
Generalised Integer Programming Based on Logically
Defined Relations

Peter Jonsson⋆ and Gustav Nordh⋆⋆

Department of Computer and Information Science, Linköpings Universitet
S-581 83 Linköping, Sweden,{petej, gusno}@ida.liu.se

Abstract. Many combinatorial optimisation problems can be modelled as inte-
ger linear programs. We consider a class of generalised integer programs where
the constraints are allowed to be taken from a broader set of relations (instead
of just being linear inequalities). The set of allowed relations is defined using
a many-valued logic and the resulting class of relations have provably strong
modelling properties. We give sufficient conditions for when such problems are
polynomial-time solvable and we prove that they areAPX-hard otherwise.

1 Introduction

Combinatorial optimisation problems can often be formulated asinteger programs. In
its most general form, the aim in such a program is to assign integers to a set of variables
such that a set of linear inequalities are satisfied and a linear goal function is maximised.
That is, one wants to solve the optimisation problem

max cTx
Ax ≥ b
x ∈ N

n

whereA is anm×n rational matrix,b is a rationalm-vector, andc is a rationaln-vector.
It is widely acknowledged that many real-world problems canbe conveniently captured
by integer programs. In its general form, integer programming isNP-complete to solve
exactly [4].

Many restricted variants of the integer programming problem are still fairly expres-
sive and have gained much attention in the literature. One such restriction is to restrict
x such thatx ∈ {0, 1}n. This problem, commonly called MAXIMUM 0-1 PROGRAM-
MING, is still very hard, in fact it isNPO-complete [9]. Another common restriction is
to only allowc to contain non-negative values. Under these restrictions,the complexity
and approximability of MAXIMUM 0-1 PROGRAMMING is very well-studied, cf. [3,
10]. In fact, much is known even if the constraints imposed bythe inequalityAx ≥ b
are replaced by other types of constraints. For instance, MAX ONES is MAXIMUM

0-1 PROGRAMMING with non-negative weights and arbitrary constraints over{0, 1}.

⋆ Partially supported by theCenter for Industrial Information Technology(CENIIT) under grant
04.01, and by theSwedish Research Council(VR) under grant 621-2003-3421.

⋆⋆ Supported by theNational Graduate School in Computer Science(CUGS), Sweden.

The approximability of MAX ONES has been completely classified for every setΓ of
allowed constraints over{0, 1} [10].

In this paper, we consider a class of generalised integer programming problems
where the variable domains are finite (but not restricted to be 2-valued); and the con-
straints are allowed to be taken from a set of logically defined relations. The set of
relations that we consider is based onregular signed logic[6], where the underlying
finite domain is a totally-ordered set of integers{0, . . . , d}. This logic provides us with
convenient concepts for defining a class of relations with strong modelling capabili-
ties. Jeavons and Cooper [8] have proved that any constraintcan be expressed as the
conjunction of expressions over this class of relations. A disadvantage with their ap-
proach is that the resulting set of constraints may by exponentially large (in the number
of tuples in the constraint to be expressed). An improved algorithm solving the same
problem has been given by Gil et al. [5]. It takes a constraint/relation represented by
the set of all assignments/tuples that satisfies it and outputs in polynomial time (in the
number of tuples) an expression that is equivalent to the original constraint.

The complexity of reasoning within this class of logically defined relations has been
considered before in, for example, [2, 8]. However, optimisation within this framework
has not been considered earlier. To make the presentation simpler, let MAX SOL denote
the maximisation problem restricted to positively weighted objective functions, MIN
SOL denote the minimisation version of MAX SOL, and let MAX AW SOL denote the
problem without restrictions on the weights (here, AW stands for arbitrary weights).
The reader is referred to Section 2 for exact definitions.

Let R denote the class of relations that can be defined by the regular signed logic.
Our aim is to, given a subsetΓ of R, classify the complexity of the optimisation prob-
lem when the constraints are restricted to relations inΓ . Thus, we parameterise our
problems according to the allowed relations and we denote the restricted problems MAX

SOL(Γ), M IN SOL(Γ), and MAX AW SOL(Γ).

Our main results are: For these three problems, we give sufficient conditions for
when they are polynomial-time solvable and we prove that they areAPX-hard other-
wise. We also show that the tractable fragments can be efficiently recognised. When a
problem isAPX-hard, then there is a constantc such that the problems cannot be ap-
proximated in polynomial time withinc− ε for anyε > 0 unlessP=NP. A direct con-
sequence is that these problems do not admit polynomial-time approximation schemes.
This kind of dichotomy results are important in computational complexity since they
can be seen as exceptions to Ladner’s [11] result; he proved that there exists an infinite
hierarchy of increasingly difficult problems betweenP and theNP-complete problems.
Thus, the existence of a complexity dichotomy for a class of problems cannot be taken
for granted.

There has been much research on combining integer (linear) programming and
logic/constraint programming in order to benefit from strengths of the respective ar-
eas (cf. [7, 15]). One approach is to increase the modeling power of integer (linear)
programming by allowing models to contain logic formulas. Our work can be seen as
a crude estimation for the price, in terms of computational complexity, that comes with
the additional expressive power of such an approach. Our results can also be seen as a
first step towards extending the approximability classification for MAX ONES in [10]

2

to non-Boolean domains. One of the observations of [10] was that none of the (infi-
nite number) of combinatorial optimisation problems captured by MAX ONES have a
polynomial time approximation scheme (unlessP=NP). Our results strongly indicates
that the situation remains the same for MAX ONES generalised to arbitrary finite do-
mains. Our work also complement the recent dichotomy resultdue to Creignou et al. [2]
for the decision version (decide whether there is a solutionat all) of exactly the same
framework that we study in this paper.

Our results are to a certain extent based on recent algebraicmethods for study-
ing constraint satisfaction problems. The use of algebraic techniques for studying such
problems has made it possible to clarify the borderline between polynomial-time solv-
able and intractable cases. Both our tractability and hardness results exploit algebraic
techniques – typically, we prove a restricted base case and then extend the result to
its full generality via algebraic techniques. To this end, we introduce the concept of
max-cores(which is a variant of the algebraic and graph-theoretic conceptcore).

The paper is structured as follows: Section 2 contains some basic definitions of con-
straint satisfaction and logical methods for constructingconstraint languages. Section 3
presents the methods used for proving the results and the main results for the three
problems are presented in Sections 4 and 5. Finally, some concluding remarks are given
in Section 6. Due to space limitations, many proofs have beenmoved to an appendix.

2 Integer programming and logic

We begin by presenting theconstraint satisfaction problemand how it is connected with
integer programming. We continue by showing how logics can be used for defining
relations suited for integer programming.

We define constraint satisfaction as follows: Let thedomainD = {0, 1, . . . , d} be
equipped with the total order0 < 1 < . . . < d. The set of alln-tuples of elements
fromD is denoted byDn. Any subset ofDn is called ann-ary relation onD. The set
of all finitary relations overD is denoted byRD. A constraint language overD is a
finite setΓ ⊆ RD. Given a relationR, we letar(R) denote the arity ofR. Constraint
languages are the way in which we specify restrictions on ourproblems. The constraint
satisfaction problem over the constraint languageΓ , denoted CSP(Γ), is defined to be
the decision problem with instance(V,D,C), whereV is a set of variables,D is a
domain, andC is a set of constraints{C1, . . . , Cq}, in which each constraintCi is a
pair (̺i, si) with si a list of variables of lengthmi, called the constraint scope, and̺i

anmi-ary relation over the setD, belonging toΓ , called the constraint relation.
The question is whether there exists a solution to(V,D,C) or not, that is, a function

from V to D such that, for each constraint inC, the image of the constraint scope is
a member of the constraint relation. The optimisation problem we are going to study,
MAX SOL, can then be defined as follows:

Definition 1. Weighted Maximum Solutionover the constraint languageΓ , denoted
MAX SOL(Γ), is defined to be the optimisation problem with

Instance: Tuple(V,D,C,w), where(V,D,C) is aCSPinstance overΓ , andw : V →
N is a weight function.

3

Solution: An assignmentf : V → D to the variables such that all constraints are
satisfied.

