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Abstract. A graph homomorphism is a vertex map which carries edges from
a source graph to edges in a target graph. We study the approximability proper-
ties of theWeighted MaximumH-Colourable Subgraphproblem (MAX H -COL).
The instances of this problem are edge-weighted graphsG and the objective is
to find a subgraph ofG that has maximal total edge weight, under the condition
that the subgraph has a homomorphism toH; note that forH = Kk this prob-
lem is equivalent to MAX k-CUT. To this end, we introduce a metric structure on
the space of graphs which allows us to extend previously known approximabil-
ity results to larger classes of graphs. Specifically, the approximation algorithms
for MAX CUT by Goemans and Williamson and MAX k-CUT by Frieze and Jer-
rum can be used to yield non-trivial approximation results for MAX H -COL. For
a variety of graphs, we show near-optimality results under the Unique Games
Conjecture. We also use our method for comparing the performance of Frieze
& Jerrum’s algorithm with Håstad’s approximation algorithm for general MAX

2-CSP. This comparison is, in most cases, favourable to Frieze & Jerrum.
Keywords: optimisation, approximability, graph homomorphism, graphH-col-
ouring, computational complexity

1 Introduction

Let G be a simple, undirected and finite graph. Given a subsetS ⊆ V (G), a cut in G
with respect toS is the set of edges from vertices inS to vertices inV (G)\S. The MAX

CUT-problem asks for the size of a largest cut inG. More generally, ak-cut inG is the
the set of edges going fromSi to Sj , i 6= j, whereS1, . . . , Sk is a partition ofV (G),
and the MAX k-CUT-problem asks for the size of a largestk-cut. The problem is readily
seen to be identical to finding a largestk-colourable subgraph ofG. Furthermore, MAX

k-CUT is known to beAPX-complete for everyk ≥ 2 and consequently does not admit
a polynomial-time approximation scheme (PTAS).

In the absence of a PTAS, it is interesting to determine the best possible approxima-
tion ratioc within which a problem can be approximated or alternatively, the smallest
c for which it can be proved that no polynomial-time approximation algorithm exists
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(typically under some complexity-theoretic assumption such asP 6= NP). Since the
1970s, the trivial approximation ratio 1/2 was the best known for MAX CUT. It was not
until 1995 that Goemans and Williamson [16], using semidefinite programming (SDP),
achieved a ratio of.878567. Until very recently no other method than SDP was known
to yield a non-trivial approximation ratio for MAX CUT. Trevisan [34] broke this bar-
rier by using algebraic graph theory techniques to reach an approximation guarantee
of .531. Frieze and Jerrum [15] determined lower bounds on the approximation ratios
for MAX k-CUT using SDP techniques. Sharpened results for small values ofk have
later been obtained by de Klerk et al. [9]. Under the assumption that theUnique Games
Conjecture(UGC) holds, Khot et al. [24] showed the approximation ratio fork = 2 to
be essentially optimal and also provided upper bounds on the approximation ratio for
k > 2. Håstad [19] has shown that SDP is a universal tool for solving the general MAX

2-CSPproblem over any domain, in the sense that it establishes non-trivial approxima-
tion results for all of those problems. Assuming UGC, Raghavendra’s SDP algorithms
have optimal performance for every MAX CSP [30], but the exact approximation ratios
are not yet known. In fact, even though an algorithm (doubly exponential in the domain
size) for computing these ratios for specific MAX CSPproblems has emerged [31], this
should be contrasted to the infinite classes of graphs our method gives new bounds for.

Here, we study approximability properties of a generalised version of MAX k-CUT

called MAX H -COL for undirected graphsH. This is a specialisation of the MAX CSP

problem. Jonsson et al. [20] have shown that wheneverH is loop-free, MAX H -COL

does not admit a PTAS, and otherwise MAX H -COL is trivial. Langberg et al. [26] have
studied the approximability of MAX H -COL whenH is part of the input. We present
approximability results for MAX H -COL whereH is taken from different families of
graphs. Many of these results turn out to be close to optimal under UGC. Our approach
is based on analysing approximability algorithms applied to problems which they are
not originally intended to solve. This vague idea will be clarified below.

