
Circuit Satisfiability and Constraint Satisfaction
around Skolem Arithmetic

Christian Glaßer1, Peter Jonsson2?, and Barnaby Martin3??

1 Theoretische Informatik, Julius-Maximilians-Universität, Würzburg, Germany
2 Dept. of Computer and Information Science, Linköpings Universitet, SE-581 83

Linköping, Sweden
3 School of Science and Technology, Middlesex University,

The Burroughs, Hendon, London NW4 4BT

Abstract. We study interactions between Skolem Arithmetic and cer-
tain classes of Circuit Satisfiability and Constraint Satisfaction Problems
(CSPs). We revisit results of Glaßer et al. [16] in the context of CSPs and
settle the major open question from that paper, finding a certain satis-
fiability problem on circuits—involving complement, intersection, union
and multiplication—to be decidable. This we prove using the decidability
of Skolem Arithmetic. Then we solve a second question left open in [16]
by proving a tight upper bound for the similar circuit satisfiability prob-
lem involving just intersection, union and multiplication. We continue by
studying first-order expansions of Skolem Arithmetic without constants,
(N;×), as CSPs. We find already here a rich landscape of problems with
non-trivial instances that are in P as well as those that are NP-complete.

1 Introduction

Skolem Arithmetic is the weak fragment of first-order arithmetic involving only
multiplication. Thoralf Skolem gave a quantifier-elimination technique and ar-
gued for decidability of the theory in [28]. However, his proof was rather vague
and a robust demonstration was not given of this result until Mostowski [23].
Skolem Arithmetic is somewhat less fashionable than Presburger Arithmetic,
which involves only addition, and was proved decidable by Presburger in [26].
Indeed, Mostowski’s proof made use of a reduction from Skolem Arithmetic to
Presburger Arithmetic through the notion of weak direct powers (an excellent
survey on these topics is [3]). The central thread of this paper is putting to work
results about Skolem Arithmetic from the past, to solve open and naturally aris-
ing problems from today. Many of our results, like that of Mostowski, will rely
on the interplay between Skolem and Presburger Arithmetic.

A constraint satisfaction problem (CSP) is a computational problem in which
the input consists of a finite set of variables and a finite set of constraints, and

? The second author was partially supported by the Swedish Research Council (VR)
under grant 621-2012-3239.

?? The third author was supported by EPSRC grant EP/L005654/1.

where the question is whether there exists a mapping from the variables to some
fixed domain such that all the constraints are satisfied. When the domain is
finite, and arbitrary constraints are permitted in the input, the CSP is NP-
complete. However, when only constraints from a restricted set of relations are
allowed in the input, it can be possible to solve the CSP in polynomial time. The
set of relations that is allowed to formulate the constraints in the input is often
called the constraint language. The question which constraint languages give
rise to polynomial-time solvable CSPs has been the topic of intensive research
over the past years. It has been conjectured by Feder and Vardi [13] that CSPs
for constraint languages over finite domains have a complexity dichotomy: they
are either in P or NP-complete. This conjecture remains unsettled, although
dichotomy is now known on substantial classes (e.g. structures with domains of
size ≤ 3 [27, 9] and smooth digraphs [17, 2]). Various methods, combinatorial
(graph-theoretic), logical and universal-algebraic have been brought to bear on
this classification project, with many remarkable consequences. A conjectured
delineation for the dichotomy was given in the algebraic language in [10].

By now the literature on infinite-domain CSPs is also beginning to mature.
Here the complexity can be much higher (e.g. undecidable) but on natural classes
there is often the potential for structured classifications, and this has proved to
be the case for reducts of, e.g. the rationals with order [5], the random (Rado)
graph [7] and the integers with successor [6]; as well as first-order (fo) expansions
of linear program feasibility [4]. Skolem and Presburger Arithmetic represent
perfect candidates for continuation in this vein. These natural classes around
Skolem and Presburger Arithmetic have the property that their CSPs sit in NP
and a topic of recent interest for the second and third authors has been natural
CSPs sitting in higher complexity classes.