Measure:
∑

v∈V

w(v) · f(v)

We will also consider the analogous minimisation problem MIN SOL and the problem
MAX AW SOL where the weights are arbitrary, i.e., not assumed to be non-negative.
By choosingΓ appropriately, many integer programming problems can be modelled
by using these problems. For instance, the well-known problem INDEPENDENT SET

(where the objective is to find an independent set of maximum weight in an undirected
graph) can be viewed as the MAX SOL({(0, 0), (0, 1), (1, 0)} problem. Sometimes we
will consider problems restricted to instances where each variable may occur at most
k times, denoted MAX SOL(Γ)-k. Next, we consider a framework based on regular
signed logic for expressing constraint languages using logic which was introduced by
Creignou et al. in [2].

Let V be a set of variables. Forx ∈ V anda ∈ D, the inequalitiesx ≥ a and
x ≤ a are called positive and negative literals, respectively. Aclauseis a disjunction of
literals. Aclausal patternis a multiset of the formP = (+a1, . . . ,+ap,−b1, . . . ,−bq)
wherep, q ∈ N andai, bi ∈ D for all i. The patternP is said to benegativeif p = 0
andpositiveif q = 0. The sump+ q, also denoted|P |, is thelengthof the pattern.

A clausal languageL is a set of clausal patterns. Given a clausal languageL, an
L-clauseis a pair(P,x), whereP ∈ L is a pattern andx is a vector of not nec-
essarily distinct variables fromV such that|P | = |x|. A pair (P,x) with a pattern
P = (+a1, . . . ,+ap,−b1, . . . ,−bq) and variablesx = (x1, . . . , xp+q) represents the
clause(x1 ≥ a1 ∨ . . . ∨ xp ≥ ap ∨ xp+1 ≤ b1 ∨ . . . ∨ xp+q ≤ bq), where∨ is the dis-
junction operator. AnL-formulaϕ is a conjunction of a finite number ofL-clauses. An
assignmentis a mappingI : V → D assigning a domain elementI(x) to each variable
x ∈ V andI satisfiesϕ if and only if (I(x1) ≥ a1 ∨ . . . ∨ I(xp) ≥ ap ∨ I(xp+1) ≤
b1 ∨ . . . ∨ I(xp+q) ≤ bq) holds for every clause inϕ. It can be easily seen that the
literals+0 and−d are superfluous since the inequalitiesx ≥ 0 andx ≤ d vacuously
hold. Without loss of generality, it is sufficient to only consider patterns and clausal
languages without such literals. We see that clausal patterns are nothing more than a
convenient way of specifying certain relations – consequently, we can also use them
for defining constraint languages. Thus, we make the following definitions: Given a
clausal languageL and a clausal patternP = (+a1, . . . ,+ap,−b1, . . . ,−bq), we let
Rel(P) denote the corresponding relation, i.e.,Rel(P) = {x ∈ Dp+q | (P,x) hold}
andΓL = {Rel(P) | P ∈ L}.

It is easy to see that several well studied optimisation problems are captured by this
framework.

Example 2.Let the domainD be{0, 1}, then MAX SOL((−0,−0)) is exactly MAX -
IMUM INDEPENDENT SET, and MIN SOL((+1,+1)) is exactly MINIMUM VERTEX

COVER.

4

3 Methods

3.1 Approximability and reductions

A combinatorial optimisation problemis defined over a setI of instances(admissible
input data); each instanceI ∈ I has a finite setsol(I) of feasible solutionsassociated
with it. The objective is, given an instanceI, to find a feasible solution ofoptimumvalue
with respect to some measure functionm : I × sol(I) → N. The optimal value is the
largest one formaximisationproblems and the smallest one forminimisationproblems.
A combinatorial optimisation problem is inNPO if its instances and solutions can be
recognised in polynomial time, the solutions are polynomially-bounded in the input
size, and the measure function can be computed in polynomialtime (see, e.g., [1]).

We say that a solutions ∈ sol(I) to an instanceI of an NPO problemΠ is r-

approximate if it is satisfyingmax
{

m(I,s)
OPT(I) ,

OPT(I)
m(I,s)

}

≤ r, whereOPT(I) is the optimal

value for a solution toI. An approximation algorithm for anNPO problemΠ has
performance ratioR(n) if, given any instanceI of Π with |I| = n, it outputs an
R(n)-approximate solution.

Let PO denote the class ofNPO problems that can be solved (to optimality) in
polynomial time. AnNPO problemΠ is in the classAPX if there is a polynomial-time
approximation algorithm forΠ whose performance ratio is bounded by a constant.
Completeness inAPX is defined using a reduction calledAP -reduction [3, 10]. An
NPO problemΠ is APX-hard if every problem inAPX is AP -reducible to it. If, in
addition,Π is in APX, thenΠ is calledAPX-complete. It is well-known (and not dif-
ficult to prove) that everyAPX-hard problem isNP-hard. In our proofs it will be more
convenient for us to use another type of approximation-preserving reduction calledL-
reduction [1].

Definition 3. An NPO problemΠ1 is said to beL-reducibleto anNPO problemΠ2

if two polynomial-time computable functionsF andG and positive constantsβ andγ
exist such that

(a) given any instanceI of Π1, algorithmF produces an instanceI ′ = F (I) ofΠ2,
such that the measure of an optimal solution forI ′, OPT(I ′), is at mostβ · OPT(I);

(b) givenI ′ = F (I), and any solutions′ to I ′, algorithmG produces a solutions to
I such that|m1(I, s) − OPT(I)| ≤ γ · |m2(I

′, s′) − OPT(I ′)|, wherem1 is the
measure function forΠ1 andm2 is the measure function forΠ2.

A well-known fact (see, e.g., Lemma 8.2 in [1]) is that ifΠ1 is L-reducible toΠ2

andΠ1 ∈ APX then there is anAP -reduction fromΠ1 to Π2. Hence, when proving
APX-hardness results we can useL-reductions instead ofAP -reductions as long as the
problem we are reducing from is inAPX. It is well-known (cf. [1, Corr. 3.13]) that if
P 6= NP, then noAPX-complete problem can have aPTAS.

3.2 Algebraic framework

An operation onD is an arbitrary functionf : Dk → D. Any operation onD can be
extended in a standard way to an operation on tuples overD, as follows: Letf be ak-
ary operation onD and letR be ann-ary relation overD. For any collection ofk tuples,

5

t1, t2, . . . , tk ∈ R, then-tuplef(t1, t2, . . . , tk) is defined as follows:f(t1, . . . , tk) =
(f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])) wheretj [i] is thei-th component in tuple
tj . If f is an operation such that for allt1, t2, . . . , tk ∈ R f(t1, t2, . . . , tk) ∈ R, then
R is said to be invariant underf . If all constraint relations inΓ are invariant underf
thenΓ is invariant underf . An operationf such thatΓ is invariant underf is called a
polymorphism ofΓ . The set of all polymorphisms ofΓ is denotedPol(Γ). Given a set
of operationsF , the set of all relations that is invariant under all the operations inF is
denotedInv(F). Sets of operations of the form Pol(Γ) are known asclones, and they
are well-studied objects in algebra (cf. [13]).

A first-order formulaϕ over a constraint languageΓ is said to beprimitive positive
(or pp-formula for short) if it is of the form∃x : (R1(x1) ∧ . . . ∧ Rk(xk)) where
R1, . . . , Rk ∈ Γ andx1, . . . ,xk are vectors of variables such thatar(Ri) = |xi| for all
i. Note that a pp-formulaϕ with m free variables defines anm-ary relationR ⊆ Dm,
denotedR ≡pp ϕ; the relationR is the set of allm-tuples satisfying the formulaϕ.

We define a closure operation〈·〉 such thatR ∈ 〈Γ 〉 if and only if the relationR can
be obtained fromΓ by pp-formulas. The following lemma states that MAX SOL over
finite subsets of〈Γ 〉 is no harder than MAX SOL overΓ itself. The lemma provides
a strong approximation preserving reduction (sometimes called S-reduction) which is
simultaneously anAP - andL-reduction and preserves membership in approximations
classes such asPO andAPX.

