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Abstract. We study the complexity of structurally restricted homomorphism and
constraint satisfaction problems. For every class of relational structuresC, let
LHOM(C, _) be the problem of deciding whether a structureA ∈ C has a ho-
momorphism to a given arbitrary structureB, when each element inA is only
allowed a certain subset of elements ofB as its image. We prove, under a certain
complexity-theoretic assumption, that thislist homomorphism problemis solv-
able in polynomial time if and only if all structures inC have bounded tree-width.
The result is extended to the connected list homomorphism, edge list homomor-
phism, minimum cost homomorphism and maximum solution problems. We also
show an inapproximability result for the minimum cost homomorphism problem.
Keywords: Computational complexity, constraint satisfaction, homomorphism,
relational structure, inapproximability.

1 Introduction

A large class of problems in different areas of computer science can be viewed as con-
straint satisfaction problems [2, 7, 13, 15, 20, 23]. This includes problems in artificial
intelligence, database theory, scheduling, frequency assignment, graph theory and sat-
isfiability. The main model [13] considers constraint satisfaction problems with a fixed
template determining the size of the domain and the set of allowed constraint types in
an instance. Feder and Vardi [13] observed that constraint satisfaction problems can be
described as homomorphism problems for relational structures. For an excellent intro-
duction to and survey of the strongly related subject ofgraphhomomorphisms, we refer
to [17]. For every two classes of relational structuresC,D, let HOM(C,D) be the prob-
lem of deciding whether a structureA ∈ C has a homomorphism to a given arbitrary
structureB ∈ D. To simplify the notation, if eitherC orD is the class of all structures,
we just use the placeholder ‘_’. Grohe [15] has studied so calledstructuralrestrictions,
i.e. the question of how to restrictC, so that HOM(C, _) is polynomial-time solvable.
He proves the following:

Assume that FPT6= W[1]. Then for every recursively enumerable classC of struc-
tures of bounded arity,HOM(C, _) is polynomial-time solvable if and only if the core of
every structure inC has tree-width at mostw (for some fixedw).
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FPT 6= W[1] is a standard assumption from parameterised complexity theory that is
widely believed to be true. Acoreof a relational structureA is a substructureA′ ⊆ A
such that there is a homomorphism fromA to A′, but no homomorphism fromA′ to a
proper substructure ofA′. All cores of a structureA are isomorphic, so it is reasonable
to speak ofthecore ofA.

In the list homomorphism problem[2, 6, 7, 9–12], LHOM(C,D), the goal is to de-
cide whether there is a homomorphism from a structureA ∈ C to a given structure
B ∈ D, when each element inA is only allowed a certain subset of elements in the
universe ofB as its image. Such list homomorphisms generalise e.g. list colourings and
have many natural applications. We show the following:

Assume that FPT6= W[1]. Then for every recursively enumerable classC of struc-
tures of bounded arity,LHOM(C, _) is polynomial-time solvable if and only if every
structure inC has tree-width at mostw (for some fixedw).

Incidentally, this complexity-theoretic classification coincides with that of Dalmau
and Jonsson’s in [3], where they study the problem of counting homomorphisms. Our
result is then extended to theconnectedlist homomorphism problem [6], where every
list has to induce a connected substructure of the right hand side input structure and to
the edgelist homomorphism problem [8], where the lists contain tuples from the re-
lations of the right hand side input structure that the tuples on the left hand side have
to map to. We remark that our hardness results still apply when the classes of rela-
tional structures are restricted to graphs. We also extend the result to two optimisation
problems. Theminimum costhomomorphism problem was introduced by Gutin et al.
in [16], where it was motivated by a real-world problem in defence logistics. Here, map-
ping an element from the left hand side to an element on the right hand side is afflicted
with costs and the objective is to find a homomorphism of minimum cost. This prob-
lem includes as special cases the list homomorphism problem and the general optimum
cost chromatic partition problem [24]. In themaximum solution problem[21], the right
hand side elements are assumed to be a finite subset of the natural numbers and the
objective is to find a homomorphism that has maximum possible total weight. In some
sense, see [21], this is a generalisation of integer programming and captures e.g. the
INDEPENDENTSET problem. When the right hand side is restricted to{0, 1} this is the
well-studied MAX ONES problem. The hard instances of the minimum cost homomor-
phism problem are also shown to be inapproximable as well. To our knowledge, this is
the first inapproximability result for this problem.

