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Abstract

Temporal reasoning problems arise in many areas
of AI, including planning, natural language under-
standing, and reasoning about physical systems.
The computational complexity of continuous-time
temporal constraint reasoning is fairly well under-
stood. There are, however, many different cases
where discrete time must be considered; various
scheduling problems and reasoning about sampled
physical systems are two examples. Here, the com-
plexity of temporal reasoning is not as well-studied
nor as well-understood. In order to get a better un-
derstanding, we consider the powerful Horn DLR
formalism adapted for discrete time and study its
computational complexity. We show that the full
formalism is NP-hard and identify several maximal
tractable subclasses. We also ‘lift’ the maximality
results to obtain hardness results for other families
of constraints. Finally, we discuss how the results
and techniques presented in this paper can be used
for studying even more expressive classes of tem-
poral constraints.

1 Introduction
Reasoning about time is ubiquitous in artificial intelligence
and many different branches of computer science. Note-
worthy examples include planning, diagnosis, and temporal
databases. For a general overview of temporal reasoning, see,
for instance, the handbook[Fisheret al., 2005]. The tempo-
ral constraint satisfaction problem is very well-studied and
there has lately been substantial progress in understanding
the complexity of this problem. Bodirsky and Kára[2010]
have presented a complete classification of the temporal con-
straint problem for relations that are first-order definablein
the structure(Q;<). This result subsumes much of the previ-
ous work onqualitative(that is, the case where we cannot re-
fer to individual time points in the underlying time structure)
temporal constraints such as Allen’s algebra. There are no
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such unifying result for metric temporal constraints, but many
partial results are known, cf.[Jonsson and Bäckström, 1998;
Krokhin et al., 2004].

The situation is very different if we turn our attention to
discretetemporal constraints where the set of time points is
some subset of the set of integersZ. There are some scattered
complexity results (cf.[Bettini et al., 1998; Meiri, 1996]) but
a coherent picture is lacking. This is unsatisfactory sincerea-
soning about discrete time is an important part of AI: let us
just mention temporal logics, plan generation, and discrete
time Markov chains as three concrete examples. Reasoning
about discrete time is also inevitable in many ‘industrial’set-
tings: for systems that are repeatedly sampled (for monitoring
or other purposes), we are implicitly forced to assume that the
underlying model of time is discrete. Our goal with this paper
is to initiate a systematic study of temporal constraint satis-
faction under the assumption that time is discrete instead of
continuous. The focus will be on the computational complex-
ity of such problems; more precisely, we aim at identifying
restricted classes of constraints such that the corresponding
constraint satisfaction problem can be solved in polynomial
time. Obtaining a full classification of hard and easy cases is
of course highly desirable — it gives us a very powerful tool
for studying the complexity of problems that can be mod-
elled within the language. Since temporal constraint reason-
ing appears as a subproblem in many different types of auto-
mated reasoning, we expect such results to be useful in many
other contexts, too. For instance, note that discrete semilinear
relations (to be defined later on) have been used intensively
for a long time in, for example, formal verification[Boujjani
and Habermehl, 1996], distributed computing[Angluin et al.,
2007], and automata therory[Parikh, 1966],

In order to introduce temporal constraint reasoning for-
mally, we first define the general constraint satisfaction prob-
lem.

Definition 1 Let Γ be a set of finitary relations over some
setD of values. The constraint satisfaction problem overΓ
(CSP(Γ)) is defined as follows:

Instance:A setV of variables and a setC of constraint appli-
cationsR(v1, . . . , vk) wherek is the arity ofR, v1, . . . , vk ∈
V andR ∈ Γ.
Question: Is there a total functionf : V → D such that
(f(v1), . . . , f(vk)) ∈ R for each constraintR(v1, . . . , vk) in



C?

The setΓ is referred to as theconstraint language. Given
a setD, we let Γ|D denoteΓ restricted toD, i.e. Γ|D =
{R∩Dn | R ∈ Γ andR has arityn}. We sometimes slightly
abuse notation to avoid unnecessary clutter. For instance,we
may say ‘the relationx = y + z’ instead of ‘the relation
{(x, y, z) ∈ Z3 | x = y + z}.’ A constraint satisfaction
problem CSP(Γ) is globally tractableif CSP(Γ) is in P and
locally tractableif CSP(Γ′) is in P for every finite setΓ′ ⊆ Γ.
Similarly, CSP(Γ) is globally NP-hardif CSP(Γ) is NP-hard
andlocally NP-hardif CSP(Γ′) is NP-hard for some finite set
Γ′ ⊆ Γ.

The separation of local and global tractability/NP-hardness
is motivated by the following result: let〈Γ〉 (theclosureorco-
cloneof Γ) denote all relations that arepp-definablein Γ. A
relationR is pp-definable inΓ if it can be defined by a first-
order formula overΓ without using disjunction and negation,
and with only existential quantification.

Theorem 2 [Jeavons, 1998] For every finiteΘ ⊆ 〈Γ〉,
CSP(Θ) is polynomial-time reducible to CSP(Γ). Further-
more, if R ∈ 〈Γ〉, then CSP(Γ ∪ {R}) and CSP(Γ) are
polynomial-time equivalent problems.