Lemma 4. Let Γ andΓ ′ be finite constraint languages such thatΓ ′ ⊆ 〈Γ 〉. If MAX

SOL(Γ) is in PO, thenMAX SOL(Γ ′) is in PO and if MAX SOL(Γ ′) is APX-hard then
MAX SOL(Γ) is APX-hard.

Proof. We give an approximation preserving reduction from MAX SOL(Γ ′) to MAX

SOL(Γ). Consider an instanceI = (V,D,C,w) of MAX SOL(Γ ′). We transformI
into an instanceF (I) = (V ′, D,C′, w′) of MAX SOL(Γ). For every constraintC =
(R, (v1, . . . , vm)) in I, R can be represented as

∃vm+1
, . . . ,∃vn

: R1(v11, . . . , v1n1
) ∧ · · · ∧Rk(vk1, . . . , vknk

)

whereR1, . . . , Rk ∈ Γ ∪ {=D}, vm+1, . . . , vn are fresh variables, andv11, . . . , v1n1
,

v21, . . . , vknk
∈ {v1, . . . , vn}. Replace the constraintC with the constraints(R1, (v11,

. . . , v1n1
)), . . . , (Rk, (vk1, . . . , vknk

)), addvm+1, . . . , vn to V , and extendw so that
vm+1, . . . vn are given weight0. If we repeat the same reduction for every constraint in
C it results in an equivalent instance of MAX SOL(Γ ∪ {=D}).

Each equality constraint can be removed by identifying variables that are forced to
be equal, replacing them with a single variable, and updating the weight functionw
accordingly. The resulting instanceF (I) = (V ′, D,C′, w′) of MAX SOL(Γ) has the
same optimum asI (i.e., OPT(I) = OPT(F (I))) and can be obtained in polynomial
time. Now, given a feasible solutions′ for F (I), let G(I, s′) be the feasible solution
for I where: The variables inI assigned bys′ inherit their value froms′; the variables
in I which are still unassigned all occur in equality constraints and their values can
be found by simply propagating the values of the variables which have already been
assigned. It should be clear thatm(I,G(I, s′)) = m(F (I), s′) for any feasible solution
s′ for F (I). Hence, the functionsF andG, as described above, is an approximation
preserving reduction from MAX SOL(Γ ′) to MAX SOL(Γ). ⊓⊔

6

The lemma above obviously holds also for MIN SOL and MAX AW SOL. Also note
the following consequence: ifΓ andΓ ′ are finite constraint languages such that〈Γ ′〉 =
〈Γ 〉, then MAX SOL(Γ) isAPX-hard (inPO) if and only if MAX SOL(Γ ′) is APX-hard
(in PO).

The next lemma simplifies some of the forthcoming proofs and its proof is easy.

Lemma 5. LetP = (+a1,+a2, . . . ,+ap,−b1, . . . ,−bq) andP1 = (+a1,+ min{a2,
. . . , ap},−b1, . . . ,−bq). Then,APX-hardness ofMAX SOL(ΓP1

) implies theAPX-
hardness ofMAX SOL(ΓP). Similarly, if P2 = (+a1, . . . ,+ap,−b1,−max{b2, . . . ,
bq}), thenAPX-hardness ofMAX SOL(ΓP2

) impliesAPX-hardness ofMAX SOL(ΓP).
The same results also holds forM IN SOL andMAX AW SOL.

For a relationR = {(d11, . . . , d1m), . . . , (dt1, . . . , dtm)} and a unary operationf ,
letf(R) denote the relationf(R) = {(f(d11), . . . , f(d1m)), . . . , (f(dt1), . . . , f(dtm))}.
Similarly, letf(Γ) denote the constraint language{f(R) | R ∈ Γ}.

Lemma 6. Let Γ be a finite constraint language overD andf a unary operation in
Pol(Γ) such thatf(d) ≥ d for all d ∈ D. If MAX SOL(f(Γ)) is APX-complete, then
MAX SOL(Γ) is APX-hard, and ifMAX SOL(f(Γ)) is in PO, then so isMAX SOL(Γ).

Proof. We prove that MAX SOL(f(Γ)) is L-reducible to MAX SOL(Γ). Given an in-
stanceI = (V,D,C,w) of MAX SOL(f(Γ)) we letF (I) = (V,D′, C′, w) be the
instance of MAX SOL(Γ) where every constraint relationf(Ri) occurring in a con-
straintCi ∈ C has been replaced byRi. Given a solutions′ of F (I), letG(I, s′) be
the solutions of I wheres(x) = f(s′(x)) for each variablex. Sincef ∈ Pol(Γ) and
f(d) ≥ d for all d ∈ D, we have thatOPT(I) = OPT(F (I)) andOPT(I)−m(G(I, s′) ≤
OPT(F (I)) −m(s′). As for the other direction, we can give a reduction similar to the
one above from MAX SOL(Γ) to MAX SOL(f(Γ)) mapping optimal solutions back to
optimal solutions. Hence, if MAX SOL(f(Γ)) is in PO, then so is MAX SOL(Γ). ⊓⊔

The concept of a core of a constraint languageΓ has previously shown its value
when classifying the complexity of CSP(Γ). We define a related concept for MAX

SOL(Γ) and call itmax-core.

Definition 7. A constraint languageΓ is a max-core if and only if there is no non-
injective unary operationf in Pol(Γ) such thatf(d) ≥ d for all d ∈ D. A constraint
languageΓ ′ is a max-core ofΓ if and only ifΓ ′ is a max-core andΓ ′ = f(Γ) for some
unary operationf ∈ Pol(Γ) such thatf(d) ≥ d for all d ∈ D.

The next lemma follows directly from Lemma 6.

Lemma 8. If Γ ′ is a max-core ofΓ and if MAX SOL(Γ ′) is APX-complete, thenMAX

SOL(Γ) is APX-hard and ifMAX SOL(Γ ′) is in PO then so isMAX SOL(Γ).

4 Approximability of MAX SOL

In this section present sufficient conditions for when MAX SOL is tractable and prove
that it isAPX-hard otherwise. To do so, we need a family of operationsmaxu : D2 →
D, u ∈ D, defined such that

maxu(a, b) =

{

u if max(a, b) ≤ u
max(a, b) otherwise

7

Theorem 9. MAX SOL(ΓL) is tractable ifΓL is invariant undermaxu for someu ∈
D. Otherwise,MAX SOL(ΓL) is APX-hard.

We divide the proof into three parts which can be found in Sections 4.1-4.3.

4.1 Tractability result

Before we can prove the tractability of MAX SOL(Inv(maxu)), we need to introduce
some terminology: Letx = (x1, . . . , xr) be a list ofr variables and let(R,x) be a
constraint onx. For any sublistx′ = (xi1 , . . . xik

) of x, define theprojectionof (R,x)
ontox′, denotedπx′(R,x), as follows:πx′(R,x) = {assignments to (xi1 , . . . , xik

) |
(R, (x1, . . . , xr)) has a solution)}. A CSP instance is said to bepair-wise consistent
if for any pair of constraints(R,x), (R′,y), πx∩y((R,x)) = πx∩y((R′,y)).

Lemma 10. If ΓL is invariant undermaxu for someu ∈ D, thenMAX SOL(ΓL) is in
PO.

Proof. We begin by observing that ifΓL is invariant undermaxu, thenΓL is also invari-
ant under the unary operationu(x) = maxu(x, x) (satisfying the conditionu(x) ≥ x).
Hence, by Lemma 6, MAX SOL(ΓL) is in PO if M AX SOL(Γ ′

L) is in PO where
u(ΓL) = Γ ′

L. Now, Γ ′
L contains no tuple with an elementa < u and henceΓ ′

L is
invariant undermax (since it is invariant undermaxu andmaxu acts asmax on ele-
ments≥ u). Hence, it is sufficient to give a polynomial-time algorithm solving MAX

SOL(Γ ′
L) for max-closed constraint languagesΓ ′

L. This algorithm is a straightforward
modification of the polynomial-time algorithm for CSP(Inv(maxD)) presented in [8].