Meanwhile, a literature existed on satisfiability of circuit problems over sets
of integers involving work of the first author [16], itself continuing a line of in-
vestigation begun in [30] and pursued in [32, 33, 22]. The problems in [16] can
be seen as variants of certain functional CSPs whose domain is all singleton sets
of the non-negative integers and whose relations are set operations of the form:
complement, intersection, union, addition and multiplication (the latter two are
defined set-wise, e.g. A × B := {ab : a ∈ A ∧ b ∈ B}). An open problem was
the complexity of the problem when the permitted set operators were precisely
complement, intersection, union and multiplication. In this paper we resolve that
this problem is in fact decidable, indeed in triple exponential space. We prove
this result by using the decidability of the theory of Skolem Arithmetic with
constants. We take here Skolem Arithmetic to be the non-negative integers with
multiplication (and possibly constants). In studying this problem we are able to
bring to light existing results of [16] as results about their related CSPs, pro-
viding natural examples with interesting super-NP complexities. In addition, we
improve one of the upper bounds of [16] to a tight upper bound. This is the
circuit satisfiability problem where the permitted set operators are just intersec-
tion, union and multiplication, and where we improve the bound from NEXP to

PSPACE. Interestingly, this result does not immediately translate to a similar
upper bound for the corresponding functional CSP.

In the second part of the paper, Skolem Arithmetic takes centre stage as we
initiate the study of the computational complexity of the CSPs of its reducts,
i.e. those constraint languages whose relations have a fo-definition in (N;×).
CSP(N;×) is in P, indeed it is trivial. The object therefore of our early study is
its fo-expansions. We show that CSP(N; +, 6=) is NP-complete, as is CSP(N;×, c)
for each c > 1. We further show that CSP(N;×, U) is NP-complete when U is
any non-empty set of integers greater than 1 such that each has a prime factor
p, for some prime p, but omits the factor p2. Clearly, CSP(N;×, U) is in P
(and is trivial) if U contains 0 or 1. As a counterpoint to our NP-hardness
results, we prove that CSP(N;×, U) is in P whenever there exists m > 1 so that
U ⊇ {m,m2,m3, . . .}.

Related work. Apart from the research on circuit problems mentioned
above there has been work on other variants like circuits over integers [31] and
positive natural numbers [8], equivalence problems for circuits [15], functions
computed by circuits [25], and equations over sets of natural numbers [18, 19].

2 Preliminaries

Let N be the set of non-negative integers, and let N+ be the set of positive
integers. For m ∈ N, let Divm be the set of factors of m. Finally, let {N} be
the set of singletons {{x} : n ∈ N}. In this paper we use a version of the
CSP permitting both relations and functions (and constants). Thus, a constraint
language consists of a domain together with functions, relations and constants
over that domain. One may thus consider a constraint language to be a first-
order structure. A homomorphism from a constraint language Γ to a constraint
language ∆, over the same signature, is a function f from the domain of Γ to
the domain of ∆ that preserves the relations, i.e. if (x1, . . . , xk) ∈ RΓ , then
also (f(x1), . . . , f(xk)) ∈ R∆. A homomorphism from a constraint language to
itself is an endomorphism. An endomorphism that also preserves the negations of
relations is termed an embedding and a bijective embedding is an automorphism.

A constraint language is a core if all of its endomorphisms are embeddings
(equivalently, if the domain is finite, automorphisms). The functional version of
the CSP has previously been seen in, e.g., [12]. For a purely functional constraint
language, a primitive positive (pp) sentence is the existential quantification of a
conjunction of term equalities. More generally, and when relations present, we
may have positive atoms in this conjunction. The problem CSP(Γ) takes as input
a primitive positive sentence ϕ, and asks whether it is true on Γ . The problem
CSPc(Γ) is similar but allows input constants naming the domain elements. We
will allow that the functions involved on ϕ be defined on a larger domain than
the domain of Γ . This is rather unheimlich4 but it allows the problems of [16] to
be more readily realised in the vicinity of CSPs. For example, one such typical

4 Weird. Thus spake Lindemann about Hilbert’s non-constructive methods in the res-
olution of Gordon’s problem (see [29]).

domain is {N}, but we will allow functions such as − (complement), ∪ (union)
and ∩ (intersection) whose domain and range is the set of all subsets of N. We will
also employ the operations of set-wise addition A+B := {a+ b : a ∈ A∧ b ∈ B}
and multiplication A×B := {ab : a ∈ A ∧ b ∈ B}.