This implies, for instance, that if CSP(Γ) is globally
tractable, then CSP(〈Γ〉) is locally tractable.

Let us now turn our attention to temporal constraint prob-
lems. We letD ⊆ R denote a set oftime points. Let the set
SD contain all relations{(x1, . . . , xn) ∈ Dn | C1∧. . .∧Ck}
where each clauseCi denotes a disjunction(p1r1c1 ∨ . . . ∨
pmrmcm). Here,cj is an integer,rj ∈ {<,≤,=, 6=,≥, >}
andpj(x1, . . . , xn) is a linear polynomial (i.e. the degree of
p equals one) with integer coefficients. We adopt a simple
representation of relations inSD: every relationR in SD is
represented by its defining formula where each coefficient is
written in binary. LetDD ⊆ SD contain the relations that
are defined by a single clause. LetHD ⊆ DD contain the
relations that are defined by a single clause that contains at
most one relation that is not of the typep(x̄) 6= c. The names
S, D, andH are chosen to reflect the names given to the cor-
responding relations in the literature: the relations inSD are
calledsemilinear relations, the relations inDD are calleddis-
junctive linear relations(DLRs), and the relations inHD are
calledHorn DLRs. DLRs and Horn DLRs were introduced in
[Jonsson and Bäckström, 1998] but only for continuous time
structures (in fact, only for the setR of real numbers).

Before we continue, we need some NP-hardness re-
sults. For distinct a, b ∈ Z, define Ta,b =
{(a, a, b), (a, b, a), (b, a, a)}. Clearly, CSP({Ta,b}) is NP-
hard problems since it corresponds to 1-IN-3-SAT restricted
to clauses without negated literals.

Theorem 3 CSP(HR) is globally tractable while CSP(HZ)
is locally NP-hard. Furthermore, CSP(DD) and CSP(SD)
are locally NP-hard whenD ∈ {Z,R}.

Proof: Global tractability of CSP(HR) and local
NP-hardness of CSP(DR) and CSP(SR) follows from
[Jonsson and Bäckström, 1998]. For the remaining
cases, it is sufficient to prove local NP-hardness of
CSP(HZ). Simply note that we can pp-defineT0,1 in HZ by

T0,1(x, y, z) ≡ x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 0 ∧ x+ y + z = 1 and
apply Theorem 2. �

Since CSP(HZ) is locally NP-hard, it makes sense to start
looking for tractable fragments withinHZ, and this is a nat-
ural first step in a bottom-up approach to classifying the
complexity of CSP(DZ) and CSP(SZ). Also note that the
modelling power (in continuous time) ofHR is quite high;
many tractable fragments described in the literature are within
HR [Jonsson and Bäckström, 1998]. This indicates thatHZ

may be interesting from a modelling point of view, too.
Due to the NP-hardness of CSP(HZ), we will concentrate

on identifying tractable fragments and study theirmaximality
in the forthcoming three sections. Given constraint languages
Γ ⊆ Θ, we say thatΓ is maximally tractablein Θ if CSP(Γ)
is globally tractable and CSP(Γ∪{R}) is locally NP-hard for
everyR ∈ Θ\Γ. Maximality can obviously be defined in dif-
ferent ways with respect to local and global properties but this
definition is sufficent for our purposes. We consider problems
where solutions can be ‘scaled’ in Section 2, problems con-
nected to linear equations in Section 3, and so-calledk-valid
constraints in Section 4. In the proofs, we demonstrate how
concepts and ideas likereduced formulas[Bodirsky et al.,
2010a] and theindependence property[Cohenet al., 2000]
can be used for studying discrete-time temporal constraints.
We also show how some of the maximality results can be gen-
eralised to hardness results for larger classes of constraints.
We conclude the paper with a brief discussion concerning the
results and future research directions.

2 Scalable constraints
One way to start looking for tractable fragments ofHZ is to
ask under which circumstances a solution to an instanceI of
CSP(HR) implies a solution to the corresponding instanceI|Z
of CSP(HZ). We begin with the following lemma.

Lemma 4 Let Γ be a constraint language overR such that
the following holds.

1. Every satisfiable instance of CSP(Γ) is satisfied by some
rational point.

2. For eachR ∈ Γ, it holds that ifx̄ = (x1, x2, . . . , xk) ∈
R, then (ax1, ax2, . . . , axk) ∈ R for all a ∈ {y ∈
R | y ≥ 1} \ X whereX is a (possibly empty) finite
set. The setX may depend on bothR andx̄.

3. CSP(Γ) is globally (or locally) tractable.

Then, the problem CSP(Γ|Z) is also globally (or locally)
tractable.

Proof: Let I be an arbitrary satisfiable instance of CSP(Γ)
with a rational solutionx̄ = (x1/y1, . . . , xk/yk) where
x1, . . . , xk ∈ Z andy1, . . . , yk ∈ Z+ \{0}. Letn =

∏k

i=1 yi

and note thatn ≥ 1.
For an arbitrary constraintR in I, we know that it is sat-

isfied byax̄ for everya ∈ {y ∈ R | y ≥ 1} \ X whereX
is finite. For every constraintCi in I, let Xi denote the set
of ‘exception’ points, and lett =

∑m

i=1 |Xi| (wherem is the
number of constraints inI).