Let I = (V,D,C,w) be an instance of MAX SOL(Γ ′
L). AssumeI to be pair-wise

consistent. IfI contains the empty constraint, thenI has no solution. Otherwise, define
f : V → D such thatf(xi) = max{π(xi)((R,x)) | (R,x) ∈ C}, i.e.,f assigns to each
variable the maximum value it is allowed by any constraint. We claim that thisf is a so-
lution toI. Consider any constraint(R,x) where, say for simplicity,x = (x1, . . . , xr).
For each variablexj , we must have some tupleti ∈ R such thatti[j] = f(xj) by
pair-wise consistency and the choice off . SinceR is closed undermax, the maximum
of all these tuples belong toR. This maximum tuple equals(f(x1), . . . , f(xr)) andf
satisfies the constraint.

Assume now that there exists a functionf ′ : V → D such thatf ′ satisfies all
constraints inC and

∑n

i=1 w(xi) · f
′(xi) >

∑n

i=1 w(xi) · f(xi). Sincew(xi) ≥ 0 for
everyxi ∈ V , this implies that there exists at least one variablexi such thatf ′(xi) >
f(xi). However, this is impossible by the choice off .

To conclude the proof,f can be constructed inO(|C|2a2) time (wherea is the
maximum arity of the constraints inC) by Corollary 4.3 in [8]. ⊓⊔

4.2 APX-hardness results

We will show that wheneverP is a negative pattern containing at least two literals, then
MAX SOL(Rel(P)) is APX-hard. We begin by presenting anAPX-hardness result for
the pattern(−0,−1) over the domainD = {0, 1, 2}. The reduction is based on the well
knownAPX-complete maximisation problem MAX -E3SAT-5:

8

Instance: SetU of variables, collectionC of disjunctive clauses containing exactly3
literals each, and where each variable occurs at most5 times.

Solution: A truth assignment forU .
Measure: Number of clauses satisfied by the truth assignment.

Lemma 11. LetD = {0, 1, 2} andr = {(x, y) ∈ D2 | x ≤ 0 ∨ y ≤ 1}, Then,MAX

SOL(r)-11 is APX-complete.

Proof. Membership inAPX follows from the fact that the all-1 assignment is a2-
approximation. We proveAPX-hardness by giving aL-reduction (withβ = 14 and
γ = 1) from MAX -E3SAT-5 to MAX SOL(r). The reduction relies on the following
‘gadget’: LetV = {A,B,C, a, b, c} be a set of variables and impose the following
constraints:

r(A,B), r(B,C), r(C,A), r(A, a), r(B, b), r(C, c).

One can see thatmax{
∑

v∈V M(v) | M is a satisfying assignment} = 7 and the opti-
mum appears if and only if exactly one ofA,B,C is assigned the value2.

Let I be an arbitrary MAX -E3SAT-5 instance withm clausesC1, . . . , Cm. Construct a
MAX SOL(r) instanceF (I) = (X,D,C,w) as follows:

X = {X1
1 , X

1
2 , X

1
3 , x

1
1, x

1
2, x

1
3, . . . , X

m
1 , X

m
2 , X

m
3 , x

m
1 , x

m
2 , x

m
3 },

w(x) = 1 for all x ∈ X , and introduce a gadget onX i
1, X

i
2, X

i
3, x

i
1, x

i
2, x

i
3 (as defined

above) for each clauseCi = {li1, l
i
2, l

i
3}. Finally, the clauses are connected by adding

the constraintsr(X i
j , X

i′

j′) andr(X i′

j′ , X
i
j) wheneverlij = ¬li

′

j′ .
By well-known arguments, at least half of the clauses in an instance of MAX -

E3SAT-5 can be satisfied som ≤ 2OPT(I). We also know thatOPT(F (I)) ≤ 7m
since each gadget corresponding to a clause contributes at most7 to the measure of any
solution toF (I). It follows thatOPT(F (I)) ≤ 14 · OPT(I) and we can chooseβ = 14.

Now, givenF (I) and a solutions to F (I), let s′ = G(F (I), s) be the solution to
I (the instance of MAX -3SAT) defined as follows:s′(x) = true if there exists a literal
lij = x ands(X i

j) = 2, s′(x) = false if there exists a literallij = ¬x ands(X i
j) = 2,

ands′(x) = false for all other variablesx. First we note thats′(x) is well-defined; any
two contradictory literals are prevented from being assigned the same truth value by the
constraints introduced in the last step in the constructionof F (I).

We will show thatOPT(I) −m(I, s′) ≤ OPT(F (I)) −m(F (I), s) andγ = 1 is a
valid parameter in theL-reduction. We begin by showing thatOPT(F (I)) − OPT(I) ≥
6m. If OPT(I) = k, i.e.,k clauses (but no more) can be satisfied, then each of thek
satisfied clauses contains a true literallij . In each of the satisfied clausesCi we choose
one true literal (saylij) and assign2 to the corresponding variableX i

j in the correspond-
ing gadgetGi (on variables{X i

1, X
i
2, X

i
3, x

i
1, x

i
2, x

i
3}) in F (I). Assign1 to xi

j , 2 to the
other twoxi variables, and0 to the two unassignedX i variables. In each gadgetGj

corresponding to an unsatisfied clauseCj (in OPT(I)), assign0 to all theXj variables
and2 to all thexj variables. The resulting solution toF (I) shows that

OPT(F (I)) ≥ 7k + 6(m− k) = k + 6m

9

andOPT(F (I)) − OPT(I) ≥ 6m sincek = OPT(I). Assume now that

OPT(I) −m(I, s) > OPT(F (I)) −m(F (I), s′),

or, equivalently,m(F (I), s′) −m(I, s) > 6m. It is easy to reach a contradiction from
this soOPT(I) −m(I, s) ≤ OPT(F (I)) −m(F (I), s′) andγ = 1 is a valid parameter
in theL-reduction. Also note that no variable occurs more than11 times in the resulting
instanceF (I) of MAX SOL(r). ⊓⊔

By combining the notion of max-cores and Lemma 11, we can proveAPX-hardness
for all negative patterns of length at least two:

Lemma 12. If (−c1, . . . ,−ck) ∈ L, k ≥ 2, thenMAX SOL(ΓL) is APX-hard.

4.3 Proof of Theorem 9

Proof. Arbitrarily choose a clausal languageL. If a pattern(−c1,−c2, . . . ,−ck), k ≥
2, exists inL, then MAX SOL(ΓL) is APX-hard by Lemma 12. Hence, we can assume
that for eachP ∈ L such that|P | ≥ 2, it holds thatP contains at least one positive
literal. If all patterns inL are of length 1, then MAX SOL(ΓL) is tractable sinceΓL is
invariant under the operationmax. Thus, we assume thatL contains at least one pattern
of length strictly greater than one. Let

u = min{maxU | U ⊆ D is definable by a pp-formula overΓL}

Letψ be a pp-formula defining the setU , i.e.,U(x) ≡ ∃x : ψ(x;x) andmaxU = u. If
there exists a pattern(+a1, . . . ,+ap,−b1, . . . ,−bq), q ≥ 2, andai > u for all i, then
there is a pp-formula that implements the relationRel((−b1, . . . ,−bq)):

(y1 ≤ b1 ∨ . . . ∨ yq ≤ bq) ≡pp

∃z : (z ≥ a1 ∨ . . . ∨ z ≥ ap ∨ y1 ≤ b1 ∨ . . . ∨ yq ≤ bq) ∧ U(z)

so MAX SOL(ΓL) is APX-hard by Lemmata 4 and 12. If this is not the case, then
we show thatΓL is invariant undermaxu and, by Lemma 10, that MAX SOL(ΓL) is
tractable. Arbitrarily choose a patternP ∈ L. If |P | ≥ 2, then we have two cases:
Assume first thatP = (+a1, . . .) for somea1 ≤ u. Sincemaxu(a, b) ≥ u for all
choices ofa, b,Rel(P) is invariant undermaxu. Otherwise,P = (+a1, . . . ,+ap,−b1)
andai > u for all i. We see thatb1 ≥ u by the definition ofu sinceRel((−b1)) can be
implemented by a pp-formula:

(y1 ≤ b1) ≡pp ∃z : (z ≥ a1 ∨ . . . ∨ z ≥ ap ∨ y1 ≤ b1) ∧ U(z)

Arbitrarily choose two tuples(t1, . . . , tp+1), (t′1, . . . , t
′
p+1) fromRel(P). If there exists

a ti, 1 ≤ i ≤ p, such thatti ≥ ai, then(maxu(t1, t
′
1), . . . ,maxu(tp+1, t

′
p+1)) is in

Rel(P). The situation is analogous if there exists at′i, 1 ≤ i ≤ p, such thatt′i ≥ ai.
Assume now that for all1 ≤ i ≤ p, ti < ai andt′i < ai. This implies thattp+1 ≤ b1
andt′p+1 ≤ b1. If max(tp+1, t

′
p+1) ≤ u, thenmaxu(tp+1, t

′
p+1) = u andRel(P) is

10

invariant undermaxu sinceb1 ≥ u. If max(tp+1, t
′
p+1) > u, thenmaxu(tp+1, t

′
p+1) =

max(tp+1, t
′
p+1) andRel(P) is invariant undermaxu also in this case.