Denote byG the set of all simple, undirected and finite graphs. Agraph homomor-
phismfrom G to H is a vertex map which carries the edges inG to edges inH. The
existence of such a map will be denoted byG → H. If both G → H andH → G,
the graphsG andH are said to behomomorphically equivalent(denotedG ≡ H). For
a graphG ∈ G, letW(G) be the set ofweight functionsw : E(G) → Q+ assigning
weights to edges ofG. For aw ∈ W(G), we let‖w‖ =

∑
e∈E(G) w(e) denote the total

weight ofG. Now,Weighted MaximumH-Colourable Subgraph(MAX H -COL) is the
maximisation problem with

Instance: An edge-weighted graph(G, w), whereG ∈ G andw ∈ W(G).
Solution: A subgraphG′ of G such thatG′ → H.
Measure: The weight ofG′ with respect tow.

We remark that we consider instances where the weight functionsw are given explic-
itly. Given an edge-weighted graph(G, w), denote bymcH(G, w) the measure of the
optimal solution to the problem MAX H -COL. Denote bymck(G, w) the (weighted)
size of a largestk-cut in (G, w). This notation is justified by the fact thatmck(G, w) =
mcKk

(G, w). In this sense, MAX H -COL generalises MAX k-CUT.
LetG≡ denote the set of equivalence classes ofG under≡. The relation→ is defined

onG≡ in the obvious way and(G≡,→) is a lattice denoted byCS . For a more in-depth



treatment of graph homomorphisms and the latticeCS , see [17]. In this paper, we endow
G≡ with a metricd defined in the following way: forM,N ∈ G, let

d(M,N) = 1− inf
G∈G

w∈W(G)

mcM (G, w)
mcN (G, w)

· inf
G∈G

w∈W(G)

mcN (G, w)
mcM (G, w)

. (1)

We will show thatd satisfies the following property: ifM,N ∈ G andmcM can be
approximated withinα, thenmcN can be approximated withinα · (1− d(M,N)) and
conversely, if it isNP-hard to approximatemcN within β, thenmcM is not approx-
imable withinβ/ (1− d(M,N)) unlessP = NP. Hence, we can used for extend-
ing known (in)approximability bounds on MAX H -COL to new and larger classes of
graphs. For instance, we can apply the algorithm of Goemans and Williamson (which
is intended for solving MAX K2-COL) to MAX C11-COL (i.e. the cycle on 11 vertices)
and analyse how well the problem is approximated (it will turn out that Goemans and
Williamson’s algorithm approximates MAX C11-COL within 0.79869). Furthermore,
we present a linear program ford(M,N) and show that the computation ofd(M,N)
can be drastically simplified wheneverM or N is edge-transitive.

The metricd is related to a well-studied graph parameter known asbipartite density
b(H) [1, 3, 6, 18, 27]: ifH ′ is a bipartite subgraph ofH with maximum number of

edges, thenb(H) = e(H′)
e(H) , wheree(G) is the number of edges in a graphG. Lemma 5

shows thatb(H) = 1− d(K2,H) for edge-transitive graphsH. We note that whiled is
invariant under homomorphic equivalence, this is not true for bipartite density. There is
also a close connection to work by Šámal oncubical colourings[32, 33]. In fact, it turns
out that for a graphH, the cubical colouring numberχq(H) = 1/(1− d(K2,H)).

The paper comprises two main sections. Section 2 is used for proving the basic
properties ofd, showing that it is well-defined onG≡, and that it is a metric. After that,
we describe how to construct the linear program ford. In section 3, we used for study-
ing the approximability of MAX H -COL and investigate optimality issues, for several
classes of graphs. This is done by exploiting inapproximability bounds that are conse-
quences of the Unique Games Conjecture. Comparisons are also made to the bounds
achieved by the general MAX 2-CSP-algorithm by Håstad [19]. Our investigation cov-
ers a spectrum of graphs, ranging from graphs with few edges and/or containing long
shortest cycles to dense graphs containingΘ(n2) edges. The techniques used in this pa-
per seem to generalise to larger sets of problems. This and other questions are discussed
in Section 4. Due to space considerations, some proofs have been omitted.

2 Approximation via the Metric d

In this section we start out by proving basic properties of the metricd, that(G≡, d) is
a metric space, and that proximity of graphsM,N in this space lets us interrelate the
approximability of MAX M -COL and MAX N -COL. Sections 2.2 and 2.3 are devoted
to showing how to computed.

