
Limits for Compact Representations of Plans

Christer Bäckström and Peter Jonsson
Department of Computer Science, Linköping University

SE-581 83 Linköping, Sweden
christer.backstrom@liu.se peter.jonsson@liu.se

Abstract

Most planning formalisms allow instances with shortest plans
of exponential length. While such instances are problem-
atic, they are usually unavoidable and can occur in practice.
There are several known cases of restricted planning prob-
lems where plans can be exponential but always have a com-
pact (ie. polynomial) representation, often using recursive
macros. Such compact representations are important since
exponential plans are difficult both to use and to understand.
We show that these results do not extend to the general case,
by proving a number of bounds for compact representations
of plans under various criteria, like efficient sequential or ran-
dom access of actions. Further, we show that it is unlikely
to get around this by reformulating planning into some other
problem. The results are discussed in the context of abstrac-
tion, macros and plan explanation.

1 Introduction
It is well known that many AI planning problems exhibit
problem instances where the shortest plans are of exponen-
tial length, measured in the size of the instance. The rea-
son is that instances in common planning formalisms are
actually compact descriptions of exponential state-transition
graphs. For instance, if we have n binary variables, the cor-
responding state space has 2n states. It is easy to define
planning instances where the shortest solutions must pass
every state. This paper analyses the possibility of working
with such instances efficiently, by compact representations
of plans, or otherwise. The results are also important for
plan explanations, in the sense of a planner that provides an
explanation for the plan it generates. Bidot et al. (2010) sug-
gests that it is important for planning systems (and other AI
systems) to be able to explain their plans and decisions to
the user, or else the user may not trust the system. Similarly,
Southwick (1991) writes:

There seems to be a general agreement amongst those
involved in KBS research that in order to be useful, a
system must be able to explain its reasoning to a user.

Although we will not consider any advanced explanation
methods, as they do, our results have implications for what
is possible to explain meaningfully.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The fact that plans may have exponential length has
haunted planning reasearch for many decades, and there are
many opinions about what it means and what to do about it.
One way out is to say that exponential solutions are unreal-
istic and never occur in practice. For instance, we usually do
not expect planning for a robot or an industrial plant to result
in an exponential plan. On the other hand, certain archetyp-
ical AI problems are puzzle-type problems, like Towers of
Hanoi. While such problems are not typical engineering
applications, they pose challenges to AI research. Towers
of Hanoi is not a difficult problem in principle—any com-
mon planner can solve it, if given enough time and memory.
However, solving the problem is perhaps not the most inter-
esting thing to do with it. While solutions for this problem
are exponential, they can always be described compactly as
recursive schemas. It would undoubtedly be a more intelli-
gent behaviour of a planner to generate such a schema than
to just list the sequence of necessary moves, and one may
think of such a schema as a higher-level explanation of the
plan. Clearly, the need for finding such structure in plans,
that make it possible to explain them simply and compactly,
increases with the size of the plans. In fact, in this case we
may not even be interested in executing the plan, but just
that the system can explain how the plan works.

This kind of puzzle-like problems is not restricted only
to artificial problems intended to test or demonstrate intelli-
gent behaviour. Subproblems of this kind occur also in many
other domains, but their small size might often make them
a minor problem. However, many technical systems today
are not large and slow mechanical systems, but extremely
fast hardware and/or software systems with a vast number
of state variables. They can execute very long sequences of
steps/instructions in short time. For such a system it can be
important to verify that it can reach a desired state or, con-
versely, that it cannot reach certain forbidden states. Such
problems are often solved by model checking techniques.
It is well known that there are close ties between planning
and model checking, and that model-checking traces can be
viewed as plans and vice versa (Edelkamp, Leue, and Visser
2007). The number of steps (or clock cycles) can be expo-
nential in the number of state variables, but an exponential-
size plan/trace is not of much use to an engineer—it is an al-
most impossible task to analyse and understand such a plan.
If the planning/verifying system could autonomously find

repetitive patterns, and even recursive repetitive patterns, in
the plan, then it would be considerably easier to understand
what happens and why. In fact, it may not be interesting to
execute the plan, even in a simulator, so a compact under-
standable explanation of the plan may be the actual goal.

Recursive schemas, as previously mentioned, correspond
to the concept of recursive macros, sometimes used in plan-
ning. For instance, Jonsson and Bäckström (1998) presented
a class of planning instances where deciding if a solution ex-
ists is a polynomial-time problem, but optimal solutions may
be of exponential size. Giménez and Jonsson (2008) showed
that plans for this class always have a polynomial-size rep-
resentation using recursive macros. Jonsson (2009) later
demonstrated similar results for other classes. Although
these particular classes of planning instances may not be of
much practical use, the principle of compressing the solution
using recursive macros is an interesting tool both for plan-
ning and explanation. This prompts the obvious question
whether exponential plans can always be compressed using
recursive macros (or any other method). We show that this is
unlikely, no matter what type of compact representation we
try to use (macro plans, finite automata or whatever). Fur-
thermore, the results are not only, or even primarily, about
representing very long plans, but implicitly also about struc-
ture in plans that scale exponentially even if short.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces basic notation and concepts. We then first
ask, in Section 3, whether all (optimal) plans for an instance
can have a compact (ie. polynomial size) representation?
We find that the answer is no; it is not possible, neither by
macros nor any other method. In Section 4 we restrict the
question to whether there exists at least one plan for each in-
stance having a compact representation? We show that such
representations do not generally exist if they must also sat-
isfy some useful access criterion. As a last resort we analyse,
in Section 5, whether we can get around the problem by re-
formulating planning to some other problem? Also this is
answered negatively. If we actually ask for a plan for the
original problem, then the problem is inherently intractable
also when using reformulation. If looking only at the deci-
sion problems, it seems not possible to make planning sim-
pler either, by reformulation. The paper ends with a three-
part discussion in Section 6. We first discuss the connections
between recursive macros, abstraction and causal graphs.
Then we discuss the implications of our results for plan ex-
planation, rather than planning. Finally, we discuss some re-
lated results in the literature for more expressive formalisms,
and also note that our results hold even for restricted cases,
such as propositional STRIPS with unary actions.