It follows that there is at least onea in the set
{y ∈ Z | 1 ≤ y ≤ t + 1} such thatanx̄ satisfiesI.
The vectoranx̄ is integral due to choice ofn which con-
cludes the proof. �

Given a real vector̄x = (x1, . . . , xk), let ||x̄|| denote its
Euclidean norm, i.e.

√

x2
1 + . . .+ x2

k. Recall that||x̄+ ȳ|| ≤
||x̄||+ ||ȳ|| and||αx̄|| = |α| · ||x̄|| for all real vectors̄x, ȳ and
arbitraryα ∈ R.

Theorem 5 If I is a satisfiable instance of CSP(SR), thenI
is satisfied by at least one rational point.

Proof: Let r̄ be a satisfying real point. AssumeI contains
the constraints{C0, . . . , Cn} where eachCi is a disjunction
li1 ∨ li2 ∨ . . . ∨ lik. There is (at least) onelij from each
Ci that is satisfied bȳr. Sincea ≤ b ≡ a < b ∨ a = b,
a ≥ b ≡ a > b ∨ a = b, anda 6= b ≡ a < b ∨ a > b, we can
without loss of generality assume that eitherlij ≡ p(x̄) < c
or lij ≡ p(x̄) = c. It is clearly sufficient to find a rational
satisfying point,̄q, that satisfies the formulal0j0 ∧ . . . ∧ lnjn

.
First consider the literals of the typep(x̄) < c. The sets of

satisfying points to these kinds of relations are clearly open.
Hence, there is some rational numberδ > 0 so that all points
x̄ for which ||r̄ − x̄|| < δ satisfy these relations.

The remaining literals are of the formp(x̄) = c and we
can view them as a linear equation systemAx̄ = b̄. Ev-
ery satisfiable system of linear equations has a rational so-
lution and a vector̄x is a solution if and only if it can be
expressed as̄x = c̄ + x1v̄1 + . . . + xkv̄k whereAv̄i = 0̄,
Ac̄ = b̄, c̄, v̄1, . . . , v̄k are rational vectors, andx1, . . . , xk are
real numbers.

Since r̄ satisfiesAr̄ = b̄, it can be expressed as
r̄ = c̄ + r1v̄1 + . . . rk v̄k, with ri ∈ R. The rational
numbers are dense in the real numbers so we can find
rational numbersqi satisfying |ri − qi| < δe for all i and
for any δe > 0. Let q̄ = c̄ + q1v̄1 + . . . + qkv̄k and we
find that||r̄ − q̄|| = ||(r1 − q1)v̄1 + . . . + (rk − qk)v̄k|| ≤
|r1−q1|·||v̄1||+. . .+|rk−qk|·||v̄k|| < δe·(||v̄1||+. . .+||v̄k||).
By choosing q̄ so that δe gets sufficiently small, we
can achieve||r̄ − q̄|| < δ. It follows that q̄ satisfies
l0j0 ∧ l1j1 ∧ . . . ∧ lnjn

. �

Thus,HR satisfies requirement 1) and 3) of Lemma 4. We
let ΛZ ⊆ HZ contain the relations that satisfy requirement 2)
and have thus proved the following.

Theorem 6 The problem, CSP(ΛZ) is tractable.

We now verify thatΛZ is maximally tractable inHZ. We
need the concept ofreduced relations.

Definition 7 [Bodirskyet al., 2010a] Let θ(x1, . . . , xn) be a
formula in conjunctive normal form. We callθ reduced if it is
not logically equivalent to any of its subformulas, i.e. there is
no formulaψ obtained fromθ by deleting literals of clauses
such thatθ(a) = ψ(a) for all a ∈ Zn.

An important property of reduced formulas is that ifR is
defined by a reduced formulal1 ∨ . . . ∨ ln, then for eachli,
we can find a vector̄x that satisfiesli but notlj for all j 6= i.

Theorem 8 CSP(ΛZ) is maximally tractable in CSP(HZ).

Proof: LetR be an arbitrary relation (of arityn) in HZ that
does not satisfy requirement 2). Hence, there exists a realn-
vectorȳ and an infinite setS ⊆ R such that̄y satisfiesR but
for everys ∈ S, sȳ does not satisfyR. Assume without loss
of generality thatR is defined by a reduced formulal1(x̄) ∨
... ∨ lk(x̄) wherel1, . . . , lk are linear expressions.

Suppose that someli ≡ p(x̄) 6= c wherec 6= 0. If p(ȳ) 6=
c, thenp(kȳ) 6= c for all k ∈ R+ except at most one, and
the same holds forR(kȳ). If p(ȳ) = c, thenp(kȳ) 6= c
for all k ∈ R+ except at most one, and the same holds for
R(kȳ). This leads to a contradiction and we can assume that
if a literal li ≡ p(x̄) 6= c, thenc = 0.

If ