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Abstract. A graph homomorphism is a vertex map which carries edges from
a source graph to edges in a target graph. We study the approximability proper-
ties of theWeighted Maximuni/ -Colourable Subgrapproblem (Max H-CoL).

The instances of this problem are edge-weighted graplasd the objective is

to find a subgraph off that has maximal total edge weight, under the condition
that the subgraph has a homomorphisniitpnote that forH = K, this prob-

lem is equivalent to Mx k-cuT. To this end, we introduce a metric structure on
the space of graphs which allows us to extend previously known approximabil-
ity results to larger classes of graphs. Specifically, the approximation algorithms
for MAX cuT by Goemans and Williamson andAM k-cuT by Frieze and Jer-

rum can be used to yield non-trivial approximation results feodVH -CoL. For

a variety of graphs, we show near-optimality results under the Unique Games
Conjecture. We also use our method for comparing the performance of Frieze
& Jerrum’s algorithm with Hastad’s approximation algorithm for generaxvi
2-CsP. This comparison is, in most cases, favourable to Frieze & Jerrum.
Keywords: optimisation, approximability, graph homomorphism, grdpkcol-
ouring, computational complexity

1 Introduction

Let G be a simple, undirected and finite graph. Given a subset V' (G), acutin G
with respect ta5 is the set of edges from vertices§rto vertices inV (G) \ S. The Max
cuT-problem asks for the size of a largest cutinMore generally, &-cut inG is the
the set of edges going fro}; to S;, i # j, whereS, ..., Sy is a partition ofV (G),
and the MAx k-cuT-problem asks for the size of a largéstut. The problem is readily
seen to be identical to finding a largéstolourable subgraph @f. Furthermore, MX
k-cuTis known to beAPX-complete for every: > 2 and consequently does not admit
a polynomial-time approximation schemer@s).

In the absence of a1Rs, it is interesting to determine the best possible approxima-
tion ratio ¢ within which a problem can be approximated or alternatively, the smallest
¢ for which it can be proved that no polynomial-time approximation algorithm exists
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(typically under some complexity-theoretic assumption sucP g NP). Since the
1970s, the trivial approximation ratio 1/2 was the best known fexMuT. It was not

until 1995 that Goemans and Williamson [16], using semidefinite programming (SDP),
achieved a ratio o878567. Until very recently no other method than SDP was known

to yield a non-trivial approximation ratio for Mx cuT. Trevisan [34] broke this bar-

rier by using algebraic graph theory technigues to reach an approximation guarantee
of .531. Frieze and Jerrum [15] determined lower bounds on the approximation ratios
for MAX k-cuT using SDP techniques. Sharpened results for small valugshafe

later been obtained by de Klerk et al. [9]. Under the assumption thatniiie Games
Conjecture(UGC) holds, Khot et al. [24] showed the approximation ratiokce 2 to

be essentially optimal and also provided upper bounds on the approximation ratio for
k > 2. Hastad [19] has shown that SDP is a universal tool for solving the general M
2-Cspproblem over any domain, in the sense that it establishes non-trivial approxima-
tion results for all of those problems. Assuming UGC, Raghavendra’s SDP algorithms
have optimal performance for everyAd CspP[30], but the exact approximation ratios

are not yet known. In fact, even though an algorithm (doubly exponential in the domain
size) for computing these ratios for specifiakl Cspproblems has emerged [31], this
should be contrasted to the infinite classes of graphs our method gives new bounds for.

Here, we study approximability properties of a generalised versionsof M-cuT
called Max H-CoL for undirected graph#&. This is a specialisation of the Ak Csp
problem. Jonsson et al. [20] have shown that whenélés loop-free, Max H-CoL
does not admit a ”As, and otherwise Mx H-Col is trivial. Langberg et al. [26] have
studied the approximability of Mx H-CoL when H is part of the input. We present
approximability results for Mx H-CoL where H is taken from different families of
graphs. Many of these results turn out to be close to optimal under UGC. Our approach
is based on analysing approximability algorithms applied to problems which they are
not originally intended to solve. This vague idea will be clarified below.