ΣP
i , ΠP

i , and ∆P
i are levels of the polynomial-time hierarchy, while Σi, Πi, and

∆i are levels of the arithmetical hierarchy. Moreover, we use the classes NP = ΣP
1 ,

PSPACE =
⋃
k≥1 DSPACE(nk), and 3EXPSPACE =

⋃
k≥1 DSPACE(22

2n
k

).
Where no SPACE is written explicitly, the complexity classes may be assumed
to refer to time. For more on these complexity classes we refer the reader to [24].

For sets A and B we say that A is polynomial-time many-one reducible to
B, in symbols A≤p

mB, if there exists a polynomial-time computable function f
such that for all x it holds that (x ∈ A⇐⇒ f(x) ∈ B). If f is even computable
in logarithmic space, then A is logspace many-one reducible to B, in symbols
A≤log

m B. A is nondeterministic polynomial-time many-one reducible to B, in
symbols A≤NP

m B, if there is a nondeterministic Turing transducer M that runs
in polynomial time such that for all x it holds that x ∈ A if and only if there
exists a y computed by M on input x with y ∈ B. The reducibility notions ≤p

m,
≤log

m , and ≤NP
m are transitive and NP is closed under these reducibilities.

A circuit C = (V,E, gC) is a finite, non-empty, directed, acyclic multi-graph
(V,E) with a specified node gC ∈ V . The graph does not need to be connected
and only has multiple edges between two nodes when a binary operator is applied
on both sides to a single set (e.g. A×A). Let V = {1, 2, . . . , n} for some n ∈ N.
The nodes in the graph (V,E) are topologically ordered, i.e., for all v1, v2 ∈ V , if
v1 < v2, then there is no path from v2 to v1. Nodes are also called gates. Nodes
with indegree 0 are called input gates and gC is called the output gate. If there
is an edge from gate u to gate v, then we say that u is a predecessor of v and v
is a successor of u.

Let O ⊆ {∪,∩,−,+,×}. An O-circuit with unassigned input gates C =
(V,E, gC , α) is a circuit (V,E, gC) whose gates are labeled by the labeling func-
tion α : V → O∪N∪{?} such that the following holds: Each gate has an indegree
in {0, 1, 2}, gates with indegree 0 have labels from N ∪ {?}, gates with indegree
1 have label −, and gates with indegree 2 have labels from {∪,∩,+,×}. Input
gates with a label from N are called assigned (or constant) input gates; input
gates with label ? are called unassigned (or variable) input gates. An O-formula
is an O-circuit that only contains nodes with outdegree one.

Let u1 < · · · < un be the unassigned inputs in C and x1, . . . , xn ∈ N. By
assigning value xi to the input ui, we obtain an O-circuit C(x1, . . . , xn) whose
input gates are all assigned. In this circuit, each gate g computes the following set
I(g): If g is an assigned input gate where α(g) 6= ?, then I(g) = {α(g)}. If g = uk
is an unassigned input gate, then I(g) = {xk}. If g has label − and predecessor
g1, then I(g) = N\ I(g1). If g has label ◦ ∈ {∪,∩,+,×} and predecessors g1 and
g2, then I(g) = I(g1) ◦ I(g2). Finally, let I(C(x1, . . . , xn)) = I(gC) be the set
computed by the circuit C(x1, . . . , xn).

Definition 1 (membership, equivalence, and satisfiability problems of
circuits and formulas).

Let O ⊆ {∪,∩,−,+,×}.

MCN(O) = {(C, b) | C is an O-circuit without unassigned inputs and b ∈ I(C)}
ECN(O) = {(C1, C2) | C1 and C2 are O-circuits without unassigned inputs and

we have I(C1) = I(C2)}
SCN(O) = {(C, b) | C is an O-circuit with unassigned inputs u1 < · · · < un and

there exist x1, . . . , xn ∈ N such that b ∈ I
(
C(x1, . . . , xn)

)
}

MFN(O), EFN(O), and SFN(O) are the variants that deal with O-formulas in-
stead of O-circuits.