2.1 The Space(G≡, d)

We begin by noting thatd(M,N) = 1 − s(N,M) · s(M,N) if we defines(M,N)
(for M,N ∈ G) as the infimum ofmcM (G,w)

mcN (G,w) over allG ∈ G andw ∈ W(G). We now



see that the relationmcM (G, w) ≥ s(M,N) · mcN (G, w) holds for allG ∈ G and
w ∈ W(G). Using this observation, one can show thats(M,N) and therebyd(M,N)
behaves well under graph homomorphisms and homomorphic equivalence.

Lemma 1. Let M,N ∈ G and M → N . Then, for everyG ∈ G and every weight
functionw ∈ W(G), mcM (G, w) ≤ mcN (G, w).

Corollary 2. If M andN are homomorphically equivalent graphs, thenmcM (G, w) =
mcN (G, w). LetM1 ≡ M2 andN1 ≡ N2 be two pairs of homomorphically equivalent
graphs. Then, fori, j, k, l ∈ {1, 2}, s(Ni,Mj) = s(Nk,Ml).

Corollary 2 shows thats andd are well-defined as functions on the setG≡ and it is
routine work to show thatd is indeed a metric on this space.

We say that a maximisation problemΠ can be approximated withinc < 1 if there
exists a randomised polynomial-time algorithmA such thatc · Opt(x) ≤ E(A(x)) ≤
Opt(x) for all instancesx of Π. Proximity of graphsG andH in d allows us to de-
termine bounds on the approximability of MAX H -COL from known bounds on the
approximability of MAX G-COL:

Lemma 3. LetM,N,K be graphs. IfmcM can be approximated withinα, thenmcN

can be approximated withinα · (1− d(M,N)). If it is NP-hard to approximatemcK

within β, thenmcN is not approximable withinβ/ (1− d(N,K)) unlessP = NP.

Proof. Let A(G, w) be the measure of the solution returned by an algorithm which
approximatesmcM within α. We know that for allG ∈ G andw ∈ W(G) we have
the inequalitiesmcN (G, w) ≥ s(N,M) · mcM (G, w) andmcM (G, w) ≥ s(M,N) ·
mcN (G, w). As a consequence,mcN (G, w) ≥ mcM (G, w) · s(N,M) ≥ A(G, w) ·
s(N,M) ≥ mcM (G, w) · α · s(N,M) ≥ mcN (G, w) · α · s(N,M) · s(M,N) =
mcN (G, w) · α · (1− d(M,N)). For the second part, assume to the contrary that there
exists a polynomial-time algorithmB that approximatesmcN within β/(1−d(N,K)).
According to the first partmcK can then be approximated within(1−d(N,K))·β/(1−
d(N,K)) = β. This is a contradiction unlessP = NP. ut

2.2 Exploiting Symmetries

We will now consider general methods for computings andd. In Lemma 4, we show
that certain weight functions provide a lower bound onmcM (G, w)/mcN (G, w), and
in Lemma 5, we provide a simpler expression fors(M,N) which depends directly on
the automorphism group and thereby the symmetries ofN . This expression becomes
particularly simple whenN is edge-transitive. An immediate consequence of this is that
s(K2,H) = b(H) for edge-transitive graphsH.

We describe the solutions to MAX H -COL alternatively as follows: letG andH ∈
G, and for any vertex mapf : V (G) → V (H), let f# : E(G) → E(H) be the
(partial) edge map induced byf . In this notationh : V (G) → V (H) is a graph
homomorphism precisely when(h#)−1(E(H)) = E(G) or, alternatively, whenh#

is a total function. The set of solutions to an instance(G, w) of MAX H -COL can
then be taken to be the set of vertex mapsf : V (G) → V (H) with the measure
w(f) =

∑
e∈(f#)−1(E(H)) w(e).



In the remaining part of this section, we will use this description of a solution. Let
f : V (G) → V (H) be an optimal solution to the instance(G, w) of MAX H -COL.
Define the weightwf ∈ W(H) in the following way: for eache ∈ E(H), let wf (e) =∑

e′∈(f#)−1(e)
w(e′)

mcH(G,w) . The next result is now fairly obvious:

Lemma 4. Let M,N ∈ G be two graphs. Then, for everyG ∈ G, everyw ∈ W(G),
and any optimal solutionf to (G, w) of MAX N -COL, mcM (G,w)

mcN (G,w) ≥ mcM (N,wf ).

