in this language. It is however possible to relate the complexity of
CSP(Allen) to the Chromatic Number problem, i.e. the problem of computing
the number of colours needed to colour a given graph.

Theorem 17. If CSP(Allen) can be solved in O(
√
c
|V |

) time for some c < 2,
then Chromatic Number can be solved in O((c+ ε)|V |) time for arbitrary ε > 0.

Proof. We first present a polynomial-time many-one reduction from k-Colourability
to CSP(Allen) which introduces k fresh variables. Given an undirected graph
G = ({v1, . . . , vn}, E), introduce the variables z1, . . . , zk and v1, . . . , vn, and:

1. impose the constraints z1{m}z2{m} . . . {m}zk,
2. for each vi, 1 ≤ i ≤ n, add the constraints vi{≡, s−1}z1, vi{p,m, f−1, d−1}zj

(2 ≤ j ≤ k − 1), and vi{p,m, f−1}zk,
3. for each (vi, vj) ∈ E, add the constraint vi{s, s−1}vj .



Consulting Table 1, we see that for each vi, it holds that its right endpoint
must equal the right endpoint of some zi, and its left endpoint must equal the left
endpoint of z1. It is now obvious that the resulting instance has a solution if and
only if G is k-colourable. The result then follows since there is a polynomial-time
Turing reduction from Chromatic Number to CSP(Allen) by combining binary
search (that will evaluate log n Allen instances) with the reduction above (recall
that O(log n · cn) ⊆ O((c+ ε)n) for every ε > 0) . Observe that if k = n then the
reduction introduces n fresh variables, which is where the constant

√
c in the

expression O(
√
c
|V |

) stems from. CSP(Allen). ut

The exact complexity of Chromatic Number has been analysed and dis-
cussed in the literature. Björklund et al. [2] have shown that the problem is
solvable in 2|V | · poly(||I||) time. Impagliazzo and Paturi [17] poses the following
question: “Assuming SETH, can we prove a 2n−o(n) lower bound for Chromatic

Number?”. Hence, an O(
√
c
|V |

), c < 2, algorithm for CSP(Allen) would also be
a major breakthrough for Chromatic Number.

6 Discussion

We have investigated several novel algorithms for solving disjunctive CSP prob-
lems, which, with respect to worst-case time complexity, are much more efficient
than e.g. backtracking algorithms without heuristics. These bounds can likely
be improved, but, due to the lower bounds in Section 5, probably not to a great
degree. Despite this, algorithms for solving infinite domain constraint satisfaction
problems are in practice used in many non-trivial applications. In light of this the
following research direction is particularly interesting: how to formally analyse
the time complexity of branching algorithms equipped with (powerful) heuristics?
In the case of finite-domain CSPs and, in particular, DPLL-like algorithms for
the k-SAT problem there are numerous results to be found in the literature,
cf. the survey by Vsemirnov et al. [35]. This is not the case for infinite-domain
CSPs, even though there is a considerable amount of empirical evidence that
infinite-domain CSPs can be efficiently solved by such algorithms, so one ought
to be optimistic about the chances of actually obtaining non-trivial bounds. Yet,
sharp formal analyses appear to be virtually nonexistent in the literature.

Another research direction is to strengthen the lower bounds in Section 5 even
further. It would be interesting to prove stronger lower bounds for CSP(B∨k)
for some concrete choices of B and k. As an example, consider the temporal
problem CSP(T ∨4). From Theorem 15 we see that CSP(T ∨4) is not solvable in
O(2s4|V |) time for some s4 < log 1.6, assuming the ETH holds, since the currently
best deterministic algorithm for 4-SAT runs in O(1.6|V |) time [12]. On the other

hand, if CSP(T ∨4) is solvable in O(
√
c
|V |

) time for some c < 2, then Chromatic
Number can be solved in O((c + ε)|V |) time for arbitrary ε > 0. This can be
proven similar to the reduction in Theorem 17 but by making use of temporal
constraints instead of interval constraints. Hence, for certain choices of B and k
it might be possible to improve upon the general bounds given in Section 5.
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