2 Preliminaries
Here we briefly define some concepts used in the paper.

2.1 STRIPS Planning
Although we consider planning in general terms, not re-
stricted to any particular planning language, all theorems
will be proven for propositional STRIPS or restricted vari-
ants thereof, in order to make the results strong. We assume

the reader to be familiar with STRIPS and just note that we
consider one of several equivalent variants of propositional
STRIPS (Bäckström 1995).
Definition 1. An atom is a binary variable and a literal is
either an atom x or its negation x (which has the opposite
value of x). An instance of the STRIPS planning problem
is a quadruple P = 〈V,A, I,G〉, where V is a set of atoms,
I,G ⊆ V are the initial and goal descriptions and A is a set
of actions. Each action in A is a tuple 〈pre,post〉, where pre
and post are sets of literals over V . For action definitions,
we use the notation name : pre ⇒ post, where name is
used to refer to the action. A plan is an action sequence that
solves the instance, ie. if executing the sequence, starting in
a state satisfying I , it ends up in a state satisfying G.

The following construction will be frequently used.
Construction 1. An n-bit binary counter can be encoded in
STRIPS by letting V = {x1, . . . , xn} and A have n actions
s.t. for all i, where 1 ≤ i ≤ n,

ai : xi, xi−1, . . . , x1 ⇒ xi, xi−1, . . . , x1.

2.2 Computational Complexity
First a note on notation, by |X| we mean the number of el-
ements of an object X and by ||X|| we mean its size, ie.
the number of bits of its representation. We will also make
heavy use of the 3SAT problem and advice-taking Turing
machines, and, thus, briefly recapitulate their definitions.
Definition 2. The 3SAT problem consists of instances on the
form C = {c1, . . . , cm} where each ci, for 1 ≤ i ≤ m, is
called a clause and is a set of exactly three literals over some
universe of binary variables. The instance C is satisfiable if
there exists some assignment of truth values to the variables
used in C s.t. at least one literal is true in each ci, for 1 ≤
i ≤ m, and it is otherwise unsatisfiable.

Deciding satisfiability for 3SAT is NP-complete, while
deciding unsatisfiability is coNP-complete.
Definition 3. An advice-taking Turing machine M has an
associated sequence a1, a2, a3, . . . of advice strings, a spe-
cial advice tape and an advice function a, from the natural
numbers to the advice sequence, s.t. a(n) = an. On input
x the advice tape is immediately loaded with a(||x||). After
that M continues in the normal way, except that it also has
access to the advice written on the advice tape.

If there exists a polynomial p s.t. ||a(n)|| ≤ p(n), for all
n > 0, then M is said to use polynomial advice. The com-
plexity class P/poly is the set of all decision problems that
can be solved on some advice-taking TM that runs in poly-
nomial time using polynomial advice. This can be extended
s.t., for instance, NP/poly is defined by TMs runnning in
non-deterministic polynomial time using polynomial advice.

Note that the advice depends only on the size of the input,
not its content, and need not even be computable.

3 Representing Arbitrary Plans Compactly
Knowing that exponential plans can sometimes be repre-
sented compactly, we might ask if all exponential plans have
such compact encodings. Consider the most simple compact

notation possible, an index number i for each plan for a par-
ticular instance. Since instances may have infinitely many
plans, due to cycles in the state-transition graph, we con-
sider optimal plans only.

Such an index could not be used instead of an actual
plan, but it could be a way to store exponential plans effi-
ciently. Consider two extreme cases. The first case is purely
theoretical—an oracle reads the planning instance and im-
mediately returns a huge data structure which we can index
to get the actual plan we want. The second case is possible
in practice—we store the planning instance together with
the plan index and the planning algorithm. Assuming that
the algorithm is deterministic and can enumerate all opti-
mal plans, we can always find the ith plan again, by using
the planning algorithm. While this is very inefficient and
may seem ridiculous at first sight, it could have practical use.
Suppose we frequently analyse systems having many expo-
nential plans and want to store these plans, or some of them,
for future reference. Also suppose we store some relevant
properties of the plans along with their indices, so we can
know which plans are interesting to retrieve in certain cases.
If many plans need to be stored, but very few of them need
ever be retrieved again, then the method described could pay
off in saved disk space, under the condition that the plan in-
dices are small compared to the actual plans.

Unfortunately, there is no guarantee that even such an in-
dex is much smaller than the plan itself—a polynomial num-
ber of bits may not be sufficient for the index.

Theorem 1. There are STRIPS instances where the number
of optimal plans requires an exponential number of bits to
be represented.