When an O-circuit is used as input for an algorithm, then we use a suitable
encoding such that it is possible to verify in deterministic logarithmic space
whether a given string encodes a valid circuit.

In Section 3, for i ∈ N, we often identify {i} with i, where this can not cause
a harmful confusion.

3 Circuit Satisfiability and Functional CSPs

We investigate the computational complexity of functional CSPs. In many cases
we can translate known lower and upper bounds for membership, equivalence,
and satisfiability problems of arithmetic circuits [22, 15, 16] to CSPs. Our main
result is the decidability of SCN(−,∪,∩,×) and CSPc({N}; −,∪,∩,×), which
solves the main open question of the paper [16]. We emphasise that the domain
of CSPc({N}; −,∪,∩,×) is the set of singletons that we defined as {N} and not,
e.g., the set of subsets of all natural numbers. This would be a different CSP.
Our unusual definition is motivated by the circuit problems whose relationship
to CSPs we wish to formalise.

We start with the observation that the equivalence of arithmetic terms re-
duces to functional CSPs. This yields several lower bounds for the CSPs.

Proposition 1. For O ⊆ {−,∪,∩,+,×} it holds that EFN(O)≤log
m CSPc({N};O).

Corollary 1.

1. CSPc({N}; −,∪,∩,+) and CSPc({N}; −,∪,∩,×) are ≤log
m -hard for PSPACE.

2. CSPc({N};∪,∩,+), CSPc({N};∪,∩,×), CSPc({N};∪,+), and
CSPc({N};∪,×) are ≤log

m -hard for ΠP
2 .

CSPs with + and × can express diophantine equations, which implies the
Turing-hardness of such CSPs.

Proposition 2. CSPc({N}; +,×) is ≤log
m -hard for Σ1, CSPc({N};∪,∩,+,×) ∈

Σ1 and CSPc({N}; −,∪,∩,+,×) ∈ Σ2.

We now show that the decidability of Skolem arithmetic [14] can be used to
decide the satisfiability of arithmetic circuits without +. From this we obtain
the decidability of CSPs where exactly one arithmetic operation is forbidden.

Theorem 1. SCN(−,∪,∩,×), CSPc({N}; −,∪,∩,×) and CSPc({N}; −,∪,∩,+)
are in 3EXPSPACE.

The following proposition transfers the NP-hardness from satisfiability prob-
lems for arithmetic circuits to CSPc({N};×) and CSPc({N}; +).

Proposition 3. CSPc({N};×) and CSPc({N}; +) are ≤log
m -hard for NP.

The remaining results in this section show that certain functional CSPs be-
long to NP. This needs non-trivial arguments of the form: If a CSP can be
satisfied, then it can be satisfied even with small values. These arguments are
provided by the known results that integer programs, existential Presburger
arithmetic, and existential Skolem arithmetic are decidable in NP.

Proposition 4. CSPc({N}; −,∩,∪) is ≤log
m -complete for NP.

Proposition 5. CSPc({N}; +) ∈ NP.

Proposition 6. CSPc({N};∩,+)≤NP
m CSPc({N}; +,=, 6=) and CSPc({N};∩,×)

≤NP
m CSPc({N};×,=, 6=). Therefore, CSPc({N};∩,+),CSPc({N};∩,×) ∈ NP.

A second open problem from [16]. We now improve another of the upper
bounds of [16] to a tight upper bound. Here we have the circuit satisfiability
problem where the permitted set operators are just intersection, union and mul-
tiplication, where we improve the bound from NEXP to PSPACE.

Theorem 2. SCN(∪,∩,×) ∈ PSPACE.

Table 1 summarizes the results obtained in Section 3 and shows open questions.
In particular, we would like to improve the gap between the lower and upper
bounds for CSPc({N};O), where O contains ∪ and exactly one arithmetic oper-
ation (+ or ×).