The rest of this paper is organised as follows. Section 2 introduces the requisite
background material and problem definitions for several variants of the homomorphism
problem. Section 3 contains proofs of our intractability and inapproximability results.
Finally, Section 4 concludes the paper and presents possible future work.

2 Preliminaries

Most of the terminology presented in this section comes from [3, 14–16]. In the next
three subsections, we provide the necessary background material on relational struc-
tures and graph theory, homomorphism problems and parameterised complexity, re-
spectively.



2.1 Relational Structures and Graph Theory

A vocabularyτ is a finite set of relation symbols of specifiedarities, denotedar(·). The
arity of τ is max{ar(R) | R ∈ τ}. A τ -structureA consists of a finite setA (called the
universeof A) and for each relation symbolR ∈ τ , a relationRA ⊆ Aar(R). We say
that a classC of structures is ofbounded arityif there is anr such that every structure
in C is at mostr-ary. A substructureof a τ -structureA is aτ -structureB with universe
B ⊆ A and relationsRB ⊆ RA for all R ∈ τ .

A substructureB is inducedif for all R ∈ τ , say, of arityr, RB = RA ∩ Br. We
define thesize‖A‖ of the structureA as‖A‖ = |τ | + |A| +

∑
R∈τ |RA| · |ar(R)|.

‖A‖ is roughly the size of a reasonable encoding ofA.
Let A andB beτ -structures. We defineA ∪B to be theτ -structure with universe

A ∪B and such that for allR ∈ τ , RA∪B = RA ∪RB

Let E be a binary relation symbol. We view graphs as{E}-structuresG and assume
that they are undirected and loop-free. A graphH is a minor of a graphG if H is
isomorphic to a graph that can be obtained from a subgraph ofG by contracting edges.
We define aminor mapfrom H to G to be a mappingµ : H → 2G having the following
properties:

1. for all v ∈ H, the setµ(v) is non-empty and connected inG;
2. for all v, w ∈ H with v 6= w, the setsµ(v) andµ(w) are disjoint; and
3. for all edges{v, w} ∈ EH, there arev′ ∈ µ(v) and w′ ∈ µ(w′) such that
{v′, w′} ∈ EG.

We call a minor mapµ from H to G onto if
⋃

v∈H µ(v) = G. It is easy to see that
there is a minor map fromH to G if and only if H is a minor ofG. Moreover, ifH is a
minor of a connected graphG, then we can always find a minor map fromH ontoG.

A tree-decompositionof a graphG is a pair(T, β) whereT is a tree andβ : T → 2G

satisfies the following conditions:

1. for everyv ∈ G, the set{t ∈ T | v ∈ β(t)} is non-empty and connected inT; and
2. for everye ∈ EG, there is at ∈ T such thate ⊆ β(t).

The width of a tree-decomposition(T, β) is max{|β(t)| | t ∈ T} − 1, and the
tree-widthω(G) of a graphG is the minimumw such thatG has a tree-decomposition
of width w.

For k, ` ≥ 1, the(k × `)-grid is the graph with vertex set{1, . . . , k} × {1, . . . , `}
and an edge between(i, j) and(i′, j′) if and only if |i− i′|+ |j− j′| = 1. It is not hard
to see that the(k × k)-grid has tree-widthk. Robertson and Seymour have proved the
following theorem which is known as the Excluded Grid Theorem:

Theorem 1. [25] For everyk there exists aw(k) such that the(k × k)-grid is a minor
of every graph of tree-width at leastw(k).

We will now generalise some of the graph-theoretic notions defined above to ar-
bitrary relational structures. TheGaifman graphof a τ -structureA is the graphG(A)
with vertex setA and an edge betweena andb if a 6= b and there is a relation symbol



R ∈ τ , say, of arityr, and a tuple(a1, . . . , ar) ∈ RA such thata, b ∈ {a1, . . . , ar}.
Henceforth, we say that a subsetB ⊆ A is connected in a structureA if it is connected
in G(A). A tree-decomposition of aτ -structureA is viewed as a tree-decomposition of
G(A). A minor map fromA to B is a mappingµ : A → 2B that is a minor map from
G(A) to G(B).

2.2 Homomorphism Problems

A homomorphismfrom a τ -structureA to a τ -structureB is a mappingh : A → B
such that for allR ∈ τ , say, of arityr, and all tuples(a1, . . . , ar) ∈ RA, we have
(h(a1, . . . , h(ar)) ∈ RB .

For two classesC andD of structures, HOM(C,D) is the following problem:

INSTANCE: A ∈ C, B ∈ D.
OUTPUT: “yes” if a homomorphism fromA to B exists, “no” if no homomorphism
from A to B exists.

If D is the class of all finite structures, we write HOM(C, _) instead of HOM(C,D).
In thelist homomorphism problem, each element of the left hand side input structure

is given together with a set, called alist, of possible images in the right hand side
input structure. This problem has been well studied with regard to restrictions to the
right hand side input structure, see e.g. [2, 6, 7, 9–12] for some results. We denote it
LHOM(C,D):
INSTANCE: A ∈ C, B ∈ D, La ⊆ B for eacha ∈ A.
OUTPUT: “yes” if a homomorphismh fromA toB such thath(a) ∈ La for eacha ∈ A
exists, “no” otherwise.

By restricting LHOM(C,D) to those inputs in which each listLa induces a con-
nected subgraph of the Gaifman graphG(B) of B, we get theconnected list homomor-
phism problem, CLHOM(C,D), introduced for graphs in [6]:

INSTANCE: A ∈ C, B ∈ D, La ⊆ B for eacha ∈ A, such that eachLa induces a
connected substructure inB.
OUTPUT: “yes” if a homomorphismh fromA toB such thath(a) ∈ La for eacha ∈ A
exists, “no” otherwise.

Feder and Hell introduce theedge list homomorphism problemfor undirected graphs
in [8]. Here we generalise this to arbitrary relational structures and let ELHOM(C,D)
be the following problem:

INSTANCE: A ∈ C, B ∈ D, lists of tuples from the relations ofB for each tuple of the
relations inA.
OUTPUT: “yes” if a homomorphismh from A to B such that each tuple in the relations
of A maps to a tuple in the corresponding list of tuples fromB exists, “no” otherwise.

In [16] an optimisation problem is introduced, where everygraphhomomorphism
is associated with a cost. We generalise this framework to arbitrary relational structures.
If each elementa ∈ A is associated with, positive integral, costscb(a), b ∈ B, then the
cost of a homomorphismh is

∑
a∈A ch(a)(a) and theminimum cost homomorphism

problem, M INHOM(C,D), is the following problem:



INSTANCE: A ∈ C, B ∈ D, positive integer costscb(a), wherea ∈ A andb ∈ B.
OUTPUT: The cost of a minimum cost homomorphism fromA to B, “no” if no homo-
morphism fromA to B exists.

If we let the universesB of the right hand side input structures of HOM(C,D) be
finite subsets of the natural numbers equipped with the usual total order<, themaximum
solution problem[21], MAX SOL(C,D), is the following problem:

INSTANCE: A ∈ C, B ∈ D, weight functionω : A → N
OUTPUT: The maximum of

∑
a∈A ω(a) · h(a) for any homomorphismh from A to B,

“no” if no homomorphism fromA to B exists.

We note that MAX SOL is an extension of the MAX ONES problem and, as in [22],
where Khanna et al. classify the approximability of MAX ONES with respect to restric-
tions to the right hand side input structure, we restrict our attention to instances of MAX

SOL satisfying the following restriction: ifa, a′ occur in the same tuple(a1, . . . , ar) in
some relation inA, thena 6= a′ must hold. We say that a structure having this property
is replication free.

2.3 Parameterised Complexity

Finally, we need some facts concerning parameterised complexity theory. Here we relax
the classical notion of tractability, polynomial time computability, by admitting algo-
rithms whose running time is exponential in someparameterof the problem instance
that can be expected to be small in the typical application.

A parameterisation of a problemP ⊆ Σ∗ is a polynomial time computable mapping
κ : Σ∗ → N. If (x, k) ∈ Σ∗ × N is an instance of a parameterised decision problem,
we callx the input andk the parameter. For example, the parameterised clique problem
p-CLIQUE, is the following problem:

INPUT: graphG.
PARAMETER: k ∈ N.
OUTPUT: “Yes” if G has a clique of sizek, “no” otherwise.