Proof. We first prove that there are n-variable STRIPS in-
stances having 2O(2n) unique optimal solutions. Consider
the n-bit binary counter in Construction 1, but add an extra
atom y and define two families of incrementing actions s.t.
for all i, where 1 ≤ i ≤ n,

ai : xi, xi−1, . . . , x1 ⇒ xi, xi−1, . . . , x1, y

bi : xi, xi−1, . . . , x1 ⇒ xi, xi−1, . . . , x1, y

This extra atom does not matter to the counter, but doubles
the state space Also note that the number of actions is lin-
ear in n, so the size of the whole instance is polynomial
in n. Clearly, all optimal plans counting from 0 to 2n − 1
are of length 2n − 1. However, there are 22n−1 such plans
achieving the goal (half of them resulting in y true). Since
an m-bit number can distinguish between at most 2m differ-
ent objects, a string of length ≥ 2n − 1 bits is necessary to
index the optimal plans for this instance.

Although the atom y is redundant in this particular ex-
ample the whole construction could be a part of a larger in-
stance, where y does have a purpose.

4 Representing one Plan Compactly
We now know that we cannot, in general, compress arbitrary
exponential plans to subexponential size. But what if we do
not get to choose ourselves which plan to use? The previous

result still leaves open the possibility that a small fraction of
solutions for a planning instance could have compact repre-
sentations. However, the planner (or an oracle or whatever)
would then have to choose for us which plan to present us
with a compact representation of. Suppose a planner could
actually do this, how would we make use of it? If we still
need the actual plan itself, we cannot avoid its exponential
size, so the interesting cases seem to be if we could at least
access useful information efficiently.

The term representation is used in a loose sense here, but
need not really be precisely defined. It suffices to note that
any representation needs both some kind of data structure
and some kind of access algorithm, with the extreme cases
being either a vector of data with the trivial access algorithm
or an algorithm that embeds all the data.

What could it mean to access a compact representation
efficiently? We will investigate two such criteria. The first
one is that we can efficiently retrieve the actions of the actual
plan sequentially. Efficient can here mean either polynomial
delay, ie. each action takes at most polynomial time in the
size of the instance to retrieve, or incremental polynomial
time, which is like polynomial delay but measured in the size
of the input and the size of the output generated so far, ie. we
get more time for each action at the end of the plan than in
the beginning. The second criterion is that any action in the
actual plan can be random accessed in polynomial time, in
the size of the instance.
Theorem 2. If there is an algorithm that for any solvable
STRIPS instance can either generate a plan sequentially in
incremental polynomial time or random access any action
in some plan in polynomial time, then P = NP.

(Proofs of Theorems 2 and 4 appear later in this section).
This is a very strong criterion, since we require one single
algorithm for all instances. A more relaxed variant is to ask
for a compact representation of some plan for each instance.
Definition 4. Let p, q be arbitrary polynomials, P an arbi-
trary solvable planning instance, ω a plan for P and ρ some
representation of ω, then

1) ρ is compact iff ||ρ|| ≤ p(||P||),
2) ρ is sequential-access iff it can retrieve all actions in ω

sequentially in incremental polynomial time and
3) ρ is random-access iff, given an arbitrary index i, 1 ≤

i ≤ |ω|, ρ can retrieve action i in ω in time ≤ q(||ρ||).
A representation ρ is a compact sequential-access repre-

sentation (CSAR) iff it satisfies conditions 1 and 2, and it is
a compact random-access representation (CRAR) iff it sat-
isfies conditions 1 and 3.

Note that this definition does not even assume that the
representations are computable, but only that they exist.
Theorem 3. If every solvable STRIPS instance P has at least
one plan ω with a corresponding CSAR ρ that can be verified
in polynomial time, then NP = PSPACE.

Proof. Deciding if a STRIPS instance has a plan can be done
by guessing a CSAR ρ for some such plan and then verify ρ
in polynomial time. It follows that NP = PSPACE since de-
ciding plan existence is PSPACE-complete for STRIPS (By-
lander 1994).

Theorem 4. If every solvable STRIPS instance P has at least
one plan ω with a corresponding CRAR ρ, then the polyno-
mial hierarchy collapses.

Theorems 2 and 3 also impliy the analogous results for
polynomial delay, since this is a stricter criterion than incre-
mental polynomial time. Also note that neither of the three
theorems above require that we ask for optimal plans.

4.1 Proof of Theorem 2
The proof first requires some additional theory.

Definition 5. For all n > 0, let Xn = {x1, . . . , xn} be
a standardized set of variables and let m(n) be the number
of possible 3-literal clauses over Xn. Let c1

n, c2
n, . . . , c

m(n)
n

be some systematic enumeration of these clauses and Cn

the set of them all. Each clause defines three literals s.t.
ci
n = {`1i , `2i , `3i }1. Further, let C0

n, C1
n, . . . , C2m(n)−1

n be
a systematic enumeration of all subsets of Cn, and let
Si

n = 〈Xn, Ci
n〉, for 0 ≤ i < 2m(n). Also define the

set En = {e1
n, e2

n, . . . , e
m(n)
n } of atoms and its subsets

Ei
n = {ej

n | cj
n ∈ Ci

n}, for 0 ≤ i < 2m(n).

The sequence S0
n, S1

n, . . . , S2m(n)−1
n is a systematic enu-

meration of all possible 3SAT instances over n variables,
and hence equivalent to the usual definition of 3SAT2. Since
m(n) < 8n3, the enumerations of Cn and En can be cho-
sen to be polynomial-time computable, and we assume some
such enumerations have been fixed from now on. We also
note that a set Ei

n uniquely identifies the clause set Ci
n.

3SAT instances can now be encoded as STRIPS instances
as follows.

Construction 2. Given an n > 0, construct the STRIPS in-
stance Pi

n = 〈Vn, An, Ei
n, {goal}〉 s.t. Vn = Xn ∪ En ∪

{cts, ctu, goal, inc} ∪ {v0, . . . , vm(n)} and An has the ac-
tions specified in Table 1.