Denote byg the set of all simple, undirected and finite graphggraph homomor-
phismfrom G to H is a vertex map which carries the edgegirtio edges inH. The
existence of such a map will be denoted®y— H. If bothG — H andH — G,
the graph<7 and H are said to bédlomomorphically equivalerftlenoted = H). For
a graphG € G, let W(G) be the set ofveight functionav : E(G) — Q™ assigning
weights to edges af. For aw € W(G), we let||w|| = }_ .. () w(e) denote the total
weight of G. Now, Weighted Maximun# -Colourable SubgrapkMax H-Col) is the
maximisation problem with

Instance: An edge-weighted graptG, w), whereG € G andw € W(G).
Solution: A subgraphG’ of G such thalG' — H.
Measure: The weight ofG” with respect taw.

We remark that we consider instances where the weight functiosms given explic-
itly. Given an edge-weighted gragl, w), denote bymcgy (G, w) the measure of the
optimal solution to the problem Mx H-CoL. Denote bymci (G, w) the (weighted)
size of a largest-cut in (G, w). This notation is justified by the fact thatc, (G, w) =
mek, (G, w). In this sense, Mx H-CoL generalises Mx k-CUT.

Let G- denote the set of equivalence classeg ohder=. The relation— is defined
on G= in the obvious way anfG=, —) is a lattice denoted bgs. For a more in-depth



treatment of graph homomorphisms and the latfigesee [17]. In this paper, we endow
G= with a metricd defined in the following way: foll, N € G, let

dM,N)=1— inf %gw) i %gw) 1)
wEV%(gG) men (G w) we\f;(gg) mep ( 7w)

We will show thatd satisfies the following property: iM/, N € G andmc); can be
approximated withiny, thenmcy can be approximated withim - (1 — d(M, N)) and
conversely, if it iSNP-hard to approximatency within 3, thenmec, is not approx-
imable within 3/ (1 — d(M, N)) unlessP = NP. Hence, we can usé for extend-
ing known (in)approximability bounds on M H-CoL to new and larger classes of
graphs. For instance, we can apply the algorithm of Goemans and Williamson (which
is intended for solving Mx K5-CoL) to MAX Cy;-CoL (i.e. the cycle on 11 vertices)
and analyse how well the problem is approximated (it will turn out that Goemans and
Williamson’s algorithm approximates M C;-CoL within 0.79869). Furthermore,
we present a linear program fdf)M, N') and show that the computation @A, N)
can be drastically simplified whenev&f or N is edge-transitive.

The metricd is related to a well-studied graph parameter knowhipartite density
b(H) [1,3,6,18,27]: ifH' is a bipartite subgraph off with maximum number of

edges, theb(H) = i((g)), wheree(G) is the number of edges in a graph Lemma 5
shows thab(H) = 1 — d(K,, H) for edge-transitive graphd. We note that whilel is
invariant under homomaorphic equivalence, this is not true for bipartite density. There is
also a close connection to work by Samalmibical colouringg32, 33]. In fact, it turns
out that for a graptH, the cubical colouring numbar, (H) = 1/(1 — d(K2, H)).

The paper comprises two main sections. Section 2 is used for proving the basic
properties ofi, showing that it is well-defined ofi—, and that it is a metric. After that,
we describe how to construct the linear programdidin section 3, we usé for study-
ing the approximability of Mx H-CoL and investigate optimality issues, for several
classes of graphs. This is done by exploiting inapproximability bounds that are conse-
quences of the Uniqgue Games Conjecture. Comparisons are also made to the bounds
achieved by the general Ak 2-Csp-algorithm by Hastad [19]. Our investigation cov-
ers a spectrum of graphs, ranging from graphs with few edges and/or containing long
shortest cycles to dense graphs contairfiig?) edges. The techniques used in this pa-
per seem to generalise to larger sets of problems. This and other questions are discussed
in Section 4. Due to space considerations, some proofs have been omitted.

2 Approximation via the Metric d

In this section we start out by proving basic properties of the méfrihat (G, d) is

a metric space, and that proximity of graph§ N in this space lets us interrelate the
approximability of Max M-CoL and Max N-CoL. Sections 2.2 and 2.3 are devoted
to showing how to compute.

2.1 The SpacgG=, d)
We begin by noting thad(M, N) = 1 — s(N, M) - s(M, N) if we defines(M, N)
(for M, N € G) as the infimum of2(C:%) gyer all G € G andw € W(G). We now

n
men (G,w)



see that the relatiomey (G, w) > s(M,N) - men(G,w) holds for allG € G and
w € W(G). Using this observation, one can show th@t/, N') and therebyi(M, N)
behaves well under graph homomorphisms and homomorphic equivalence.

Lemmal. LetM,N € Gand M — N. Then, for everyG € G and every weight
functionw € W(G), mey (G, w) < men (G, w).

Corollary 2. If M andN are homomorphically equivalent graphs, then,; (G, w) =
men (G, w). LetM; = M, and Ny = N, be two pairs of homomorphically equivalent
graphs. Then, fot, j, k,l € {1,2}, s(N;, M;) = s(N, M;).

Corollary 2 shows that andd are well-defined as functions on the gkt and it is
routine work to show thaf is indeed a metric on this space.

We say that a maximisation problefh can be approximated within < 1 if there
exists a randomised polynomial-time algorithtrsuch that - Opt(z) < E(A(x)) <
Opt(z) for all instancese of II. Proximity of graphs and H in d allows us to de-
termine bounds on the approximability ofA H-CoL from known bounds on the
approximability of Max G-CoL:

Lemma 3. Let M, N, K be graphs. linc;; can be approximated within, thenmcy
can be approximated withia - (1 — d(M, N)). If it is NP-hard to approximatencg
within 8, thenmcy is not approximable withiB/ (1 — d(N, K)) unlessP = NP.

Proof. Let A(G,w) be the measure of the solution returned by an algorithm which
approximatesnc,, within «. We know that for allG € G andw € W(G) we have
the inequalitiesncy (G, w) > s(N, M) - mepy (G, w) andmepy (G, w) > s(M, N) -
men (G, w). As a consequenceycy (G, w) > mepy (G, w) - s(N, M) > A(G,w) -
s(N, M) > mey(G,w) - o - s(N,M) > men(G,w) - a- s(N,M) - s(M,N) =
men (G, w) -a- (1 —d(M, N)). For the second part, assume to the contrary that there
exists a polynomial-time algorithi® that approximates:c within 3/(1—d(N, K)).
According to the first pamtucx can then be approximated withjh—d(N, K))-58/(1—
d(N, K)) = 8. This is a contradiction unle$s= NP. O

2.2 Exploiting Symmetries

We will now consider general methods for computingndd. In Lemma 4, we show
that certain weight functions provide a lower boundroay, (G, w)/men (G, w), and
in Lemma 5, we provide a simpler expression §68, N') which depends directly on
the automorphism group and thereby the symmetried o his expression becomes
particularly simple wheV is edge-transitive. An immediate consequence of this is that
s(K2, H) = b(H) for edge-transitive graphd.

We describe the solutions toA% H-CoL alternatively as follows: lez andH €
G, and for any vertex mag : V(G) — V(H), let f# : E(G) — E(H) be the
(partial) edge map induced hy. In this notationh : V(G) — V(H) is a graph
homomorphism precisely wheit#)~1(E(H)) = E(G) or, alternatively, wherh#
is a total function. The set of solutions to an instarfiégew) of MAx H-CoL can
then be taken to be the set of vertex mgps V(G) — V(H) with the measure

w(f) = Zee(f#)—l(E(H)) w(e).



In the remaining part of this section, we will use this description of a solution. Let
f: V(G) — V(H) be an optimal solution to the instan¢€’, w) of MAX H-CoL.
Define the weightv; € W(H) in the following way: for eacle € E(H), letwy(e) =

w(e’)

Doere(f#)-1(e) men (G- 1he nextresultis now fairly obvious:

Lemma 4. Let M, N € G be two graphs. Then, for evefy € G, everyw € W(G),
and any optimal solutiorf to (G, w) of MAx N-CoL mep(Gw) mep (N, wy).