Let M andN ∈ G be graphs and letA = Aut∗(N) be the (edge) automorphism group
of N . We will let π ∈ A act on{u, v} ∈ E(N) by π · {u, v} = {π(u), π(v)}. The
graphN is edge-transitive if and only ifA acts transitively on the edges ofN . Let
Ŵ(N) be the set of weight functionsw ∈ W(N) which satisfy‖w‖ = 1 and for which
w(e) = w(π · e) for all e ∈ E(N) andπ ∈ Aut∗(N).

Lemma 5. Let M,N ∈ G. Then,s(M,N) = infw∈Ŵ(N) mcM (N,w). In particular,
whenN is edge-transitive,s(M,N) = mcM (N, 1/e(N)).

Proof. Clearly,s(M,N) ≤ infw∈Ŵ(N)
mcM (N,w)
mcN (N,w) = infw∈Ŵ(N) mcM (N,w). For the

first part of the lemma, it will be sufficient to prove that the following inequality holds
for somew′ ∈ Ŵ: α = mcM (G,w)

mcN (G,w) ≥ mcM (N,w′). By taking the infimum over graphs
G and weight functionsw ∈ W(G) in the left-hand side of this inequality, we see that
s(M,N) ≥ mcM (N,w′) ≥ infw∈Ŵ(N) mcM (N,w).

Let A = Aut∗(N) be the automorphism group ofN . Let π ∈ A be an arbitrary au-
tomorphism ofN . If f is an optimal solution to(G, w) as an instance of MAX N -COL,
then so isfπ = π◦f . Letwπ = wπ◦f . By Lemma 4,α ≥ mcM (N,wπ). Summingπ in
this inequality overA gives|A|·α ≥

∑
π∈A mcM (N,wπ) ≥ mcM (N,

∑
π∈A wπ) (the

straightforward proof for the last inequality is omitted). The weight function
∑

π∈A wπ

can be determined as follows.∑
π∈A

wπ(e) =
∑
π∈A

∑
e′∈(f#)−1(π·e) w(e′)

mcN (G, w)
=

|A|
|Ae|

·
∑

e′∈(f#)−1(Ae) w(e′)

mcN (G, w)
,

whereAe denotes the orbit ofe underA. Thus,w′ ∑
π∈A wπ/|A| ∈ Ŵ(N) andw′

satisfiesα ≥ mcM (N,w′) so the first part follows.
For the second part, note that when the automorphism groupA acts transitively on

E(N), there is only one orbitAe = E(N). Then, the weight functionw′ is given by

w′(e) =
1

e(N)
·
∑

e′∈(f#)−1(E(N)) w(e′)

mcN (G, w)
=

1
e(N)

· mcN (G, w)
mcN (G, w)

.

ut

2.3 Computing Distances

From Lemma 5 it follows that in order to determines(M,N), it is sufficient to minimise
mcM (N,w) overŴ(N). We will now use this observation to describe a linear program
for computings(M,N). For i ∈ {1, . . . , r}, let Ai be the orbits of Aut∗(N) acting
on E(N). The measure of a solutionf whenw ∈ Ŵ(N) is equal to

∑r
i=1 wi · fi,



wherewi is the weight of an edge inAi andfi is the number of edges inAi which are
mapped to an edge inM by f . Note that given aw, the measure of a solutionf depends
only on the vector(f1, . . . , fr) ∈ Nr. Therefore, take the solution space to be the set
of such vectors:F = { (f1, . . . , fr) | f is a solution to(N,w) of MAX M -COL }. Let
the variables of the linear program bew1, . . . , wr ands, wherewi represents the weight
of each element in the orbitAi ands is an upper bound on the solutions.

min s∑
i fi · wi ≤ s for each(f1, . . . , fr) ∈ F∑
i |Ai| · wi = 1 and wi, s ≥ 0

Given a solutionwi, s to this program, a weight function which minimisesmcM (G, w)
is given byw(e) = wi whene ∈ Ai. The measure of this solution iss = s(M,N).