We are left with the unary patterns inL. Assume thatP = (+r) for somer; in this
case,Rel(P) is trivially invariant undermaxu. If P = (−r), thenr must satisfyr ≥ u
by the definition ofu. Arbitrarily choose two elementsa, b ∈ (−r). If max(a, b) ≤ u,
thenmaxu(a, b) = u andRel(P) is invariant undermaxu sincer ≥ u. If max(a, b) >
u, thenmaxu(a, b) = max(a, b) andRel(P) is invariant undermaxu. ⊓⊔

By inspecting the previous proof, we see that a constraint languageΓL is closed
undermaxu, u ∈ D, if and only if each patternP ∈ L satisfy at least one of the
following conditions: (1)P = (+a1, ...) anda1 ≤ u; (2) P = (+a1, . . . ,+ap,−b1),
a1, . . . , ap > u, andb1 ≥ u; (3) P = (+a); or (4)P = (−a) anda ≥ u. This makes
it easy to check whether MAX SOL(ΓL) is tractable or not: test if the condition above
holds for someu ∈ D. If so, MAX SOL(ΓL) is tractable and, otherwise, MAX SOL(ΓL)
is APX-hard by Theorem 9. Obviously, this test can be performed in polynomial time
in the size ofL andD. A simple algorithm that is polynomial in the size ofΓL

1 also
exists, but note thatΓL can be exponentially larger thanL andD.

5 Approximability of M IN SOL and MAX AW SOL

We now turn our attention to the two problems MIN SOL (i.e., the minimization ver-
sion of MAX SOL) and MAX AW SOL (i.e., MAX SOL without the restriction of non-
negative weights). We see, for instance, that MIN SOL((+1,+1)) (over the domain
D = {0, 1}) is the same problem as the minimum vertex cover problem.

Obviously, the tractability results for MAX SOL can be transferred to the MIN SOL

setting with only minor modifications: IfΓL is invariant underminu for someu ∈ D,
then MIN SOL(ΓL) is inPO. The operationsminu andmaxu are symmetrically defined.
By combining this with certain hardness results, one can prove the following:

Theorem 13. M IN SOL(ΓL) is in PO if ΓL is invariant underminu for someu ∈ D.
Otherwise,M IN SOL(ΓL) is APX-hard.

Note that it easy to check whether MIN SOL(ΓL) is tractable or not: the algorithm is
similar to the algorithm for checking tractability of MAX SOL(ΓL).

We continue by presenting sufficient and necessary conditions for tractability of
MAX AW SOL.

Theorem 14. MAX AW SOL(ΓL) is in PO if ΓL is invariant under bothmax andmin.
Otherwise,MAX SOL(ΓL) is APX-hard.

The tractability part is based on supermodular optimisation [14] while the inap-
proximability results are proved by appropriate reductions from MAX SOL and MIN

SOL.

1 The size of a constraint languageΓ over domainD is roughly
∑

R∈Γ
|R| · log |D| · ar(R).

11

6 Conclusions and Open Questions

We have presented dichotomy results for the approximability of MAX SOL, M IN SOL,
and MAX AW SOL when they are restricted to constraint languages expressedby regu-
lar signed logic. The results were partly obtained by exploiting certain algebraic meth-
ods that have previously not been widely used for studying optimisation problems.

One way to extend this work is to provide a more fine-grained approximability
analysis of these problems. In the case of boolean domains, such an analysis has been
performed by Khanna et al. [10]; they prove that for any choice of allowed relations,
the problem is either (1) polynomial-time solvable, (2)APX-complete, (3)poly-APX-
complete, (4) finding a solution of measure > 0 isNP-hard; or (5) finding any solution is
NP-hard. Another venue for future research would be investigate the approximability of
MAX (AW) SOL(Γ) for arbitrary finite domain constraint languagesΓ , i.e., constraint
languages not necessarily expressed by regular signed logic.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation. Springer, 1999.

2. N. Creignou, M. Hermann, A. Krokhin, and G. Salzer. Complexity of clausal constraints over
chains. 2006. To appear in: Theory of Computing Systems. Preliminary version available
from: www.cis.syr.edu/∼royer/lcc/LCC05.

3. N. Creignou, S. Khanna, and M. Sudan.Complexity Classifications of Boolean Constraint
Satisfaction Problems, volume 7 ofSIAM Monographs on Discrete Mathematics and Appli-
cations. SIAM, 2001.

4. M.R. Garey and D.S. Johnson.Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, 1979.

5. À.J. Gil, M. Hermann, G. Salzer, and B. Zanuttini. Efficient algorithms for constraint descrip-
tion problems over finite totally ordered domains. InProceedings of Automated Reasoning,
Second International Joint Conference (IJCAR-04), pages 244–258, 2004.

6. R. Hähnle. Complexity of many-valued logics. InProceedings of the 31st IEEE International
Symposium on Multiple-valued Logic (ISMVL-01), pages 137–148, 2001.

7. J.N. Hooker and M. Osorio. Mixed logical-linear programming. Discrete Applied Mathe-
matics, 96-97:395–442, 1999.

8. P. G. Jeavons and M. C. Cooper. Tractable constraints on ordered domains.Artificial Intel-
ligence, 79:327–339, 1996.

9. P. Jonsson. Boolean constraint satisfaction: complexity results for optimization problems
with arbitrary weights.Theoretical Computer Science, 244(1-2):189–203, 2000.

10. S. Khanna, M. Sudan, L. Trevisan, and D.P. Williamson. The approximability of constraint
satisfaction problems.SIAM J. Comput., 30(6):1863–1920, 2000.

11. R. E. Ladner. On the structure of polynomial time reducibility. Journal of the ACM,
22(1):155–171, 1975.

12. C.H. Papadimitriou.Computational Complexity. Addison Wesley, Reading, MA, 1994.
13. R. Pöschel and L. Kalǔznin. Funktionen- und Relationenalgebren. DVW, Berlin, 1979.
14. A. Schrijver. A combinatorial algorithm minimizing submodular functions in polynomial

time. Journal of Combinatorial Theory, ser. B, 80:346–355, 2000.
15. S.A. Wolfman and D.S. Weld. The LPSAT engine & its application to resource planning. In

Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-
99), pages 310–317, 1999.

12

A Proof of Lemma 12

The proof of Lemma 12 is based on Lemmas 15 and 16.

Lemma 15. If (−a,−b) ∈ L wherea < b, thenMAX SOL(ΓL)-11 is APX-complete.

Proof. Let d = maxD and recall thata < b < d. Membership inAPX follows from
the fact that the all-b assignment is ad

b
≤ d approximate solution.

As for APX-hardness, first consider the operationf onD defined as follows:

f(x) =

a if x ≤ a,
b if a < x ≤ b
d if b < x ≤ d.

It is readily verified thatf ∈ Pol(R), f(x) ≥ x for all x ∈ D, and thatR′ = f(R) is a
max-core. More specifically,

R′ = {(a, a), (a, b), (b, a), (b, b), (a, d), (d, a), (d, b)}.