A parameterised problem(P, κ) over Σ is fixed-parameter tractableif there is a
computable functionf : N → N, a constantc ∈ N and an algorithm that given(x, k) ∈
Σ∗ × N computes the solution in timef(k) · |x|c. FPT denotes the class of all fixed-
parameter tractable parameterised problems.

An fpt-reductionfrom a parameterised problem(P, κ) over Σ to a parameterised
problem(P ′, κ′) overΣ′ is a mappingR : Σ∗ → (Σ′)∗ such that for allx ∈ Σ∗ we
haveR(x) ∈ P ′, R is computable in timef(κ(x)) · |x|c andκ′(R(x)) ≤ g(κ(x)) (for
computable functionsf, g : N → N and a constantc).

Hardness and completeness of parameterised problems for a parameterised com-
plexity class are defined in the usual way. Downey and Fellows [4] defined a hierarchy
W[1] ⊆ W[2] ⊆ · · · of parameterised complexity classes. They conjecture that this hi-
erarchy is strict and that FPT is strictly contained in W[1].p-CLIQUE is shown to be
W[1]-complete under fpt-reductions in [5]. This theorem is used in our hardness proofs.

The problems we are interested in are the homomorphism problems defined in
Subsection 2.2 parameterised by the size of the left hand side input structure. E.g.



we have the following definition of the parameterised list homomorphism problem,
p-LHOM(C,D):
INPUT: A ∈ C, B ∈ D, La ⊆ B for eacha ∈ A.
PARAMETER: ||A||.
OUTPUT: “yes” if a homomorphismh fromA toB such thath(a) ∈ La for eacha ∈ A
exists, “no” otherwise.

The parameterised versions of the other problems in Subsection 2.2 are defined analo-
gously and with the same parameter.

3 Main Results

We are now ready to prove the main results. First, we make the observation that when
our homomorphism problems are restricted to classes of structures that have bounded
tree-width, standard techniques using tree-decompositions, cf [17, 19], may be em-
ployed to solve the problems in question in polynomial time. Then we see that what
is left to do to get a classification of our problems, with regard to structural restrictions,
is to prove hardness for classes of structures with unbounded tree-width. The proofs
need a bit of preparation, that is taken care of in Subsection 3.1. Subsection 3.2 con-
tains the actual proofs.

3.1 The StructureB

Let A be a connectedτ -structure. Letk ≥ 2, K =
(
k
2

)
, and µ : {1, . . . , k} ×

{1, . . . ,K} → 2A a minor map from the(k × K)-grid ontoA. Let us assume that
we have fixed some bijection% between{1, . . . ,K} and the set of all unordered pairs
of elements of{1, . . . , k}. For improved readability, we writei ∈ p instead ofi ∈ %(p).

Let the{E}-structureG be a graph. We now concentrate on theτ -structureB =
B(A, µ,G), as defined by Grohe [15]. The universeB of B is given by:

{(v, e, i, p, a)| v ∈ G, e ∈ EG,
1 ≤ i ≤ k, 1 ≤ p ≤ K s.t.(v ∈ e ⇐⇒ i ∈ p),
a ∈ µ(i, p)}

We define the functionΠ : B → A by lettingΠ(v, e, i, p, a) = a. As usual, we extend
Π andΠ−1 to tuples by defining it component-wise.

For every relationR ∈ τ , say, of arityr, and for all tuples(a1, . . . , ar) ∈ RA,
we add toRB all tuples(b1, . . . , br) ∈ Π−1(a1, . . . , ar) satisfying the following two
constraints for allb, b′ ∈ {b1, . . . , br}:

(C1) if b = (v, e, i, p, a) andb′ = (v′, e′, i, p′, a′), thenv = v′; and
(C2) if b = (v, e, i, p, a) andb′ = (v′, e′, i′, p, a′), thene = e′.

In the remainder of this paper, we will focus on homomorphisms fromA to B
such that eacha ∈ A is mapped to an elementb ∈ B that was ”generated” bya, i.e.
b ∈ Π−1(a). We will denote this by saying that for a homomorphismh : A → B,



h(a) = (_, _, _, _, a) for eacha ∈ A, where the placeholders ‘_’ are used to indicate
that the values in question are arbitrary, as long as the element is a member ofB. To
proceed we need the following fact:

Lemma 2. The graphG contains ak-clique if and only if there exists a homomorphism
h fromA to B such thath(a) = (_, _, _, _, a) for all a ∈ A.

Proof. In the proof of Lemma 3.1 in [3] it is shown that the graphG contains ak-clique
if and only if there exists a homomorphismh fromA toB satisfyingΠ ◦h = id, where
id is the identity function on the setA. Now, if h is a homomorphism fromA toB such
thath(a) = (_, _, _, _, a) for all a ∈ A, h obviously satisfiesΠ ◦h = id and vice versa.

ut

3.2 Hardness Results

The problemp-LHOM(C, _) is trivially in FPT when LHOM(C, _) is in FP, and we
know that LHOM(C, _) is solvable in polynomial time if the structures inC have bound-
ed tree-width. What is left to prove, to achieve the result announced in Section 1, is that
if p-LHOM(C, _) is in FPT, then the structures inC have bounded tree-width. We do
this by assuming thatp-LHOM(C, _) is in FPT even whenC has unbounded tree-width
and showing that this impliesp-CLIQUE is in FPT, in contradiction with the fact that it
is W[1]-complete. This is accomplished by exhibiting an fpt-reduction fromp-CLIQUE

to p-LHOM(C, _), where the result in the previous subsection is applied. As the same
reasoning applies to the four other problems under study, this proof is then adapted
and extended to fit our different problem variations. However, due to space constraints,
some proofs are omitted from this paper.

Lemma 3. Let C be a recursively enumerable class of structures of bounded arity
that does not have bounded tree-width. If eitherp-LHOM(C, _), p-CLHOM(C, _), p-
ELHOM(C, _) or p-M INHOM(C, _) is in FPT, then FPT= W[1].

Proof. Let (G, k) be an instance ofp-CLIQUE. By the Excluded Grid Theorem, there
is some structureA in C such that the(k ×K)-grid is a minor of the Gaifman graph of
A. We enumerate the recursively enumerable classC until we find such anA = A(k).
Then we compute a minor mapµ from the(k × K)-grid to A. Let A1, . . . ,Am be
a decomposition ofA into its connected components. We can assume, without loss of
generality, that the(k ×K)-grid is a minor of (the Gaifman graph of)A1 and that the
minor mapµ is ontoA1.

Let B = (A, µ,G) constructed as above. By Lemma 2, we know that in order to
decide if there exists ak-clique inG we only need to check if there is a homomorphism
h from A1 to B such thath maps everya ∈ A1 to some(_, _, _, _, a) ∈ B, since such
an h exists if and only ifG has ak-clique. We would like to differentiateB, so that
only homomorphisms mappinga ∈ A1 to (_, _, _, _, a) ∈ B are allowed. Fortunately,
the list homomorphism problem lets us enforce precisely such a differentiation ofB.

To do this constructB′ asB ∪A2 ∪ . . . ∪Am and listsLa ⊆ B′, a ∈ A defined
by:

La =
{
{b | b ∈ B andb = (_, _, _, _, a)} if a ∈ A1

{b | b ∈ B′ \B, b = a} otherwise



This way, we will always be able to find a homomorphism fromA \A1 to B′ \B: it is
just a matter of selecting the only elementb available inLa for eacha ∈ A \A1. Since
b = a in each case this obviously results in a homomorphism fromA \A1 to B′ \B.

It is also clear that the only possible homomorphismsh from A1 to B (and hence
also the only possible homomorphisms fromA to B′), under our lists, are the ones
obeying the condition thath maps eacha ∈ A1 to some(_, _, _, _, a) ∈ B, due to the
definition of the lists for elementsa ∈ A1.

Thus, the conclusion is that ifG contains ak-clique, then we will be able to find a
homomorphism fromA to B′, since then a homomorphismh from A1 to B, obeying
h(a) = (_, _, _, _, a) for eacha ∈ A1, exists (by Lemma 2). IfG has nok-clique, then
we will not be able to find any homomorphism fromA to B′.

The construction ofA only depends onk and is polynomial-time becauseC is re-
cursively enumerable. Computing the minor mapµ may require exponential time in the
size ofA, but this is still bounded in terms ofk. The size of anr-ary relationRB is at
most|Π−1(Ar)| ≤ (|V G| · |EG| · |A|)r. This is polynomial in||A|| and||G|| since the
arity of C is bounded. It follows that the size ofB andB′ is polynomially bounded in
terms of||A|| and||G|| and so,B′ can be computed in polynomial time. The listsLa

for a ∈ A \ A1 are easy to compute and only hold one element each. While generating
B it is easy to construct the listsLa for a ∈ A1 and the size of these lists are linear in
the size ofB. This shows that the reduction fromG, k to A, B′, La is an fpt-reduction.