Example 6.The wheel graphon k vertices,Wk, is a graph that contains a cycle of
lengthk − 1 plus a vertexv not in the cycle such thatv is connected to every other
vertex. We call the edges of thek− 1-cycleouter edgesand the remainingk− 1 edges
spokes. It is easy to see that for oddk, the wheel graphs are homomorphically equivalent
toK3. We will now determines(K3,Wn) for evenn ≥ 6 using the previously described
construction of a linear program. Note that the group action of Aut∗(Wn) on E(Wn)
has two orbits, one which consists of all outer edges and one which consists of all the
spokes. If we remove one outer edge or one spoke fromWk, then the resulting graph
can be mapped homomorphically ontoK3. Therefore, it suffices to chooseF = {f, g}
with f = (k − 1, k − 2) andg = (k − 2, k − 1) since all other solutions will have a
smaller measure than at least one of these. The program forWk looks like this:

min s
(k − 1) · w1 + (k − 2) · w2 ≤ s
(k − 2) · w1 + (k − 1) · w2 ≤ s
(k − 1) · w1 + (k − 1) · w2 = 1
wi, s ≥ 0

The solution isw1 = w2 = 1/(2k − 2) with s(K3,Wk) = s = (2k − 3)/(2k − 2).

In some cases, it may be hard to determine the distance betweenH andM or N .
If we know thatH is homomorphically sandwiched betweenM andN so thatM →
H → N , then we can provide an upper bound on the distance ofH to M or N by using
the distance betweenM andN . The following result can readily be proved from the
definition ofs:

Lemma 7. LetM → H → N . Then,s(M,H) ≥ s(M,N) ands(H,N) ≥ s(M,N).

3 Approximability of MAX H-COL

Let A be an approximation algorithm for MAX H -COL. Our method basically allows
us to measure how wellA performs on other problems MAX H ′-COL. In this section,
we will apply the method to various algorithms and various graphs. We do two things
for each kind of graph under consideration: compare the performance of our method
with that of some existing, leading, approximation algorithm and investigate how close
to optimality we can get. Letv(G), e(G) denote the number of vertices and edges inG,
respectively. Our main algorithmic tools will be the following:



Theorem 8. mc2 can be approximated withinαGW ≈ 0.878567 [16] and mck can be
approximated withinαk ∼ 1− 1

k + 2 ln k
k2 [15]. Let H be a graph. There is an absolute

constantc > 0 such thatmcH can be approximated within1 − t(H)
d2 · (1 − c

d2 log d )
whered = v(H) andt(H) = d2 − 2 · e(H) [19].

Here, the relation∼ indicates two expressions whose ratio tends to1 ask → ∞. We
note that de Klerk et al. [9] have presented the sharpest known bounds onαk for small
values ofk; for instance,α3 ≥ 0.836008. We will compare the performance of Hås-
tad’s algorithm on MAX H -COL with the performance of the algorithms formc2 and
mck in Theorem 8 analysed using Lemma 3 and estimates of the distanced. For this
purpose, we introduce two functions,FJk andHå, such that, ifH is a graph,FJk(H)
denotes the best bound on the approximation guarantee when Frieze and Jerrum’s algo-
rithm for MAX k-CUT is applied to the problemmcH , while Hå(H) is the guarantee
when Håstad’s algorithm is used to approximatemcH . We note that the comparison is
not entirely fair since Håstad’s algorithm was probably not designed with the goal of
providing optimal results—the goal was to beat random assignments. However, it is the
currently best algorithm, with known bounds, that can approximate MAX H -COL for
arbitraryH ∈ G. This is in contrast with the algorithms of Raghavendra [30].

To be able to investigate the eventual near-optimality of our approximation method
we will rely on the Unique Games Conjecture by Khot [23]. Thus, we assume hence-
forth that UGC is true, which gives us the following inapproximability results:

Theorem 9 (Khot et al. [24]). For everyε > 0, it is NP-hard to approximatemc2

within αGW + ε. It is NP-hard to approximatemck within 1− 1
k + 2 ln k

k2 + O( ln ln k
k2 ).

3.1 Sparse Graphs

In this section, we investigate the performance of our method on graphs which have
relatively few edges, and we see that thegirth of the graphs plays a central role. The
girth of a graph is the length of a shortest cycle contained in the graph. Similarly, the
odd girth of a graph gives the length of a shortest odd cycle in the graph.

Before we proceed we need some facts about cycle graphs. Note that the odd cycles
form a chain in the latticeCS betweenK2 andC3 = K3 in the following way:K2 →
· · · → C2i+1 → C2i−1 → · · · → C3 = K3. Note thatC2k+1 6→ K2 andC2k+1 6→
C2m+1. However, after removing one edge fromC2k+1, the remaining subgraph is
isomorphic to the pathP2k+1 which in turn is embeddable in bothK2 andC2m+1.
SinceC2k+1 is edge-transitive, Lemma 5 gives us the following result:

Lemma 10. Let0 < k < m be odd integers. Then,s(K2, Ck) = s(Cm, Ck) = k−1
k .