" men (Gaw) =

Let M andN € G be graphs and let = Aut®(NV) be the (edge) automorphism group
of N. We will let 7 € A act on{u,v} € E(N) by - {u,v} = {n(u),n(v)}. The
graph NV is edge-transitive if and only ifd acts transitively on the edges of. Let
W(N) be the set of weight functions € W(N) which satisfy||w|| = 1 and for which
w(e) = w(w - e) foralle € E(N) andr € Aut*(N).

Lemma5. Let M, N € G. Then,s(M, N) = inf 3y ) men (N, w). In particular,
whenN is edge-transitives(M, N) = mcy; (N, 1/e(N)).

Proof. Clearly,s(M, N) < inf,,cy;, vy B0 = inf,, 5, ) meas (N, w). For the
first part of the lemma, it will be sufficient to prove that the following inequality holds
for somew’ € W: a = % > mep (N, w'). By taking the infimum over graphs
G and weight functions € W(G) in the left-hand side of this inequality, we see that
s(M, N) 2 mepy (N, w') 2 inf, o5, py men (N, w).

Let A = Aut™(N) be the automorphism group &f. Letr € A be an arbitrary au-
tomorphism ofN. If f is an optimal solution tdG, w) as an instance of Wx N-CoL,
thensoisf, = mo f.Letw, = wror. By Lemmadp > mep (N, wy). Summingr in
this inequality overd gives|A|-a > >y mey (N, wr) > mep (N, Y o4 wr) (the
straightforward proof for the last inequality is omitted). The weight funcliop. , wx
can be determined as follows.

Leet) i W(E) Al Deey#)-1ae w(E)

Z wn(e) = Z men (G, w) - |Ae| men (G, w) ’
meA TEA NAM NV
where Ae denotes the orbit of underA. Thus,w’ >’ w./|A| € W(N) andw'’
satisfiesy > mep (N, w') so the first part follows.

For the second part, note that when the automorphism gfoagts transitively on
E(N), there is only one orbitle = E(N). Then, the weight function/’ is given by

1 Xeei#) -1may) wiEe) 1 men(G,w)

COSTNT men(Gow) o) men(Gow)

2.3 Computing Distances

From Lemma 5 it follows that in order to determisigl/, N), it is sufficient to minimise
mepr (N, w) ovenV(N). We will now use this observation to describe a linear program
for computings(M, N). Fori € {1,...,r}, let A; be the orbits of Aut(V) acting

on E(N). The measure of a solutiofiwhenw € W(N) is equal to>"!_, w; - f;,



wherew; is the weight of an edge id; and f; is the number of edges iA; which are
mapped to an edge it/ by f. Note that given av, the measure of a solutighdepends
only on the vectof f1, ..., f,) € N". Therefore, take the solution space to be the set
of such vectorst’ = { (f1,..., f.) | fisasolution to/ N, w) of MAX M-CoL }. Let
the variables of the linear program g, . . . , w,. ands, wherew; represents the weight
of each element in the orhit; ands is an upper bound on the solutions.

min s

S firw; <s foreach(fi,...,f.) €F

Zi |AZ‘ cw; =1 andwi,s >0
Given a solutionu;, s to this program, a weight function which minimiseg:; (G, w)
is given byw(e) = w; whene € A;. The measure of this solutionis= s(M, N).