Lemma 1. For each 3SAT instance Si
n, a corresponding

solvable STRIPS instance Pi
n, according to Construction 2,

can be constructed in polynomial time and has the property:
if Si

n is satisfiable, then every plan for Pi
n starts with action

acs and otherwise every plan starts with action acu.

Proof. Solvability and polynomial-time construction is triv-
ial. To prove the property, we first note that the initial state
contains only atoms from En. As previously noted, each
subset Ei

n of En uniquely identifies the 3SAT instance Si
n,

by telling which clauses in Cn are ’enabled’ in Si
n.

The actions are partitioned into three groups, the first con-
taing actions acs and acu, which set atoms cts and ctu, and
the other two blocks consist of actions requiring either of
these atoms to be true. Obviously any plan must start with
either acs or acu, and since they block each other, only one

1We sometimes omit index n, when it can be assumed obvious
from context, and thus write `k

i rather than and `k
n,i.

2Technically speaking, this is a redundant encoding of 3SAT,
since it allows instances that specify more variables than are used
in the clauses. This is harmless, however, since all non-redundant
instances remain.

acs : ctu ⇒ cts
acu : cts ⇒ ctu

aseti : cts, v0 ⇒ xi

avt0 : cts ⇒ v0

avt0j : cts, ej
n, vj−1, ⇒ vj

avtkj : cts, ej
n, vj−1, `

k
j ⇒ vj

ags : cts, vm(n) ⇒ goal

avfj : ctu, inc, ej
n, `1j , `

2
j , `

3
j ⇒ inc

aixi : ctu, inc, xi, xi−1, . . . , x1 ⇒ inc, xi, xi−1, . . . , x1

agu : ctu, inc, x1, . . . , xn ⇒ goal

Index ranges: 1 ≤ i ≤ n, 1 ≤ j ≤ m(n) and 1 ≤ k ≤ 3.

Table 1: Actions for Construction 2.

of them can appear in a plan, making cts and ctu mutu-
ally exclusive. Hence, in the first action the plan commits
to verifying either satisfiability (starting with action acs) or
unsatisfiability (starting with action acu).

Wlog. we assume the plan is optimal. If it verifies satisfi-
ability, it must be

〈acs, aseti1 , . . . , asetih︸ ︷︷ ︸
assign

, avt0, avtk1
1 , . . . , avt

km(n)

m(n)︸ ︷︷ ︸
verify

, ags〉.

The assign block has h ≤ n actions that set a satisfying as-
signment for x1, . . . , xn. The verify block consists of one
action a = avt

kj

j for each clause cj
n. If cj

n is enabled (ej
n

true), then 1 ≤ kj ≤ 3 and a verifies that `k
j in cj

n is true for
the assignment. Otherwise, if cj

n is disabled, then kj = 0, so
a = avt0j which skips over cj

n without verifying anything.
The planner has thus chosen: 1) to verify that Si

n is satisfi-
able, 2) a satisfying assignment and 3) one literal for each
clause as a witness that it is true under this assignment.

If the plan instead verifies unsatisfiability, then it must be
〈acu, b0, a1, b1, a2, b2, . . . , ah, bh, agu〉, which, apart from
acu and agu, can be viewed as two interleaved sequences
α = 〈a1, . . . , ah〉 = 〈aix1, aix2, aix1, aix3, . . . , aix1〉 and
β = 〈b0, b1, . . . , bh〉. Sequence α is a binary counter se-
quence, counting from 0 to h = 2n−1, thus enumerating all
2n possible truth assignments to x1, . . . , xn. Sequence β has
one action bi for each truth assignment, where bi = avfj for
some enabled clause cj

n that is false for the current assign-
ment. Hence, the plan verifies that none of all possible truth
assignments can satisfy Si

n, providing a witness for each.
The plan can be of the first form only if Si

n is satisfiable
and on the second form only if Si

n is unsatisfiable, so the first
action in the plan can be used to tell which is the case.

This can be understood by viewing the planner as a theo-
rem prover, outputting first a theorem (the first action in the
plan) and then a proof of the theorem (the rest of the plan).

Proof. (of Theorem 2) Suppose there is an algorithm with
either sequential or random access as stated in the precondi-
tion of the theorem. We can then solve any 3SAT instance

abi : svi, sva, sia, sii, sti ⇒ svi, t

aba : svi, sia ⇒ sva, f, v0, v1, . . . , vm(n)

avtkj : sva, vj , vj−1, e
j
n, `k

j ⇒ vj

avfj : sva, vj , vj−1, e
j
n, `1j , `

2
j , `

3
j ⇒ vj , f

avsj : sva, vj , vj−1, e
j
n ⇒ vj

aaf : sva, vm(n), f ⇒ sva, sia

aat : sva, vm(n), f ⇒ sva, sia, t

aixi : sia, xi, xi−1, . . . , x1 ⇒ sia, xi, xi−1, . . . , x1

arx : sia, xn, . . . , x1 ⇒ sia, svi, sti, xn, . . . , x1

ais : sti, t ⇒ sti, sii
aiu : sti, t ⇒ sti, sii

aiij : sii, ej
n, ej−1

n , . . . , e1 ⇒ sii, ej
n, ej−1

n , . . . , e1
n

ari : sii, e
m(n)
n , . . . , e1

n ⇒ goal

Index ranges: 1 ≤ i ≤ n, 1 ≤ j ≤ m(n) and 1 ≤ k ≤ 3.

Table 2: Actions for Construction 3.

Si
n in polynomial time by asking the algorithm for the first

action of some plan for the corresponding instance Pi
n and

tell from this action whether Si
n is satisfiable. However, this

implies that P = NP.