To be able to prove hardness for CLHOM we have to modify the structureB a
bit; by adding some dummy elements toB we make our lists of elements inB induce
connected substructures ofB. The result for ELHOM follows from a straightforward
adaption of the proof for LHOM. Finally, the hardness result for MINHOM follows
from transforming the instance of LHOM, in the proof of Lemma 3, to an instance of
M INHOM by assigningcb(a) = 1 if b ∈ La andcb(a) = 2 otherwise. ut

An immediate consequence of the above is that the problem ofcountinglist homo-
morphisms [18] is hard whenC does not have bounded tree-width.

In the last reduction in the proof of Lemma 3, fromp-CLIQUE to p-M INHOM(C, _),
a gap that can be utilised to show the following (For further details regarding approx-
imability we refer to [1].) is produced:

Proposition 4. LetC be a recursively enumerable class of structures that does not have
bounded tree-width. IfM INHOM(C, _) is approximable within2p(|A|), (wherep is a
fixed polynomial), for every structureA ∈ C, then FPT= W[1].

Before we continue dealing with our hardness results, a remark about our chosen
proof method is in place. Why do we need to use the structureB at all, could we not
just reduce LHOM(C, _) to HOM(C′, _), for some suitable classC′, i.e. for A ∈ C,
let A′ ∈ C′ be the expansion ofA having a relationRa for eacha ∈ A such that
RA′

a = {(a)}, and go from there? This way, an instance(A,B) of LHOM reduces to
(A′,B′), whereB′ hasRB′

a = La andRB′
= RB for all other relationsR. The error

in this line of reasoning, is that the structureA might not allow unary relations on all
its members. To illustrate this point, think of the problems HOM(C, _) for a classC
of structures with unbounded tree-width. Using the method of adding unary relations
to the structures inC, described above, we can now modify the proof of Lemma 3 to



become a hardness proof for HOM(C, _)! This is, of course, contradictory to Grohe’s
result. (IfC is restrictedto classes of structures that have all unary singleton relations,
the cores of the structures can not be smaller than the structures themselves and the
tree-widths of the structures and their respective cores coincide.)

In the hardness proof for MAX SOL, we are able to exploit the fact that we have
to impose some total order on the elements inB; by letting elements of the form
(_, _, _, _, a), for somea ∈ A, have essentially the same values and inter-spacing these
clusters with large gaps, the positive and negative instances ofp-CLIQUE are separated.

Lemma 5. Let C be a recursively enumerable class of replication free structures of
bounded arity that does not have bounded tree-width. Ifp-MAX SOL(C, _) is in FPT,
then FPT= W[1].

Proof. We start out as in the proof of Lemma 3 and constructB′ asB∪A2∪ . . .∪Am.
To proceed, we have to impose some total order on the elements inB′. Fix the natural
order< on N. The intuition is to let elements inB on the form(_, _, _, _, a), for some
a ∈ A1, have essentially the same values inB′. If these small intervals where the
(_, _, _, _, a) ∈ B reside, for eacha, are inter-spaced by large gaps and the weights
assigned toa ∈ A1 are chosen accordingly we might be able to separate the positive
and negative instances ofp-CLIQUE.

Let σ = maxa∈A1 |Π−1(a)|, the maximum number of elements inB “generated”
by an element inA1. Clearly,σ is bounded in terms ofk and||G||.

Let B′ \ B = {1, . . . , d}. Also, let w(a) = 0 whena ∈ A \ A1. Furthermore,
take ana ∈ A1, let w(a) = d + 1 and let eachb ∈ Π−1(a) have a distinct value
in [d + 1, d + σ]. The nexta ∈ A1 getsw(a) = d + ∆ + 1 while the associated
b ∈ Π−1(a) get distinct values in[d + ∆ + 1, d + ∆ + σ]. We continue this process
until A1 is exhausted and end up with the arrangement in Figure 1.