Example 6.The wheel graphon & vertices, Wy, is a graph that contains a cycle of
lengthk — 1 plus a vertexv not in the cycle such that is connected to every other
vertex. We call the edges of tike— 1-cycleouter edgesnd the remaining — 1 edges
spokesiltis easy to see that for odd the wheel graphs are homomorphically equivalent
to K5. We will now determine (K3, W,,) for evenn > 6 using the previously described
construction of a linear program. Note that the group action of &tt,) on E(W,,)
has two orbits, one which consists of all outer edges and one which consists of all the
spokes. If we remove one outer edge or one spoke figmthen the resulting graph
can be mapped homomorphically orfka. Therefore, it suffices to chooge= {f, g}
with f = (k — 1,k — 2) andg = (k — 2,k — 1) since all other solutions will have a
smaller measure than at least one of these. The prograiifdooks like this:

min s

(k—1) w1+ (k—2) ws <s

(k—=2)- w1 +(k—1) - ws <s

w;,s >0
The solution isw; = wy = 1/(2k — 2) with s(K3, W) = s = (2k — 3)/(2k — 2).

In some cases, it may be hard to determine the distance betiieserd M or N.
If we know thatH is homomorphically sandwiched betweghand N so thatM —
H — N, then we can provide an upper bound on the distandé taf M/ or N by using
the distance betweeh/ and N. The following result can readily be proved from the
definition of s:

Lemma?. LetM — H — N.Then,s(M,H) > s(M,N) ands(H,N) > s(M,N).

3 Approximability of MAx H-CoL

Let A be an approximation algorithm for Mk H-CoL. Our method basically allows

us to measure how wel performs on other problems Ak H’-CoL. In this section,

we will apply the method to various algorithms and various graphs. We do two things
for each kind of graph under consideration: compare the performance of our method
with that of some existing, leading, approximation algorithm and investigate how close
to optimality we can get. Let(G), e(G) denote the number of vertices and edgeS'in
respectively. Our main algorithmic tools will be the following:



Theorem 8. mc, can be approximated withingy, ~ 0.878567 [16] and mcy, can be
approximated withimy, ~ 1 — ¢ + 23% [15]. Let H be a graph. There is an absolute

k2
constantc > 0 such thatmcyg can be approximated withih — t(d’;” (1 - #{)gd)

whered = v(H) andt(H) = d*> — 2 - e(H) [19].

Here, the relation- indicates two expressions whose ratio tends$ sk — oco. We
note that de Klerk et al. [9] have presented the sharpest known bounrdsfonsmall
values ofk; for instances > 0.836008. We will compare the performance of Has-
tad’s algorithm on Mx H-CoL with the performance of the algorithms forc, and
mcg, in Theorem 8 analysed using Lemma 3 and estimates of the disfaf@e this
purpose, we introduce two functiong,/;,, andH3, such that, iff is a graphF'Jx.(H)
denotes the best bound on the approximation guarantee when Frieze and Jerrum'’s algo-
rithm for MAX k-cuT is applied to the problemcy, while HA(H) is the guarantee
when Hastad’s algorithm is used to approximaiey. We note that the comparison is
not entirely fair since Hastad's algorithm was probably not designed with the goal of
providing optimal results—the goal was to beat random assignments. However, it is the
currently best algorithm, with known bounds, that can approximatex MV -CoL for
arbitraryH € G. This is in contrast with the algorithms of Raghavendra [30].

To be able to investigate the eventual near-optimality of our approximation method
we will rely on the Uniqgue Games Conjecture by Khot [23]. Thus, we assume hence-
forth that UGC is true, which gives us the following inapproximability results:

Theorem 9 (Khot et al. [24]). For everye > 0, it is NP-hard to approximatenc,
within agw + €. It is NP-hard to approximatency, within 1 — + + 2135 4 O(l2lpk),

3.1 Sparse Graphs

In this section, we investigate the performance of our method on graphs which have
relatively few edges, and we see that gigh of the graphs plays a central role. The
girth of a graph is the length of a shortest cycle contained in the graph. Similarly, the
odd girth of a graph gives the length of a shortest odd cycle in the graph.
Before we proceed we need some facts about cycle graphs. Note that the odd cycles

form a chain in the lattic€s betweenkK,; andCs3 = K3 in the following way: Ky —

- — 021‘4_1 — Cyi_1 — --- — C3 = Kj3. Note thathkH 7L> K5 anngkH 7L>
Cam+1. However, after removing one edge froff.1, the remaining subgraph is
isomorphic to the pattP;; which in turn is embeddable in both; and Cs,,, 1.
SinceCsyy41 is edge-transitive, Lemma 5 gives us the following result:

Lemma 10. Let0 < k < m be odd integers. Thea(K>, Cy) = s(Cp,, Cy) = 5L,

Proposition 11. Letk > 3 be odd. ThenF'J>(Cy) > 22 - agw and HEC),) = £ +
sk~ Pk fggk. For anye > 0, mcc, cannot be approximated withigf - agw +¢.