4 CSPs over fo-expansions of Skolem Arithmetic

We now commence our exploration of the complexity of CSPs generated from
the simplest expansions of (N;×). Abandoning our set-wise definitions, we hence-
forth use × to refer to the syntactic multiplication of Skolem Arithmetic (which
may additionally carry semantic content). When we wish to refer to multipli-
cation in a purely semantic way, we prefer ·s or

∏
. We will consider × as a

ternary relation rather than a binary function. We will never use syntactic ×
in a non-standard way, i.e. holding on a triple of integers for which it does not
already hold in natural arithmetic.

CSPc({N};O)
O Lower Bound Upper Bound

− ∪ ∩ + × Σ1 Σ2
− ∪ ∩ + PSPACE 3EXPSPACE
− ∪ ∩ × PSPACE 3EXPSPACE
− ∪ ∩ NP NP
∪ ∩ + × Σ1 Σ1

∪ ∩ + ΠP
2 3EXPSPACE

∪ ∩ × ΠP
2 3EXPSPACE

∪ + × Σ1 Σ1

∪ + ΠP
2 3EXPSPACE

∪ × ΠP
2 3EXPSPACE

∩ + × Σ1 Σ1

∩ + NP NP
∩ × NP NP

+ × Σ1 Σ1

+ NP NP
× NP NP

Table 1. Upper and lower bounds for CSPc({N};O). All lower bounds are with respect
to ≤log

m -reductions.

Proposition 7. Let Γ be a finite signature reduct of (N;×, 1, 2, . . .). Then CSP(Γ)
is in NP.

Upper bounds. We continue with polynomial upper bounds. Note that con-
stants are no longer assumed to necessary exist in our structures (in contrast to
the situation in Proposition 7).

Lemma 1. Let U ⊆ N be non-empty and U ∩ {0, 1} = ∅. Then CSP(N;×, U)
is polynomial-time reducible to CSP(N+;×, U).

We now borrow the following slight simplification of Lemma 6 from [20].

Lemma 2 (Scalability [20]). Let Γ be a finite signature constraint language
with domain R, whose relations are quantifier-free definable in +,≤ and <, such
that the following holds.

– Every satisfiable instance of CSP(Γ) is satisfied by some rational point.
– For each relation R ∈ Γ , it holds that if x := (x1, x2, . . . , xk) ∈ R, then

(ax1, ax2, . . . , axk) ∈ R for all a ∈ {y : y ∈ R, y ≥ 1}.
– CSP(Γ) is in P.

Then CSP(∆) is in P, where ∆ is obtained from Γ by substituting the domain
R by Z.

Lemma 3. Arbitrarily choose m > 1 and U ⊆ N+ such that {m,m2,m3, . . .} ⊆
U . Then, CSP(N+;×, U) is in P.

Proposition 8. Arbitrarily choose m > 1 and U ⊆ N such that {m,m2,m3, . . .}
⊆ U . Then, CSP(N;×, U) is in P.

Cores. We say that an integer m > 1 has a degree-one factor p if and only if
p is a prime such that p|m and p2 6 | m. Let Divm be the set of divisors of m,
pp-definable in (N;×,m) by ∃y x × y = m. We can pp-define the relation {1}
in (Divm;×,m) since x = 1 iff x × x = x (recalling 0 /∈ Divm). It follows that
{1,m} are contained in the core of (Divm;×,m).

Lemma 4. Let m > 1 be an integer that has a degree-one factor p. Then
(Divm;×,m) has a two-element core.

Lemma 5. Let m be an integer that does not have a degree-one factor. Then
(Divm;×,m) does not have a two-element core.

Lower bounds. We now move to lower bounds of NP-completeness.

Proposition 9. CSP(N; 6=,×) is NP-complete.

An operation t : Dk → D is a weak near-unanimity operation if t is idempo-
tent and satisfies t(y, x, . . . , x) = t(x, y, x, . . . , x) = · · · = t(x, . . . , x, y).

Theorem 3 ([1]). Let Γ be a constraint language over a finite set D. If Γ is
a core and does not have a weak near-unanimity polymorphism, then CSP(Γ) is
NP-hard.