We are interested in homomorphismsh betweenA1 andB, such that eacha ∈ A1

maps to some(_, _, _, _, a) ∈ B, i.e. where thea ∈ A1 with highest weight get mapped
to some(_, _, _, _, a) ∈ B in the highest interval of values, thea ∈ A1 with second
highest weight get mapped to some(_, _, _, _, a) ∈ B in the second highest interval of
values and so on. Such anh will receive a measuremid with

(d + 1)2 + (d + ∆ + 1)2 + . . . + (d + (|A1| − 1)∆ + 1)2 ≤ mid ≤

≤ (d + 1)(d + σ) + (d + ∆ + 1)(d + ∆ + σ) + . . .+

+(d + (|A1| − 1)∆ + 1)(d + (|A1| − 1)∆ + σ).

It is easy to extendh to a homomorphismh′ fromA toB′ (by mapping eacha ∈ A\A1

to theb ∈ B′ \B with b = a) and the measure forh′ will still be mid.
What false positives could we get? Recall that for each relationR ∈ τ and for all

tuples(a1, . . . , ar) ∈ RA1 , we add tuples(b1, . . . , br) ∈ Π−1(a1, . . . , ar) satisfying
certain conditions toRB and that, in this case,A1 is replication free. This means thatB
is constructed so that any homomorphismh from A1 to B must have the property that
the image ofh contains at most one element from each interval,[d+n∆+1, d+n∆+σ],
of values inB.
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...
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Fig. 1.The total order imposed onB′.

That leaves the possibility that some intervals of values have been permuted in some
way, i.e. at least a pair of elements inA1 have been mapped to somewhere in “each
others” intervals. It can be shown by induction that the maximum measure of such
a homomorphism occurs when the two elements inA1 that have lowest weight have
swapped intervals, i.e. we haveh(a11) = (_, _, _, _, a12) andh(a12) = (_, _, _, _, a11)
in Figure 1, and the maximum value of each interval is picked as image. This measure
matches the maximum possiblemid except for the two first summands.

The difference, denotedδ, between the lowest possiblemid and the measure of such
a homomorphism is

δ =
|A1|∑
n=1

(d + (n− 1)∆ + 1)2 − (d + 1)(d + ∆ + σ)− (d + ∆ + 1)(d + σ)−

−
|A1|∑
n=3

(d + (n− 1)∆ + 1)(d + (n− 1)∆ + σ),

which is the same as (omitting the calculations)δ being equal to

∆2 +
(
|A1|2 − |A1| − σ|A1|2 + σ|A1|

)
∆/2 + |A1|+ d|A1| − dσ|A1| − σ|A1|.

If we choose∆ large enough, for example∆ = d2σ2|A1|2, the differenceδ will be
positive and hence, we can say that if we find a homomorphism with measuremid, G
has ak-clique and that if the maximum measure of any homomorphism fromA to B′

is strictly less than the smallest possiblemid, G contains nok-clique. ut



4 Conclusions and Open Questions

We have utilised the structureB defined by Grohe to classify a number of homomor-
phism problems by computational complexity with regard to structural restrictions, un-
der the assumption that FPT6= W[1]. It is interesting to note that while the variants of
the homomorphism problem we have treated have their boundary between tractability
and intractability at bounded tree-width of the left hand side input structure, the original
HOM(C, _) problem exhibits the same boundary at bounded tree-width for the core of
the structures inC. It would be interesting to characterise exactly what properties make
the computational complexity of our problems different from that of the “regular” ho-
momorphism problem.

Of course it would be nice to classify further homomorphism problems. E.g. the
retraction problem, also known as theone-or-all list homomorphism problem, see [6],
would be an interesting subject. Here, inputs of the list homomorphism problem are
restricted to each list containing only a single element or the entire universe of the right
hand side input structure.

In the reduction fromp-CLIQUE to p-M INHOM(C, _) a gap that can be used to
show inapproximability properties of the intractable instances is produced. A gap is
also produced in the MAX SOL case, but it is not exploitable in the same way. Is it
possible to change the reduction somewhat to achieve a gap large enough for proving
inapproximability?

A further observation is that the structureB, so far, only has been applied when
classifying homomorphism problems: is it possible to modify the structureB, or the
analysis of it, so that hardness proofs for problems where the solution is not necessarily
a homomorphism, e.g. MAX CSP, becomes plausible?
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