We know from Lemma 8 that MAX SOL(R) is APX-hard if MAX SOL(R′) is
APX-complete. Hence, to prove that MAX SOL(R) is APX-hard, it is sufficient to
prove that MAX SOL(R′) is APX-complete. We give anL-reduction (with parame-
tersβ = d andγ = 1) from the APX-complete problem MAX SOL(r)-11, where
r = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (2, 1)} is the relation in Lemma 11, to
MAX SOL(R′).

Given an instanceI of MAX SOL(r), let F (I) be the instance of MAX SOL(R′)
where all occurrences ofr has been replaced byR′. For any feasible solutions′ forF (I)
letG(I, s′) be the solution forI where all variables assigneda are instead assigned0,
all variables assignedb are instead assigned1, and all variables assignedd are instead
assigned2. We have,OPT(F (I)) ≤ d · OPT(I) and

OPT(I) −m(I,G(I, s′)) ≤ OPT(F (I)) −m(F (I), s′),

hence,β = d andγ = 1 are valid parameters in theL-reduction. Thus, MAX SOL(ΓL)
is APX-hard when(−a,−b) ∈ L anda < b. ⊓⊔

We prove the next lemma by a reduction from theAPX-complete problem independent
set restricted to graphs of maximum degree3 [16].

Instance: Undirected graphG = (V,E) with maximum degree3.
Solution: A setV ′ ⊆ V such that for allv, w ∈ V ′, (v, w) 6∈ E.
Measure: Cardinality ofV ′.

We may also, without loss of generality, assume that the graphs under consideration do
not contain any isolated vertices.

Lemma 16. MAX SOL(Γ(−a,−a))-3 is APX-complete even if all weights equal1.

13

Proof. We begin by showing membership inAPX. LetI = (V,D,C,w) be an arbitrary
instance of MAX SOL(Γ(−a,−a))-3 such that all weights equal1 and letd = maxD. If
a > 0, then the all-1 assignment is ad-approximation ofI. If a = 0, then construct a
graph(V,E) where(v, v′) ∈ E if and only if (Rel((−0,−0), (v, v′))) ∈ C. Clearly,
OPT(I) = d · |M | whereM ⊆ V is an independent set inG of maximum size. Since
the graphG is of maximum degree3, the independent set problem can be approximated
within 4/3 in polynomial time [12, Theorem 13.7] and MAX SOL(Γ(−a,−a))-3 can be
approximated within4d/3.

We continue by showingAPX-hardness: consider the following operationf onD:

f(x) =

{

a if x ≤ a,
d otherwise.

It can be seen thatf ∈ Pol(R), f(x) ≥ x for all x ∈ D, and thatR′ = f(R) =
{(a, a), (a, d), (d, a)} is a max-core. We know from Lemma 8 that MAX SOL(R) is
APX-hard if MAX SOL(R′) is APX-complete. Hence, to prove that MAX SOL(R) is
APX-hard, it is sufficient to prove that MAX SOL(R′) is APX-hard.

We give anL-reduction (withβ = 4b andγ = 1
b−a

) from the APX-complete
problem INDEPENDENTSET-3 to MAX SOL(R′). Given an instanceI = (V,E) of IN-
DEPENDENTSET-3, letF (I) = (V,D,C,w) be the instance of MAX SOL(R′) where,
for each edge(vi, vj) ∈ E, we add the constraintR′(xi, xj) to C and let all variables
have weight1. For any feasible solutions′ for F (I), letG(I, s′) be the solution forI
where all vertices corresponding to variables assignedb in S′ form the independent set.
We have|V |/4 ≤ OPT(I) andOPT(F (I)) ≤ b|V | so OPT(F (I)) ≤ 4bOPT(I). Thus,
β = 4b is an appropriate parameter.

LetK be the number of variables being set tob in an arbitrary solutions′ for F (I).
Then,

|OPT(I) −m(I,G(I, s′))| = OPT(I) −K

and

|OPT(F (I)) −m(F (I), s′)| = (b − a)(OPT(I) −K)

so

|OPT(I) −m(I,G(I, s′)| =
1

b− a
· |OPT(F (I)) −m(F (I), s′)|

andγ = 1
b−a

is an appropriate parameter. ThisL-reduction ensures that MAX SOL(R′)
is APX-hard.

By combining Lemma 5 with either Lemma 15 or Lemma 16, we see that all nega-
tive patterns of length at least 2 are hard and Lemma 12 is proved.

B Approximability of M IN SOL

We prove that MIN SOL(Γ) is APX-hard unlessΓ is invariant underminu for some
u ∈ D.

14

Lemma 17. Let (P,x) be the constraint

(x1 ≥ a1 ∨ · · · ∨ xi ≥ ap ∨ xi+1 ≤ b1 ∨ · · · ∨ xj ≤ bq)

and let(P ,x) be the constraint

(x1 ≤ d− a1 ∨ · · · ∨ xi ≤ d− ap ∨ xi+1 ≥ d− b1 ∨ · · · ∨ xj ≥ d− bq)

whered = maxD. Then, an assignments satisfies(P,x) if and only if(P ,x) is satis-
fied bys wheres(x) = d− s(x) for all x ∈ x.

Proof. To realise this, assume without loss of generality thats(x1) ≥ a1 (i.e.,s satisfies
(P,x) by fulfilling x1 ≥ a1), which is equivalent to−s(xi) ≤ −a1 (or d − s(xi) ≤
d − a1) and hences satisfies(P ,x) by satisfyingx1 ≤ d − a1. The other direction
works analogously. ⊓⊔

In the next proof, we will exploit the minimum vertex cover problem.

Instance: Undirected vertex-weighted graphG = (V,E,w).
Solution: A vertex cover forG, i.e., a subsetV ′ ⊆ V such that, for each edge(u, v) ∈

E, at least one ofu andv belongs toV ′.
Measure: Weight of the vertex cover, i.e.,

∑

v∈V ′ w(v).

Lemma 18. M IN SOL(Γ(+a,+b))-11 is APX-complete.

Proof. We begin by showing membership inAPX. Let I = (V,D,C,w) be an arbi-
trary instance of MIN SOL(Γ(+a,+b)) and assume thatb ≥ a. Now, construct a vertex-
weighted graph(V,E,w) where(v, v′) ∈ E if and only if (Rel((−0,−0), (v, v′))) ∈
C. Clearly,|M | · b ≥ OPT(I) whereM ⊆ V is a vertex cover inG of minimum weight.
The minimum weight vertex cover problem is approximable within 2 [17] which im-
plies that MIN SOL(Γ(+a,+b)) is approximable within2b.

We continue with the hardness result. Letd = maxD, R = Rel((+a,+b)), and
R = Rel((−(d − a),−(d − b)). We give anL-reduction from MAX SOL(R) to MIN

SOL(R) with parametersβ = 12d and γ = 1. If a 6= b, then MAX SOL(R) is
APX-complete by Lemma 15 and ifa = b, then MAX SOL(R)-3 is APX-complete
by Lemma 16. Hence, we proveAPX-hardness by anL-reduction from either MAX

SOL(R) or MAX SOL(R)-3 depending ona andb.
Given an instanceI = (V,D,C,w) of either MAX SOL(R) or MAX SOL(R)-

3 where all variables have weight1, let F (I) be the instance of MIN SOL(Γ(+a,+b))

where all occurrences ofR are replaced byR and all variables are given weight1. Given
a solutions to F (I) let G(I, s) be the solution toI defined as follows:G(I, s)(x) =
d−s(x) for all variablesx. Consider an arbitrary constraintCi = (xi ≤ a1∨xj ≤ b1),
then, by Lemma 17, an assignments satisfiesCi if and only if the assignments =
G(I, s), satisfiesCi = (xi ≥ d− a1 ∨ xj ≥ d− b1).