4.2 Proof of Theorem 4
This proof also requires additional theory.
Construction 3. Given an n > 0, construct a STRIPS in-
stance Pn = 〈Vn, An, ∅, {goal}〉 s.t. Vn = Xn ∪ En ∪
{v0, . . . , vm(n)}∪{svi, sva, sia, sii, sti, t, f, goal} and An

has the actions specified in Table 2.

Lemma 2. For all n > 0, instance Pn according to Con-
struction 3 can be constructed in time polynomial in n and
has the properties: 1) Pn always has at least one solution
and 2) there exist constants an and bn s.t. for every i, where
0 ≤ i < 2m(n), we can tell from position bni + an in any
plan for Pn if Si

n is satisfiable or not.

Proof. (Sketch) Construction 2 allows plans of two types,
either choosing an assignment and then verifying all clauses
by chaining, or enumerating all assignments and demon-
strate one false clause for each. Construction 3 mixes these
methods. Any plan enumerates all assignments, and for
each, it walks through all clauses by chaining. For each en-
abled clause it demonstrates either a true literal or that no
literal is true, and it skips over disabled clauses. Atoms f
and t keep track of whether all clauses were true for some
assignment, in which case the instance is satisfiable.

An extra counter, using e1
n, . . . , e

m(n)
n , enumerates all

possible subsets Ei
n of En, thus implicitly enumerating all

3SAT instances S0
n, . . . , S2m(n)−1

n . This counter constitutes
an ’outer loop’, so for each Ei

n, all possible assignments for
x1, . . . , xn are tested as described above.

Setting an = 2n(m(n)+3)+2 and bn = an +1 satisfies
the claim, since the action at position bni + an is ais if Si

n
is satisfiable and aiu if it is unsatisfiable.

Proof. (of Theorem 4) Suppose all solvable STRIPS in-
stances P have at least one plan with a corresponding CRAR.
For each n > 0 and instance Pn according to Construction 3,
choose one such plan ωn and some corresponding CRAR ρn.

Construct an advice-taking TM M , with input Ii
n =

〈Pn, i〉, for n > 0, 0 ≤ i < 2m(n) and i in binary using
m(n) bits. Clearly, ||Ii

n|| is strictly increasing and depends
only on n, so let sn = ||Ii

n|| (for arbitrary i). Define the
advice function a s.t. a(sn) = ρn. Since M can simulate
whatever algorithm is used to access ρn, it follows from the
assumptions that M can find action bni+an in ωn in polyno-
mial time and return yes if this action is ais, and otherwise
no.

Given an arbitrary Si
n, construct Ii

n in polynomial time
and then run M on this instance. By construction, M an-
swers yes iff Si

n is satisfiable. However, M runs in polyno-
mial time using polynomial advice and solves satisfiability
for 3SAT. Hence, NP ⊆ P/poly, which is impossible un-
less the polynomial hierarchy collapses at level 2 (Karp and
Lipton 1980, Theorem 6.1).

5 Problem Reformulation
Having now concluded that there seems to be little hope that
plans can be compactly represented in general, we turn to
the idea of problem reformulation, to see if that can be of
any help. While this may seem out of place in this context,
it is, to the contrary, a quite logical step to take. So far, we
have only analysed planning problems and plans, and that
is what the results hold for. It is not obvious that, or when,
the results hold also when planning instances are solved by
reformulating them to instances of some other problem, so it
is hypothetically possible that we could get around the prob-
lems with this approach. However, to say something useful
and relevant about this, it is not sufficient to look only at
naive approaches, such as polynomial reductions, so we will
investigate a stronger criterion.

The basic idea of reformulation is to transform a plan-
ning instance to another instance, either another planning in-
stance or an instance of some other problem. For reformula-
tion to be useful, the solution for the new instance must be of
use to solve the original instance, and something should be
gained. Often, reformulation is used with the intention that
the overall process is faster than solving the original instance
directly. Common variants are to reformulate planning into
SAT, CSP, model checking or another planning problem.
Reformulation to SAT was first suggested by Kautz and Sel-
man (1992) and is still a popular approach to planning. Long
et al. (2002) discuss reformulation for planning in general
and Edelkamp et al. (2007) discuss the connections between
model checking and planning.

The reformulation process can be viewed as follows:

P R(P)

ω ρ
?
1

-2

?
3

� 4

A planning instance P has a solution ω that we can find us-
ing ordinary planning, indicated by arrow 1. Solving P via

reformulation instead follows the path 2,3,4. First P is refor-
mulated into a new instance R(P) (of some problem), then
this instance is solved resulting in a solution ρ and, finally, ρ
is transformed back into a solution ω for P.

Obviously, reformulation cannot help us when plans must
be exponential. Even if steps 2 and 3 were polynomial and
ρ of polynomial size, it would necessarily take exponential
time to transform ρ into ω, because ω must be exponen-
tial. That is, the problem is inherently intractable, whichever
method we use to solve it. However, reformulation could
potentially speed things up, if ρ could somehow be used di-
rectly as a solution for the original problem. While such
cases might perhaps occur, it is not the general case.

A special case, though, is if we consider the decision
problem, rather than the generation problem, ie. we are not
asking for a plan, but whether a plan exists or not. In this
case we can use the solution for R(P) directly, since deci-
sion problems have only two possible answers, yes and no.
We may thus escape the inherent intractability. Since no ex-
ponential solution is generated, reformulation could poten-
tially be more efficient. We know that the decision problem
for STRIPS is PSPACE-complete in the general case (Bylan-
der 1994, Theorem 3.1). If the reformulated problem were
easier to solve, then it could be beneficial to first reformulate
P to R(P) and ask if that instance has a solution or not. Then
it would be possible to check if there is a solution at all be-
fore embarking on generating a possibly exponentially long
plan. (Cf. the case of 3S (Jonsson and Bäckström 1998),
where plans may be of exponential size but it is always pos-
sible to decide in polynomial time if there is a plan.) It thus
seems like the case of reformulating decision problems is the
most interesting one to look at, and if that does not give any
improvement, then there can hardly be any improvement for
plan generation via reformulation either.

Let S denote the decision problem for STRIPS. The fol-
lowing two results are trivial, but illustrative.

Theorem 5. a) There exists a decision problem X and a
function R s.t. it holds for all P ∈ S that R(P) ∈ X and
that P and R(P) have the same answer. b) If there is some
complexity class C, some decision problem X ∈ C and a
polynomial-time computable function R s.t. it holds for all
P ∈ S that R(P) ∈ X and that P and R(P) have the same
answer, then PSPACE ⊆ C.

Proof. a) Let X = S and R the identity function. b) Imme-
diate, since R is a polynomial reduction from S to X .

In both cases we reformulate a PSPACE-complete problem
into a PSPACE-complete problem, which is not very interest-
ing. If we are to prove anything better, we must obviously
look for an X and an R with more useful restrictions.

It is important to note that when reformulating planning
into some NP-complete problem, for instance SAT, this does
not magically make planning NP-complete. The reason that
STRIPS planning is PSPACE-complete is that it allows expo-
nential solutions. As soon as we restrict the solutions to be
bounded by some fixed polynomial, planning belongs in NP.
Furthermore, encodings of planning instances in SAT, typ-
ically use atoms to encode what actions appear at each po-

sition in the plan, ie. an exponential number of extra atoms
are required in the general case. Hence, either our problem
was already in NP, or we have to blow up the instance ex-
ponentially when reformulating to SAT. In the latter case,
the complexity results are no longer comparable. Also note,
that if we deliberately restrict ourselves to ask only if there
is a plan of a certain length or shorter, then we are actually
solving a restricted version of the optimization problem, and
also in this case, planning itself would be no harder. In fact,
it seems most unlikely that planning in general could be re-
formulated into a problem in NP.

Definition 6. Given a STRIPS instance P = 〈V,A, I,G〉,
define the alternative notation P = 〈Φ,Ψ〉, where Φ =
〈V,A〉 and Ψ = 〈I,G〉. Let X be some decision problem. A
reformulation of S into X is a pair 〈R, r〉 of functions that
maps every instance P = 〈Φ,Ψ〉 ∈ S to a corresponding
instance X = R(r(Φ),Ψ) ∈ X s.t. P and X have the same
answer. 〈R, r〉 is a polynomial reformulation iff there are
also some fixed polynomials p, q s.t. 1) ||r(Φ)|| ≤ p(||Φ||)
and 2) R is computable in time ≤ q(||r(Φ)||+ ||Ψ||).

We thus consider a reformulation that involves two func-
tions, R and r. Function r is the main reformulation func-
tion, intended to reformulate the difficult part of the instance.
We do not even require this function to be computable, only
that it exists. Function R is then used to transform the initial
and goal descriptions into something similar that the new in-
stance can use, and combine this with the result delivered by
r into a proper instance of X .

Theorem 6. There is no polynomial reformulation of S to
some X ∈ NP, unless the polynomial hierarchy collapses.

Proof. Suppose 〈R, r〉 is such a reformulation. For arbitrary
n > 0, let Φu

n = 〈Vn, An〉 as in Construction 2, but without
action acs, and let Ψi

n = 〈Ei
n, {goal}〉, for 0 ≤ i < 2m(n).

It follows trivially from the proof of Lemma 1 that instance
Pi

n = 〈Φu
n,Ψi

n〉 has a solution iff Si
n is unsatisfiable (note

that the ’SAT part’ of the instance is ’disarmed’).
Construct a non-deterministic advice-taking TM M with

input Ii
n = 〈Φu

n, i〉, for all n > 0 and 0 ≤ i < 2m(n),
representing i in binary using m(n) bits. Clearly, ||Ii

n|| is
strictly increasing and depends only on n, so let sn = ||Ii

n||
(for arbitrary i). Define the advice function a s.t. a(sn) =
r(Φu

n). Let M first compute Ψi
n from Ii

n, and then compute
Xi

n = R(a(sn),Ψi
n) = R(r(Φu

n),Ψi
n), both in polynomial

time since a(sn) is given for free as advice. By assumption,
Xi

n ∈ X and has answer yes iff Pi
n has a solution. Also by

assumption, X ∈ NP, so M can solve Xi
n by guessing a so-

lution and verifying it in polynomial time. Hence, deciding
if Pi

n has a solution is in NP/poly.
For arbitrary Si

n, compute Ii
n in polynomial time. M an-

swers yes for Ii
n iff Si

n is unsatisfiable, but unsatisfiability
for 3SAT is coNP-complete, so coNP ⊆ NP/poly. This
is impossible unless the polynomial hierarchy collapses to
level 3 (Yap 1983, Lemma 7 + Theorem 2).

This result can be pushed arbitrarily high up in the poly-
nomial hierarchy, thus making it unlikely that planning
could be reformulated to anything simpler at all.

Corollary 1. There is no polynomial reformulation 〈R, r〉
of S to some decision problem X ∈ Σp

k, for k > 1, unless
the polynomial hierarchy collapses to level k + 2.