Lemma 6. Arbitrarily choose an m > 1 such that m 6= kn for all k, n > 1
together with a finite set {1,m} ⊆ S ⊆ N \ {0}. If (S;×,m) is a core, then
CSP(S;×,m) is NP-hard.

Note that the proof of this last lemma is made easier by our assumption that
× is a relation and not a function. Were it a function we would need to prove
the domain S is closed under it.

Theorem 4. CSP(N;×,m) is NP-hard for every integer m > 1.

Theorem 5. Let U be any subset of N\{0, 1} so that every x ∈ U has a degree-
one factor. Then CSP(N;×, U) is NP-hard.

For x ∈ N\{0, 1}, define its minimal exponent, min-exp(x), to be the smallest
j such that x has a factor of pj , for some prime p, but not a factor of pj+1. Thus
an integer with a degree-one factor has minimal exponent 1. Call x ∈ N \ {0, 1}
square-free if it omits all repeated prime factors. For a set U ⊆ N \ {0, 1}, define
its basis, basis(U) to be the set {min-exp(x) : x ∈ U}.

Lemma 7. Let U ⊆ N \ {0, 1}, so that basis(U) is finite and basis(U) 6= {1}.
There is some set X pp-definable in (N;×, U) so that basis(X) = {1}.

Theorem 6. Let U ⊆ N\{0, 1} be so that basis(U) is finite. Then CSP(N;×, U)
is NP-complete.

5 Final remarks

There are two major directions in which more work is necessary.
A perfunctory glance at the results of Section 3 shows that some of our

bounds are not tight, and it would be great to see some natural CSPs in this
region manifesting complexities such as PSPACE-complete. It is informative to
compare our Table 1 with Table 1 in [16]. Our weird formulation of these CSPs
belies the fact there are more natural versions where, for O ⊆ {−,∩,∪,+,×},
we ask about CSP(P(N);O), where P(N) is the power set of N, rather than the
somewhat esoteric CSP({N};O). Indeed, if we replace complement “−” by set
difference “\”, these questions could also be phrased for just the finite sets of
P(N) (see recent work [11]).

Meanwhile, the results of Section 4 need to be extended to a classification
of complexity for all CSP(Γ), where Γ is a reduct of Skolem Arithmetic (N;×).
We anticipate the first stage is to complete the classification for CSP(N;×, U)
where U is fo-definable in (N;×).

References

1. Barto, L., and Kozik, M. Constraint satisfaction problems of bounded width.
In FOCS (2009), pp. 595–603.

2. Barto, L., Kozik, M., and Niven, T. The CSP dichotomy holds for digraphs
with no sources and no sinks (a positive answer to a conjecture of Bang-Jensen
and Hell). SIAM Journal on Computing 38, 5 (2009), 1782–1802.

3. Bès, A. A survey of arithmetical definability, 2002.

4. Bodirsky, M., Jonsson, P., and von Oertzen, T. Essential convexity and
complexity of semi-algebraic constraints. Logical Methods in Computer Science 8,
4 (2012). Extended abstract titled Semilinear Program Feasibility at ICALP’10.

5. Bodirsky, M., and Kára, J. The complexity of temporal constraint satisfaction
problems. J. ACM 57, 2 (2010).

6. Bodirsky, M., Martin, B., and Mottet, A. Constraint satisfaction problems
over the integers with successor. In ICALP I, (2015), pp. 256–267.

7. Bodirsky, M., and Pinsker, M. Schaefer’s theorem for graphs. In Proceed-
ings of STOC’11 (2011), pp. 655–664. Preprint of the long version available at
arxiv.org/abs/1011.2894.

8. Breunig, H. The complexity of membership problems for circuits over sets of
positive numbers. In FCT (2007), vol. 4639 of Lecture Notes in Computer Science,
Springer, pp. 125–136.

9. Bulatov, A. A dichotomy theorem for constraint satisfaction problems on a
3-element set. J. ACM 53, 1 (2006), 66–120.

10. Bulatov, A., Krokhin, A., and Jeavons, P. G. Classifying the complexity of
constraints using finite algebras. SIAM Journal on Computing 34 (2005), 720–742.