Since no variable occurs more than11 times inI we haveOPT(I) ≥ |V |
12 , OPT(F (I))

≤ 12d · OPT(I), andβ = 12d is a valid parameter in theL-reduction. Moreover, given
a solutions to F (I), we havem(F (I), s) = |V |d −m(I,G(I, s)). Furthermore, we
haveOPT(F (I)) = |V |d− OPT(I). By these identities, it follows that:

OPT(I) −m(I,G(I, s)) = |V |d− OPT(I) − (|V |d−m(I,G(I, s))) =

15

= m(F (I), s) − OPT(F (I)),

and |OPT(I) − m(I,G(I, s))| ≤ |OPT(F (I)) − m(F (I), s)|. Thus,γ = 1 is a valid
parameter in theL-reduction. ⊓⊔

Lemma 19. If (+b1, . . . ,+bq) ∈ L andq ≥ 2, thenM IN SOL(ΓL) is APX-hard.

Proof. APX-hardness follows from Lemmata 5 and 18. ⊓⊔

The proof of the main theorem for MIN SOL(ΓL) is analogous to the corresponding
proof for MAX SOL(ΓL) and is therefore omitted.

Theorem 20. M IN SOL(ΓL) is in PO if ΓL is invariant underminu for someu ∈ D.
Otherwise,M IN SOL(ΓL) is APX-hard.

C Approximability of MAX AW SOL

In this section, we give sufficient conditions for the tractability of M AX AW SOL and
prove that it isAPX-hard otherwise.

Theorem 21. MAX AW SOL(ΓL) is in PO if ΓL is invariant under bothmax andmin.
Otherwise,MAX SOL(ΓL) is APX-hard.

The tractability part is proved in Section C.1 and the remaining parts can be found in
Section C.2

C.1 Tractability results

The polynomial-time algorithm is based on supermodular optimisation so we begin by
giving some preliminaries. A partial order on a setX is called alattice if every two
elements,a, b ∈ X have a greatest common lower bounda ⊓ b (meet) and a least
common upper bounda ⊔ b (join). Then every lattice can be considered as an algebra
L = (X,⊓,⊔) with operations meet and join.

A functionf : X → R is said to besupermodularonL if

f(a) + f(b) ≤ f(a ⊓ b) + f(a ⊔ b)

for all a,b ∈ L. A functionf is calledsubmodularif the reverse inequality holds, and
modularif it is both super- and submodular (that is, the above inequality is an equality).

Given a finite setV , a ring family is a collectionV of subsets ofV such thatV is
closed under intersection and union. Clearly, every ring family is a lattice.

Theorem 22. [14]2 Let V be a ring family over a finite setV and letf : V → R be
a polynomial-time computable supermodular function on thelattice (V ,∩,∪). Assume
the following is known:

2 The results are presented as the equivalent problem of minimising a submodular function. See
also [19].

16

1. for eachv ∈ V , the maximal setMv in V that containsv (if any);
2. the maximal setM in V .

Then, the setV ∗ ∈ V that maximisesf can be found in polynomial time.

Lemma 23. MAX AW SOL(ΓL) is in PO if ΓL is invariant under bothmax andmin.

Proof. Let I = (X,D,C,w) be an instance of MAX AW SOL(ΓL), whereΓL is in-
variant under bothmax andmin, andV = {x1, . . . , xn}. Consider the latticeL =
(L,⊓,⊔) whereL ⊆ Z

n are the solutions toI and for everya = (a1, . . . , an),b =
(b1, . . . , bn) ∈ L,

a ⊓ b = (min(a1, b1), . . . ,min(an, bn))

and

a ⊔ b = (max(a1, b1), . . . ,max(an, bn)).

We also see that the functionf : Dn → Z defined such that

f(x1, . . . , xn) =
n

∑

i=1

wi · xi

is modular (and consequently supermodular) onL: Arbitrarily choosea = (a1, . . . ,
an),b = (b1, . . . , bn) ∈ L and note thatmax(ai, bi)+min(ai, bi) = ai+bi, 1 ≤ i ≤ n.
Consequently,

f(a ⊓ b) + f(a ⊔ b) =

n
∑

i=1

(wi · min(ai, bi) + wi · max(ai, bi)) =

=

n
∑

i=1

wi · (ai + bi) = f(a) + f(b).

Finally, we construct a ring familyV that representsL. We chooseV = {(i, d) | 1 ≤
i ≤ n, d ∈ D} as base set and an elementa = (a1, . . . , an) ∈ L is represented by

n
⋃

i=1

{(i, d) | d ∈ D and d ≤ ai}.

It is easy to see that⊓ corresponds to intersection and⊔ to union. For eachv = (i, d) ∈
V , we can in polynomial time (remember that MAX SOL(Inv(max) is a tractable prob-
lem) find the maximal elementMv ∈ V containingv as follows: Solve the MAX SOL

instanceI ′ = (X,D,C,w′) wherew′(xi) = 1 andw(x) = 0 wheneverx 6= xi. If
w′(OPT(I ′)) ≤ d, thenMv = OPT(I ′) and, otherwise,Mv is undefined. Similarly, the
maximal element inV can be found in polynomial time. Consequently, Theorem 22 is
applicable and the result follows by noting that|V | = n · |D|. ⊓⊔

Supermodular maximisation over Boolean max- and min-closed constraints has been
considered in other contexts, cf. [18].

17

C.2 Proof of Theorem 14

In this section we begin by provingAPX-hardness results for all clausal languages
containing a clause with at least2 positive or2 negative literals. Finally, we note that
the remaining clausal languages are tractable by the algorithm in the preceding section.

Lemma 24. If (−c1, . . . ,−cp,+d1, . . . ,+dq) ∈ L andp ≥ 2, thenMAX AW SOL(ΓL)
is APX-hard.

Proof. If q = 0, then the result immediately follows from Lemma 12 so we assume
thatq ≥ 1. Let c = c1, d = max(c2, . . . , ck) ande = min(d1, . . . , dq). By applying
Lemma 5, we see that it is sufficient to prove the result for theconstraint languageL =
{(−c,−d,+e)}. If c 6= d, then MAX SOL(Γ(−c,−d)) is APX-complete by Lemma 15
and if c = d, then MAX SOL(Γ(−c,−d))-3 is APX-complete by Lemma 16. Hence,
we give anL-reduction from either MAX SOL(Γ(−c,−d)) or MAX SOL(Γ(−c,−d))-3
depending onc andd.

If c 6= d, then letI = (V,D,C,w) be an arbitrary instance of MAX SOL(Γ(−c,−d))
and, otherwise, letI = (V,D,C,w) be an arbitrary instance of MAX SOL(Γ(−c,−d))-
3. We assume without loss of generality thatw(x) = 1 for all x ∈ V . Assume that
V = {x1, . . . , xn}. We compute an instanceF (I) = (V ′, D,C′, w′) of MAX AW
SOL(ΓL) as follows:

– let Y = {y1, . . . , y|C|} be a set of fresh variables and letV ′ = V ∪ Y ;
– let C′ = {(Rel((−c,−d,+e)), (xi, xj , yk)) | for eachck ∈ C where ck =

(Rel((−c,−d)), (xi, xj))}; and
– letw′(x) = −2 maxD if x ∈ Y andw(x) = 1 otherwise.

We first note thatOPT(F (I)) ≥ OPT(I) since any solutions to I can be extended
to a solutions′ to F (I) (of the same measure) by assigning0 to all they variables.
Furthermore,OPT(F (I)) ≤ OPT(I) since there is an optimal solutions′ to F (I) such
that s′(y) = 0 for all y ∈ Y , and hence this solution restricted to theV variables
is a solution forI. This follows from the following observation: Ifs is an optimal
solution forF (I) ands(y) > 0 (y ∈ Y), then construct a new solution as follows:
Let (Rel((−c,−d,+e)), (xi, xj , y)) be the unique constraint wherey appears. Now,
construct a modified solutions′ such thats′(z) = s(z) if z ∈ V ′ − {xi, xj , y} and
s′(xi) = s′(xj) = s′(y) = 0 otherwise. It is easy to see thats′ is still a feasible
solution, and, furthermore, that

m(F (I), s′) = m(F (I), s) − s(xi) − s(xj) + 2 maxD · s(y) ≥

≥ m(F (I), s) − 2 maxD + 2 maxD · s(y) =

= m(F (I), s) + 2 maxD · (s(y) − 1) ≥ m(F (I), s)

Hence,OPT(F (I)) = OPT(I) andβ = 1 is a valid parameter in theL-reduction.
Now, given an arbitrary solutions′ to F (I), letG(I, s′) be the solution toI where

G(I, s′)(xi) = 0 if xi occurs in a constraintCj andyj > 0, andG(I, s′)(xi) = s′(xi)
otherwise. By the same argument as above it is easy to verify that

OPT(I) −m(I,G(I, s′)) ≤ OPT(F (I)) −m(F (I), s′).