Proof. (Sketch) Construction 2 encodes both existential
quantification (choosing a truth assignment in the sat part)
and universal quantification (enumerating all truth assign-
ments in the unsat part). Hence, it is straightforward to mod-
ify it to an analogous construction for QBF formulae with k
alternations. Given that, the rest of the proof is analogous to
the proof of Theorem 6, but M must use an oracle for Σp

k−1.
The same argument leads to Πp

k ⊆ Σp
k/poly, which is im-

possible unless the polynomial hierarchy collapses to level
k + 2 (Yap 1983, Lemma 7 + Theorem 2).

6 Discussion
The discussion section is divided into three parts. First we
discuss the use of macros for storing plans compactly, and
the related concepts of state abstraction and causal graphs.
We then discuss what implications the results in this paper
may have on the problem of explaning plans. We conclude
with a discussion on some other topics of the paper.

6.1 Macros, Abstraction and Causal Graphs
A macro is a sequence of two or more actions, treated as
one single action corresponding to such a subplan. Recur-
sive macros may also contain other macros, not only actions,
making them a powerful tool. Restricted planning prob-
lems have been demonstrated in the literature where optimal
plans may be of exponential size, but can always be repre-
sented in polynomial size using recursive macros (Giménez
and Jonsson 2008; Jonsson 2009). The concept of macros is
closely related to state abstraction, as Knoblock noted (1993,
pp. 110–111). Indeed, the refinement process in the hierar-
chical state abstraction process can result in a small initial
abstract plan being successively refined into exponentially
larger plans (Bäckström and Jonsson 1995).

Consider a counter that counts in Gray code, ie. succes-
sive numbers have Hamming distance 1. An n-bit Gray
code counter can be encoded in STRIPS as follows: let
V = {x1, . . . , xn} and let A contain the 2n actions

si : xi, xi−1, xi−2 . . . , x1 ⇒ xi

ri : xi, xi−1, xi−2 . . . , x1 ⇒ xi

We note that in this case, all actions are unary, ie. have only
one atom each in their postconditions. A plan for a 5-bit
Gray counter counting from 0 to 16 looks like

〈s1, s2, r1︸ ︷︷ ︸
ms

2

, s3, s1, r2, r1︸ ︷︷ ︸
mr

2︸ ︷︷ ︸
ms

3

, s4, s1, s2, r1︸ ︷︷ ︸
ms

2

, r3, s1, r2, r1︸ ︷︷ ︸
mr

2︸ ︷︷ ︸
mr

3︸ ︷︷ ︸
ms

4

, s5〉,

where we have indicated the following macro choice:

ms
2 = (s1, s2, r1), mr

2 = (s1, r2, r1),
ms

3 = (ms
2, s3,m

r
2), mr

3 = (ms
2, r3,m

r
2),

ms
4 = (ms

3, s4,m
r
3).

The plan can thus be compactly represented as 〈ms
4, s5〉,

where the macro ms
4 can be thought of as the root of a macro

tree which expands recursively into a macro-free sequence.
In general, plans for such Gray counters can be represented
by linear-size macro plans by adding a linear number of
macros. The same holds also for binary counters, so both
are examples of planning instances where plans can be ex-
ponential but always have a compact representation. How-
ever, we also know from the results in this paper that, in the
general case, it is not possible to find a compact represen-
tation of exponential plans, by macros or whatever method.
It would thus be interesting to find useful criteria for when
compact representations exist and not. This problem is out
of the scope of this paper, so let us just make a few observa-
tions.

Knoblock (1993) defined the concept of a causal graph for
a planning instance, which he used as a guidance for find-
ing abstraction hierarchies. This concept has later been used
also to define classes of tractable planning problems, with-
out considering abstraction (see Chen and Giménez (2010)
for a survey). We refer the reader to Knoblock for defini-
tions, but simply put, the causal graph induces an order on
the atoms based on the action definitions, such that if x ≤ y
and not y ≤ x, then x does not depend on y and can be put
on a lower abstraction level than y.

If applying this concept to examples in this paper, we
find that instances according to Construction 2 have causal
graphs where everything is related to everything, making the
whole graph one big component. That is, it would not be
possible to form any abstraction hierarchies for it based on
causal graphs. On the other hand, the Gray counter has a
nice linear causal graph, with no cycles at all, making it triv-
ial to solve efficiently with abstraction. Unfortunately, the
binary counter, that also allows for compact representations
of its plans, does not have such a nice causal graph. It has
one big component, just as Construction 2. This is not sur-
prising, however, since causal graphs can be cycle free only
if all actions are unary. We conclude that the causal graph
is not a sufficient, or even necessarily useful, criterion for
when plans have compact representations.

Jonsson (2009) has, however, defined a refined version of
the causal graph. We refer to Jonsson for details, and just
note that if using such refined causal graphs, then both the
Gray counter and the binary counter have nice linear graphs,
while Construction 2 still has a one-component graph. Per-
haps such refined causal graphs could provide some infor-
mation on when plans can be compressed and not?

6.2 Implications for Plan Explanation
For plan explanation, the results are not necessarily as bad
as for planning. Consider for instance a plan for an instance
of Construction 2. In the case where the 3SAT instance is
unsatisfiable, the whole plan but a few actions consists of an
alternating sequence on the form 〈a, b, a, b, a, b, . . .〉, where
a denotes either of the actions aix1, . . . , aixn and b denotes
either of the actions avf1, . . . , avfm. The first group are
actions that together implement an increment function, and
thus all serve the same purpose. Similarly, the second group
consists of actions that all serve the purpose of verifying that

some clause is false. For the purpose of explanation, it seems
useful to replace the actual actions with such abstract expla-
nations of their functions. This abstract sequence seems eas-
ier to understand, and it also allows using recursive macros
to compress it, which might further enhance its explaining
power. However, in this particular case, it would probably
be even more useful if the planner could present the whole
sequence as a for loop, or similar.