Proof. From Lemma 10 we see thatK,, C) = % which implies (using Lemma 3)
thatFJo(Cy) > % -agw . Furthermoreme, cannot be approximated withingy, +
¢’ for anye’ > 0. From the second part of Lemma 3, we get thatc, cannot be
approximated withint~ - (agw +¢’) for anye’. With e’ = £ - -1 the result follows.
Finally, the bound om&(C},) can be obtained by noting thetCy,) = k. O



Héastad’s algorithm does not perform particularly well on sparse graphs; this is reflected
by its performance on cycle grapfg where the approximation guarantee tends to zero
whenk — oco. We will see that this trend is apparent for all graph types studied in this
section. Using results of Lai & Liu [25] and Dutton & Brigham [10], we continue with

a result on a class of graphs with large girth:

Proposition 12. Letn > k > 4. If H is a graph with odd girthg > 2k + 1 and

minimum degree> 5% 71y, wheren = v(H), thenFJ>(H) > 524 - agw andmey

cannot be approximated withi#! - aqw + e for anye > 0. Asymptotically, H&H)
o(n9/(s—1))3 /g=1) p1/(9=1)

is bounded bynz logn 'r(Lan/(Qfl)) — 2 gn“ lc?g ng <

Stronger results are possible if we restrict ourselves to planar graphs: Borodin et al. [7]
have proved that iff is a planar graph with girth at Ieagh thenH is (2 +

) -colourable, i.e. there exists a homomorphism fréhto Cgkﬂ By applying our
method the following can be proved:

Proposition 13. LetH be a planar graph with girth at Iea%t = 20022 |f y(H) = n,
thenFJQ(H) = 2k+1 CAGw and HdH) < 6 - 711% + n? logn - n3?§gn + n411%>(én'
mecy cannot be approximated Wlthlﬁgk— agw + € foranye > 0.

Proposition 13 can be further strengthened and extended in different ways: one is to
consider a result by Dvak et al. [11]. They have proved that every planar graph
of odd-girth at least 9 is homomorphic to the Petersen gfaphhe Petersen graph is
edge-transitive and it is known (cf. [3]) that the bipartite density?a$ 4/5 or, in other
words,s(Ks, P) = 4/5. Consequentlyincy can be approximated withigl - acw but
not within g -agw + € for anye > 0. This is better than Proposition 13 for planar
graphs with girth strictly less than 13. Another way of extending Proposition 13 is to
consider graphs embeddable on higher-genus surfaces. For instance, the lemma is true
for graphs embeddable on the projective plane, and it is also true for graphs of girth
strictly greater than?OkT*2 whenever the graphs are embeddable on the torus or Klein
bottle. These bounds are direct consequences of results in Borodin et al. [7].

We conclude the section by looking at a class of graphs that have small girth. Let
0 < @ < 1 be the approximation threshold fotcs, i.e. mcs is approximable withirg
but not withings + ¢ for anye > 0. Currently, we know thatis < 0.836008 < 8 < %
[9, 21]. The wheel graphs from Section 2.3 are homomorphically equivaldii tor
oddk and we conclude (by Lemma 3) thatyy, has the same approximability proper-
ties asmcs in this case. For eveh > 6, the following result says thdt J;(W;) — a3
whenk — oo, andH&(W},) tends to 0.