Hence,γ = 1 is a valid parameter in theL-reduction. ⊓⊔

18

Lemma 25. If P = (+b1, . . . ,+bq) ∈ L and q ≥ 2, then MAX AW SOL(ΓL) is
APX-hard.

Proof. By Lemma 5, we may without loss of generality assume thatq = 2 andP =
(+b,+c). Now, letD = {0, 1, . . . , d}, b = b1, R = Rel((+b,+c)), andR = Rel(
(−(d−b),−(d−c))). We give aL-reduction from MAX SOL(R) to MAX AW SOL(ΓL)
with parametersβ = 1 andγ = 1.

If b 6= c, then MAX SOL(R) is APX-complete by Lemma 15 and ifb = c, then
MAX SOL(R)-3 is APX-complete by Lemma 16. Hence, we proveAPX-hardness by
anL-reduction from either MAX SOL(R) or MAX SOL(R)-3 depending onb andc.

Given an instanceI = (V,D,C,w) of MAX SOL(R) (or MAX SOL(R)-3) where
all variables have weight1, let F (I) be the instance of MAX AW SOL(ΓL) where all
occurrences ofR are replaced byR and all variables are given weight−1. Given a
solutions to F (I), let G(I, s) be the solution toI defined as follows:G(I, s)(x) =
d− s(x) for all variablesx. Consider an arbitrary constraintCi in the instanceF (I):

Ci = (x1 ≥ b ∨ x2 ≥ c).

By Lemma 17 the assignments satisfiesCi if and only if the assignments = G(I, s),
satisfiesCi = (x1 ≤ d− b ∨ x2 ≤ d− c). Moreover, given any solutions toF (I), we
havem(F (I), s) = m(I,G(I, s)) − |V |d so OPT(F (I)) = OPT(I) − |V |d and thus
β = 1 is a valid parameter in theL-reduction. By these identities we have:

OPT(I) −m(I,G(I, s)) = OPT(I) − |V |d− (m(I,G(I, s)) − |V |d)

= OPT(F (I)) −m(F (I), s),

and |OPT(I) − m(I,G(I, s))| ≤ |OPT(F (I)) − m(F (I), s)|. Thus,γ = 1 is a valid
parameter in theL-reduction. ⊓⊔

Lemma 26. If (−a1, . . . ,−ap,+b1, . . . ,+bq) ∈ L andq ≥ 2, thenMAX AW SOL(ΓL)
is APX-hard.

Proof. If p = 0, then the result follows from Lemma 25 and ifp ≥ 2, then the result
follows from Lemma 24 so we can assume thatp = 1. By Lemma 5, it is sufficient to
consider the constraint languageL = {(−a,+b,+c)}.

To prove that MAX AW SOL(ΓL) is APX-hard, we will give aL-reduction from
APX-complete problem MIN SOL(Γ(+b,+c))-11. Given an instanceI = (V,D,C,w)
of M IN SOL(Γ(+b,+c))-11 (where all variables have weight1 andD = {0, . . . , d}), let
F (I) = (V ′, C′, D,w′) be the instance of MAX AW SOL(Γ(−a,+b,+c)) whereV ′ =
V ∪ Y andY = {yi | Ci ∈ C}, and all constraintsCk = (Rel((+b,+c)), (xi, xj))
have been replaced by(Rel((−a,+b,+c)), (yk, xi, xj)). Moreover, letw′(x) = −1
for all x ∈ V andw′(y) = 2d for all y ∈ Y . We see that

m(F (I), s) = 2d ·
∑

y∈Y

s(y) −
∑

x∈V

s(x).

It is easy to verify thatOPT(F (I)) = 2d2|Y | − OPT(I). To see this, assume thats is
an optimal solution toF (I) wheres(y) < d for a variabley ∈ Y . Let (y ≤ a ∨ xi ≥

19

b∨xj ≥ c) be the unique constraint wherey appears. Now construct a modified solution
s′ such thats′(z) = s(z) if z ∈ V ′ \ {y, xi, xj}, s(xi) = s(xj) = d, ands(y) = d.
Obviouslys′ is a solution toF (I) and

m(F (I), s′) = m(F (I), s) + 2d(d− s(y)) − (2d− s(xi) − s(xj)) ≥ m(F (I), s)

so there is an optimal solution toF (I) such thatd is assigned to allY variables. Thus,
any optimal solutions to I yields an optimal solutions′ to F (I) by lettings′(y) = d
for all y ∈ Y ands′(x) = s(x) for all variables inV . We note thatOPT(F (I)) =
2d2|Y | − OPT(I).

Since no variable inI occurs more than11 times, we haveOPT(I) ≥ |V |/12 and
the number of constraints inI is at most11|V |

2 (i.e., |Y | ≤ 11|V |
2). SinceOPT(F (I)) =

2d2|Y | − OPT(I), we haveOPT(F (I)) ≤ 2d2 · 11|V |
2 − OPT(I), and using the fact that

OPT(I) ≥ |V |/12 gives usOPT(F (I)) ≤ 132d2 · OPT(I). Thus,β = 132d2 is a valid
parameter in theL-reduction.

Given a solutions toF (I), letG(I, s) be the solution toI defined as:G(I, s)(x) =
d if x occurs in a constraint together with ay variable such thats(y) < d, andG(I, s)(x)
= s(x) otherwise. We prove thatm(I,G(I, s)) − OPT(I) ≤ OPT(F (I)) −m(F (I), s)
and hence,γ = 1 is a valid parameter in theL-reduction. LetY ′ = {y ∈ Y | s(y) < d}
and note that|Y ′| ≤ d|Y | −

∑

y∈Y s(y). By the definition ofG(I, s), we know thatd
is assigned to all variablesx that occur in an equation together with a variabley from
Y ′. Denote the set of all such variables byX ′. By the definition ofG(I, s) and the fact
that|X ′| ≤ 2|Y ′|, we have,

m(I,G(I, s)) = d|X ′| +
∑

x∈V \X′

s(x) ≤ 2d|Y ′| +
∑

x∈V \X′

s(x).

It follows that

m(I,G(I, s)) − OPT(I) ≤

2d|Y ′| +
∑

x∈V \X′

s(x) − OPT(I) ≤

2d|Y ′| +
∑

x∈V

s(x) − OPT(I) ≤

2d2|Y | − 2d
∑

y∈Y

s(y) +
∑

x∈V

s(x) − OPT(I) =

OPT(F (I)) −m(F (I), s)

andγ = 1 is a valid parameter in theL-reduction. ⊓⊔

We are left with the case when every patternP inL contains at most one positive and
at most one negative literal. By Jeavons and Cooper [8, Theorem 5.2], ifP is a pattern
that contains at most one positive literal, thenRel(P) is invariant undermax. Similarly,
Rel(P) is invariant undermin if P contains at most one negative literal. Thus, MAX

AW SOL(ΓL) is polynomial-time solvable by Lemma 23. We also note that given a
clausal languageL, it is obvious how to check (in polynomial time) whether MAX AW
SOL(ΓL) is polynomial-time solvable or not.

20

Appendix References

16. P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs.Theoretical
Computer Science, 237:123–134, 2000.

17. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex
cover problem.Annals of Disc. Math., 25:27–46, 1985.

18. D. Cohen, M. Cooper, and P. Jeavons. A complete characterization of complexity for Boolean
constraint optimization problems. InProceedings of the 10th International Conference on
Principles and Practice of Constraint Programming (CP-2004), pages 212–226, 2004.

19. S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for
minimizing submodular functions.Journal of the ACM, 48(4):761–777, 2001.

21