This essentially boils down to partitioning the set of ac-
tions into equivalence classes such that each such class con-
sist of actions that can be meaningfully seen as implement-
ing the same concept. It seems both interesting and impor-
tant to investigate how and when one can partition the set of
actions into equivalence classes useful for such abstractions.

In the context of reformulation, we briefly discussed the
possibility whether the solution for the reformulated prob-
lem may occasionally be possible to use as a solution for the
original problem. While that seems an exception, at best,
for planning it might perhaps be a more fruitful approach
for plan explanation in some cases.

6.3 Variants of the Results
Liberatore (2005) has also studied the problem of represent-
ing plans compactly, and has presented results similar to our
theorems in Section 4. However, he assumes a very pow-
erful circuit-based planning formalism, so it is not obvious
to what extent his results carry over to less expressive for-
malisms. Our theorems thus improve upon his results, show-
ing that such representations are unlikely to exist even for
simple languages like propositional STRIPS.

The concept of unary actions, that is, actions that have
only one atom each in their postconditions, has been stud-
ied in the literature. While it may seem to be a very limit-
ing restriction, it has been shown that restricted cases with
unary actions are sufficient for practical use in on-board con-
trollers for spacecrafts (Brafman and Domshlak 2003). For
the general case, Bylander (1994) has shown that planning
remains PSPACE-complete under this restriction. While only
implicit in his proofs, it follows that all planning instances
must be possible to transform into equivalent instances hav-
ing only unary actions. Bäckström (1992, Proof of Theo-
rem 6.6) demonstrates a constructive such transformation,
replacing each non-unary action with several actions, that
are defined so they must always be executed together (thus
resembling a macro). All theorems in this paper still hold
if making such a transformation on the planning instances
used, but we sometimes have to add dummy atoms to make
all actions have the same number of postconditions. It seems
reasonable that our proofs could be analogously modified to
hold also for many other restriction of STRIPS.

Despite the theoretical limits we prove, there are both the-
oretical and practical cases in the literature where abstrac-
tion, recursive macros and reformulation have proven suc-
cessful. Why and when such methods work seems an im-
portant and interesting question for further study.

References
Bäckström, C., and Jonsson, P. 1995. Planning with ab-
straction hierarchies can be exponentially less efficient. In

Proc. 14th Int’l Joint Conf. Artif. Intell. (IJCAI’95), Mon-
treal, Canada, 1599–1605.
Bäckström, C. 1992. Computational Complexity of Rea-
soning about Plans. PhD diss., Linköping University, Lin-
köping, Sweden.
Bäckström, C. 1995. Expressive equivalence of planning
formalisms. Artif. Intell. 76(1-2):17–34.
Bidot, J.; Biundo, S.; Heinroth, T.; Minker, W.; Noth-
durft, F.; and Schattenberg, B. 2010. Verbal plan explan-
ations for hybrid planning. In 24th MKWI related PuK-
workshop: Planung/Scheduling und Konfigurieren/Entwurf-
en (PuK’10), 2309–2320.
Brafman, R. I., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators. J. Artif. Intell. Res.
18:315–349.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artif. Intell. 69(1-2):165–204.
Chen, H., and Giménez, O. 2010. Causal graphs and struc-
turally restricted planning. J. Comput. Syst. Sci. 76(7):579–
592.
Edelkamp, S.; Leue, S.; and Visser, W. 2007. Summary of
Dagstuhl seminar 06172 on directed model checking. In Di-
rected Model Checking, number 06172 in Dagstuhl Seminar
Proceedings. Dagstuhl, Germany.
Giménez, O., and Jonsson, A. 2008. The complexity of
planning problems with simple causal graphs. J. Artif. Intell.
Res. 31:319–351.
Jonsson, P., and Bäckström, C. 1998. Tractable plan exis-
tence does not imply tractable plan generation. Ann. Math.
Artif. Intell. 22(3-4):281–296.
Jonsson, A. 2009. The role of macros in tractable planning.
J. Artif. Intell. Res. 36:471–511.
Karp, R. M., and Lipton, R. J. 1980. Some connections be-
tween nonuniform and uniform complexity classes. In Proc.
12th ACM Symp. Theory Comput. (STOC’80), Los Angeles,
CA, USA, 302–309.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In Proc. 10th European Conf. Artif. Intell. (ECAI’92),
Vienna, Austria, 359–363.
Knoblock, C. A. 1993. Generating Abstraction Hierarchies:
An Automated Approach to Reducing Search in Planning.
Norwell, MA: Kluwer Academic Publishers.
Liberatore, P. 2005. Complexity issues in finding succinct
solutions of PSPACE-complete problems. ArXiv publication
abs/cs/0503043.
Long, D.; Fox, M.; and Hamdi, M. 2002. Reformulation in
planning. In 5th Int’l Symp. Abstraction, Reformulation and
Approximation (SARA’02), Kananaskis, AB, Canada, vol-
ume 2371 of LNCS, 18–32. Springer.
Southwick, R. W. 1991. Explaining reasoning: an overview
of explanation in knowledge-based systems. Knowledge
Eng. Rev. 6:1–19.
Yap, C.-K. 1983. Some consequences of non-uniform con-
ditions on uniform classes. Theor. Comput. Sci. 26:287–300.