Proposition 14. For k > 6and evenFJg(Wk) > ag- % 5 butmcwk is not approx-

4 4
imable within Ha(Wk) e log%k ~ Plogk T 7 logk

3.2 Dense and Random Graphs

We will now study densegraphs, i.e. graph&l containing®(v(H)?) edges. For a
graphH onn vertices, we obviously havll — K,,. Letw(G) denote the size of the



largest clique inG and x(G) denote the chromatic number 6f If we assume that
w(H) > r, then we also hav&, — H. Thus, if we determine(X,, K,,), then we
can use Lemma 7 to bourfdJ,,(H). According to Turan [35], there exists a family of
graphsI'(n,r) such that(T'(n,r)) = n, e(T(n,7)) = [(1 — 1) - ”72j, w(T(n,r)) =
x(T(n,r)) =r,and ifG is a graph such tha{G) > e(T(v(G), r)), thenw(G) > r.

Lemma 15. Letr andn be positive integers. Thes( K, K,,) = e(T(n,r))/e(K,).

2

Proposition 16. Letv(H) = n and pickr € N, o € R such that{(l -1). %J <
o n? = e(H) < "= Then,FJ,(H) > ay - s(Kp, Kp) ~ 1= 1 — 1 4 2lnn,

and HY H) = 20 + U-29)¢

n2logn

Note that when- andn grow, F'J,,(H) tends tol. This means that, asymptotically,
we cannot do much better. If we compare the expressiod’fhy( H) with the inap-
proximability bound formc,, (Theorem 9), we see that all we could hope for is a faster
convergence towards As o satisfies(1 — 1)- 1 <o < (1 - 1)1, we conclude that
HAa(H) also tends td asr andn grow. To get a better grip on ho#a( H ) behaves we
look at two extreme cases.
Foramaximab = (1 — )3, H&(H) becomed — - + . On the other hand,
this guarantee, for a minimal = (1 —1).lis1 -1 4 w7 iorn - At the same time,
it is easy to see that Frieze and Jerrum’s algorithm makes these points approximable
within «,, (since, in this casell = K,) anda,. (since Turan’s theorem tells us that
H — K, holds in this case), respectively. Our conclusion is that Frieze and Jerrum’s
and Hastad’s algorithms perform almost equally well on these graphs asymptotically.
Another way to study dense graphs is via random graphsgletp) denote the
random graph on vertices in which every edge is chosen randomly and independently
with probabilityp = p(n). We say thati(n, p) has a propertyl asymptotically almost
surely(a.a.s.) if the probability it satisfie$ tends tol asn tends to infinity. Here, we let
p = cforsomel < ¢ < 1. ForG € G(n,p) it is well known that a.a.sv(G) assumes
one of at most two values arourﬁ% [5,29]. It is also known that, almost surely

X(G) ~ gty In (ﬁ) asnp — oo [4,28]. Let us say that(G) is concentrated

in width s if there existsu = u(n,p) such that a.a.s: < x(G) < u + s. Alon and
Krivelevich [2] have shown that for every constant 0, if p = n~/279 theny(G) is
concentrated in width = 1. That is, almost surely, the chromatic number takes one of
two values.

Proposition 17. LetH € G(n, p). Whemp — oo, FJ,,(H) ~1— 2 4 2lom 4 L
2l \wherem = w(H). H&(H) = p — 2 + (1 — p) + o

c
m n n2logn n3logn”

We see that, in the limiting casela(H ) tends top, while F.J,,,(H) tends tol. Again,
this means that, for large enough graphs, we cannot do much better. With a better anal-
ysis, one could possibly reach a faster convergence ratéfgy H).
It is interesting to look at what happens for graptisc G(n,p) wherenp does
not tend tooc whenn — oco. We have the following result by Eéd and Rényi [14]:
let c be a positive constant and= <. If ¢ < 1, then a.a.s. no componentdtin, p)



contains more than one cycle, and no component has moreciléfg!}m vertices. Now

we see that ifhp — ¢ whenn — oo and0 < ¢ < 1, thenG(n,p) almost surely
consists of components with at most one cycle. Thus, each component resembles a
cycle where, possibly, trees are attached to certain cycle vertices, and each component
is homomorphically equivalent to the cycle it contains. Since we know from Section 3.1
that Frieze and Jerrum’s algorithm performs better than Hastad’s algorithm on cycle
graphs, it follows that the same relationship holds in this part ofthe p) spectrum.