11. Dose, T. Complexity of Constraint Satisfaction Problems over Finite Subsets of
Natural Numbers. ECCC (2016).

12. Feder, T., Madelaine, F. R., and Stewart, I. A. Dichotomies for classes of
homomorphism problems involving unary functions. Theor. Comput. Sci. 314, 1-2
(2004), 1–43.

13. Feder, T., and Vardi, M. The computational structure of monotone monadic
SNP and constraint satisfaction: A study through Datalog and group theory. SIAM
Journal on Computing 28 (1999), 57–104.

14. Ferrante, J., and Rackoff, C. W. The computational complexity of logical
theories. vol. 718 of Lecture Notes in Mathematics, Springer Verlag, 1979.

15. Glaßer, C., Herr, K., Reitwießner, C., Travers, S. D., and Waldherr,
M. Equivalence problems for circuits over sets of natural numbers. Theory of
Computing Systems 46, 1 (2010), 80–103.

16. Glaßer, C., Reitwießner, C., Travers, S. D., and Waldherr, M. Satisfi-
ability of algebraic circuits over sets of natural numbers. Discrete Applied Mathe-
matics 158, 13 (2010), 1394–1403.

17. Hell, P., and Nešetřil, J. On the complexity of H-coloring. Journal of Com-
binatorial Theory, Series B 48 (1990), 92–110.

18. Jez, A., and Okhotin, A. Complexity of equations over sets of natural numbers.
Theoretical Computer Science 48, 2 (2011), 319–342.

19. Jez, A., and Okhotin, A. Computational completeness of equations over sets of
natural numbers. Information and Computation 237 (2014), 56–94.

20. Jonsson, P., and Lööw, T. Computational complexity of linear constraints
over the integers. Artificial Intelligence 195 (2013), 44–62. An extended abstract
appeared at IJCAI 2011.

21. Matiyasevich, Y. V. Enumerable sets are diophantine. Doklady Akad. Nauk
SSSR 191 (1970), 279–282. Translation in Soviet Math. Doklady, 11:354–357,
1970.

22. McKenzie, P., and Wagner, K. W. The complexity of membership problems
for circuits over sets of natural numbers. Computational Complexity 16, 3 (2007),
211–244. Extended abstract appeared at STACS 2003.

23. Mostowski, A. On direct products of theories. The Journal of Symbolic Logic
17 , 3 (1952), 1–31.

24. Papadimitriou, C. H. Computational Complexity. Addison-Wesley, 1994.
25. Pratt-Hartmann, I., and Düntsch, I. Functions definable by arithmetic cir-

cuits. In Conference on Mathematical Theory and Computational Practice (2009),
vol. 5635 of Lecture Notes in Computer Science, Springer, pp. 409–418.

26. Presburger, M. Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes
Rendus du I congres de Mathématiciens des Pays Slaves (1929), 92–101.

27. Schaefer, T. J. The complexity of satisfiability problems. In Proceedings of
STOC’78 (1978), pp. 216–226.

28. Skolem, T. Über gewisse satzfunktionen in der arithmetik. Skr. Norske
Videnskaps-Akademie i Oslo (1930).

29. Smorynski, C. The incompleteness theorems. In Handbook of Mathematical Logic,
J. Barwise, Ed. North-Holland, Amsterdam, 1977, pp. 821–865.

30. Stockmeyer, L. J., and Meyer, A. R. Word problems requiring exponential
time: Preliminary report. In Proceedings of the 5th Annual ACM Symposium on
Theory of Computing, (STOC) (1973), pp. 1–9.

31. Travers, S. D. The complexity of membership problems for circuits over sets of
integers. Theoretical Computer Science 369, 1-3 (2006), 211–229.

32. Wagner, K. The complexity of problems concerning graphs with regularities. In
MFCS (1984), pp. 544–552.

33. Yang, K. Integer circuit evaluation is Pspace-complete. J. Comput. Syst. Sci. 63,
2 (2001), 288–303. An extended abstract of appeared at CCC 2000.