Proposition 11. Letk ≥ 3 be odd. Then,FJ2(Ck) ≥ k−1
k · αGW and Hå(Ck) = 2

k +
c

k2 log k −
2c

k3 log k . For anyε > 0, mcCk
cannot be approximated withink

k−1 ·αGW + ε.

Proof. From Lemma 10 we see thats(K2, Ck) = k−1
k which implies (using Lemma 3)

thatFJ2(Ck) ≥ k−1
k ·αGW . Furthermore,mc2 cannot be approximated withinαGW +

ε′ for any ε′ > 0. From the second part of Lemma 3, we get thatmcCk
cannot be

approximated within k
k−1 · (αGW + ε′) for anyε′. With ε′ = ε · k−1

k the result follows.
Finally, the bound onHå(Ck) can be obtained by noting thate(Ck) = k. ut



Håstad’s algorithm does not perform particularly well on sparse graphs; this is reflected
by its performance on cycle graphsCk where the approximation guarantee tends to zero
whenk → ∞. We will see that this trend is apparent for all graph types studied in this
section. Using results of Lai & Liu [25] and Dutton & Brigham [10], we continue with
a result on a class of graphs with large girth:

Proposition 12. Let n > k ≥ 4. If H is a graph with odd girthg ≥ 2k + 1 and
minimum degree≥ 2n−1

2(k+1) , wheren = v(H), thenFJ2(H) ≥ 2k
2k+1 · αGW andmcH

cannot be approximated within2k+1
2k · αGW + ε for anyε > 0. Asymptotically, Hå(H)

is bounded by c
n2 log n + 2(ng/(g−1))3

n4n1/(g−1) − 2ng/(g−1)n1/(g−1)c
n4 log n .

Stronger results are possible if we restrict ourselves to planar graphs: Borodin et al. [7]
have proved that ifH is a planar graph with girth at least20k−2

3 , then H is (2 +
1
k )-colourable, i.e. there exists a homomorphism fromH to C2k+1. By applying our
method, the following can be proved:

Proposition 13. LetH be a planar graph with girth at leastg = 20k−2
3 . If v(H) = n,

thenFJ2(H) ≥ 2k
2k+1 · αGW and Hå(H) ≤ 6

n −
12
n2 + c

n2 log n −
6c

n3 log n + 12c
n4 log n .

mcH cannot be approximated within2k+1
2k · αGW + ε for anyε > 0.

Proposition 13 can be further strengthened and extended in different ways: one is to
consider a result by Dvořák et al. [11]. They have proved that every planar graphH
of odd-girth at least 9 is homomorphic to the Petersen graphP . The Petersen graph is
edge-transitive and it is known (cf. [3]) that the bipartite density ofP is 4/5 or, in other
words,s(K2, P ) = 4/5. Consequently,mcH can be approximated within45 · αGW but
not within 4

5 · αGW + ε for any ε > 0. This is better than Proposition 13 for planar
graphs with girth strictly less than 13. Another way of extending Proposition 13 is to
consider graphs embeddable on higher-genus surfaces. For instance, the lemma is true
for graphs embeddable on the projective plane, and it is also true for graphs of girth
strictly greater than20k−2

3 whenever the graphs are embeddable on the torus or Klein
bottle. These bounds are direct consequences of results in Borodin et al. [7].

We conclude the section by looking at a class of graphs that have small girth. Let
0 < β < 1 be the approximation threshold formc3, i.e.mc3 is approximable withinβ
but not withinβ + ε for anyε > 0. Currently, we know thatα3 ≤ 0.836008 ≤ β ≤ 102

103
[9, 21]. The wheel graphs from Section 2.3 are homomorphically equivalent toK3 for
oddk and we conclude (by Lemma 3) thatmcWk

has the same approximability proper-
ties asmc3 in this case. For evenk ≥ 6, the following result says thatFJ3(Wk) → α3

whenk →∞, andHå(Wk) tends to 0.

Proposition 14. For k ≥ 6 and even,FJ3(Wk) ≥ α3 · 2k−3
2k−2 butmcWk

is not approx-

imable withinβ · 2k−2
2k−3 . Hå(Wk) = 4

k −
4
k2 + c

k2 log k −
4c

k3 log k + 4c
k4 log k .

3.2 Dense and Random Graphs

We will now studydensegraphs, i.e. graphsH containingΘ(v(H)2) edges. For a
graphH on n vertices, we obviously haveH → Kn. Let ω(G) denote the size of the



largest clique inG andχ(G) denote the chromatic number ofG. If we assume that
ω(H) ≥ r, then we also haveKr → H. Thus, if we determines(Kr,Kn), then we
can use Lemma 7 to boundFJn(H). According to Turán [35], there exists a family of
graphsT (n, r) such thatv(T (n, r)) = n, e(T (n, r)) = b

(
1− 1

r

)
· n2

2 c, ω(T (n, r)) =
χ(T (n, r)) = r, and ifG is a graph such thate(G) > e(T (v(G), r)), thenω(G) > r.

Lemma 15. Let r andn be positive integers. Then,s(Kr,Kn) = e(T (n, r))/e(Kn).

Proposition 16. Let v(H) = n and pickr ∈ N, σ ∈ R such that
⌊(

1− 1
r

)
· n2

2

⌋
≤

σ · n2 = e(H) ≤ n(n−1)
2 . Then,FJn(H) ≥ αn · s(Kr,Kn) ∼ 1 − 1

r −
1
n + 2 ln n

n(n−1)

and Hå(H) = 2σ + (1−2σ)c
n2 log n .

Note that whenr andn grow, FJn(H) tends to1. This means that, asymptotically,
we cannot do much better. If we compare the expression forFJn(H) with the inap-
proximability bound formcn (Theorem 9), we see that all we could hope for is a faster
convergence towards1. Asσ satisfies

(
1− 1

r

)
· 1

2 ≤ σ ≤
(
1− 1

n

)
· 1

2 , we conclude that
Hå(H) also tends to1 asr andn grow. To get a better grip on howHå(H) behaves we
look at two extreme cases.

For a maximalσ =
(
1− 1

r

)
· 12 , Hå(H) becomes1− 1

n + c
n3 log n . On the other hand,

this guarantee, for a minimalσ =
(
1− 1

r

)
· 1

2 is 1 − 1
r + c

rn2 log n . At the same time,
it is easy to see that Frieze and Jerrum’s algorithm makes these points approximable
within αn (since, in this case,H ≡ Kn) andαr (since Turán’s theorem tells us that
H → Kr holds in this case), respectively. Our conclusion is that Frieze and Jerrum’s
and Håstad’s algorithms perform almost equally well on these graphs asymptotically.

Another way to study dense graphs is via random graphs. LetG(n, p) denote the
random graph onn vertices in which every edge is chosen randomly and independently
with probabilityp = p(n). We say thatG(n, p) has a propertyA asymptotically almost
surely(a.a.s.) if the probability it satisfiesA tends to1 asn tends to infinity. Here, we let
p = c for some0 < c < 1. For G ∈ G(n, p) it is well known that a.a.s.ω(G) assumes
one of at most two values around2 ln n

ln(1/p) [5, 29]. It is also known that, almost surely

χ(G) ∼ n
2 ln(np) ln

(
1

1−p

)
, asnp → ∞ [4, 28]. Let us say thatχ(G) is concentrated

in width s if there existsu = u(n, p) such that a.a.s.u ≤ χ(G) ≤ u + s. Alon and
Krivelevich [2] have shown that for every constantδ > 0, if p = n−1/2−δ thenχ(G) is
concentrated in widths = 1. That is, almost surely, the chromatic number takes one of
two values.

Proposition 17. LetH ∈ G(n, p). Whennp →∞, FJm(H) ∼ 1− 2
m + 2 ln m

m2 + 1
m2 −

2 ln m
m3 , wherem = ω(H). Hå(H) = p− p

n + (1− p) · c
n2 log n + pc

n3 log n .

We see that, in the limiting case,Hå(H) tends top, while FJm(H) tends to1. Again,
this means that, for large enough graphs, we cannot do much better. With a better anal-
ysis, one could possibly reach a faster convergence rate forFJm(H).

It is interesting to look at what happens for graphsH ∈ G(n, p) wherenp does
not tend to∞ whenn → ∞. We have the following result by Erdős and Rényi [14]:
let c be a positive constant andp = c

n . If c < 1, then a.a.s. no component inG(n, p)



contains more than one cycle, and no component has more thanln n
c−1−ln c vertices. Now

we see that ifnp → ε whenn → ∞ and0 < ε < 1, thenG(n, p) almost surely
consists of components with at most one cycle. Thus, each component resembles a
cycle where, possibly, trees are attached to certain cycle vertices, and each component
is homomorphically equivalent to the cycle it contains. Since we know from Section 3.1
that Frieze and Jerrum’s algorithm performs better than Håstad’s algorithm on cycle
graphs, it follows that the same relationship holds in this part of theG(n, p) spectrum.

4 Conclusions and Open Problems

We have defined a metric on graphs that measures how well one graph can be embed-
ded in another. While not apparent from its definition, which involves taking infima
over the set of all edge-weighted graphs, we have shown that the metric can be com-
puted practically by using linear programming. Given a graphH and known approx-
imability properties for MAX H -COL, this metric allows us to deduce bounds on the
corresponding properties for graphs close toH. In other words, the metric measures
how well an algorithm for MAX H -COL works on problems MAX H ′-COL, for graphs
H ′ close toH, it also translates inapproximability results between these problems. In
principle, given a large enough set of graphs with known approximability results for
MAX H -COL, our method could be used to derive good bounds on the approxima-
bility of M AX H -COL for all graphs. If the known results were in fact tight and the
set of graphs dense inG≡ (in the topology induced byd), then we would have tight
results for all graphs. In this paper we have considered the graphs with known proper-
ties to be the complete graphs. We have shown that this set of graphs is sufficient for
achieving new bounds on several different classes of graphs, i.e. applying Frieze and
Jerrum’s algorithm to MAX H -COL gives comparable to or better results than when
applying Håstad’s MAX 2-CSPalgorithm for the classes of graphs we have considered.
One possible explanation for this is that the analysis of the MAX 2-CSPalgorithm only
aims to prove it better than a random solution on expectation, which may leave room
for strengthening of the approximation guarantee. At the same time, we are probably
overestimating the distance between the graphs. It is likely that both results can be im-
proved. This immediately suggests two clear directions of research. On the one hand,
we need approximability/inapproximability result pairs for MAX H -COL on a substan-
tially larger class of graphs. This can be seen considering for example MAX C5-COL.
The closest complete graph toC5 is K2, which gives us the inconsequential inapprox-
imability boundαGW · 5/4 > 1. On the other hand, we do not measure the actual
distance from each graph to the closest complete graph. Instead, we embed each graph
betweenK2 and a cycle or between its largest clique andKk, wherek is greater than
or equal to the chromatic number. In the first case, Erdős [13] has proved that for any
positive integersk andl there exists a graph of chromatic numberk and girth at leastl.
It is obvious that such graphs cannot be sandwiched betweenK2 and a cycle as was the
case of the graphs of high girth in Section 3.1. Additionally, there are obviously graphs
with an arbitrarily large gap between largest clique and chromatic number. A different
idea is thus required to deal with these graphs. In general, to apply our method more
precisely, we need a better understanding of the structure ofCS and how this interacts



with our metricd. Clearly, progress in either one of the directions will influence what
type of result to look for in the other direction. In light of this discussion, two interest-
ing candidates for research are the circular complete graphs and the Kneser graphs, see
for example [17]. Both of these classes generalise the complete graphs and have been
subject to substantial previous research. Partial results ford on 3-colourable circular
complete graphs have been obtained by Engström [12].

We conclude the paper by considering two other possible ways to extend our results.
Firstly, Kaporis et al. [22] have shown thatmc2 is approximable within.952 for any
given average degreed and asymptotically almost all random graphsG in G(n, m =⌊

d
2n

⌋
), whereG(n, m) is the probability space of random graphs onn vertices andm

edges selected uniformly at random. In a similar vein, Coja-Oghlan et al. [8] give an
algorithm that approximatesmck within 1 − O(1/

√
np) in expected polynomial time,

for graphs fromG(n, p). It would be interesting to know if these results could be carried
further, to other graphsG, so that better approximability bounds on MAX H -COL, for
H such thatG → H, could be achieved.

Secondly, the idea of defining a metric on a space of problems which relates their
approximability can be extended to more general cases. It should not prove too difficult
to generalise the framework introduced in this paper to MAX CSP over directed graphs
or even languages consisting of a single, finitary relation. How far can this generalisa-
tion be carried out? Could it provide any insight into the approximability of MAX CSP
on arbitrary constraint languages?
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