4 Conclusions and Open Problems

We have defined a metric on graphs that measures how well one graph can be embed-
ded in another. While not apparent from its definition, which involves taking infima
over the set of all edge-weighted graphs, we have shown that the metric can be com-
puted practically by using linear programming. Given a grapland known approx-
imability properties for Max H-CoL, this metric allows us to deduce bounds on the
corresponding properties for graphs closeftoln other words, the metric measures
how well an algorithm for Mx H-CoL works on problems Mx H’-CoL, for graphs

H’ close toH, it also translates inapproximability results between these problems. In
principle, given a large enough set of graphs with known approximability results for
Max H-CoL, our method could be used to derive good bounds on the approxima-
bility of M ax H-CoL for all graphs. If the known results were in fact tight and the
set of graphs dense G- (in the topology induced byi), then we would have tight
results for all graphs. In this paper we have considered the graphs with known proper-
ties to be the complete graphs. We have shown that this set of graphs is sufficient for
achieving new bounds on several different classes of graphs, i.e. applying Frieze and
Jerrum’s algorithm to Mx H-CoL gives comparable to or better results than when
applying Hastad’s Mx 2-Cspalgorithm for the classes of graphs we have considered.
One possible explanation for this is that the analysis of thexM-Cspalgorithm only

aims to prove it better than a random solution on expectation, which may leave room
for strengthening of the approximation guarantee. At the same time, we are probably
overestimating the distance between the graphs. It is likely that both results can be im-
proved. This immediately suggests two clear directions of research. On the one hand,
we need approximability/inapproximability result pairs forkl H-CoL on a substan-

tially larger class of graphs. This can be seen considering for exampie (4 -CoL.

The closest complete graph ¢ is K-, which gives us the inconsequential inapprox-
imability boundagw - 5/4 > 1. On the other hand, we do not measure the actual
distance from each graph to the closest complete graph. Instead, we embed each graph
betweenk, and a cycle or between its largest clique dig, wherek is greater than

or equal to the chromatic number. In the first case 98ifd 3] has proved that for any
positive integers and! there exists a graph of chromatic numtéeand girth at least

Itis obvious that such graphs cannot be sandwiched betigend a cycle as was the
case of the graphs of high girth in Section 3.1. Additionally, there are obviously graphs
with an arbitrarily large gap between largest clique and chromatic number. A different
idea is thus required to deal with these graphs. In general, to apply our method more
precisely, we need a better understanding of the structufg ahd how this interacts



with our metricd. Clearly, progress in either one of the directions will influence what
type of result to look for in the other direction. In light of this discussion, two interest-

ing candidates for research are the circular complete graphs and the Kneser graphs, see
for example [17]. Both of these classes generalise the complete graphs and have been
subject to substantial previous research. Partial resultd for 3-colourable circular
complete graphs have been obtained by Engstrom [12].

We conclude the paper by considering two other possible ways to extend our results.
Firstly, Kaporis et al. [22] have shown thatc, is approximable within952 for any
given average degretand asymptotically almost all random graphsn G(n,m =
[gnj ), whereG(n, m) is the probability space of random graphsromertices andn
edges selected uniformly at random. In a similar vein, Coja-Oghlan et al. [8] give an
algorithm that approximates.c,, within 1 — O(1/,/np) in expected polynomial time,
for graphs fron(n, p). It would be interesting to know if these results could be carried
further, to other graph&, so that better approximability bounds omi H-CoL, for
H such thatG — H, could be achieved.

Secondly, the idea of defining a metric on a space of problems which relates their
approximability can be extended to more general cases. It should not prove too difficult
to generalise the framework introduced in this paper saxMCSP over directed graphs
or even languages consisting of a single, finitary relation. How far can this generalisa-
tion be carried out? Could it provide any insight into the approximability e}MCSP
on arbitrary constraint languages?
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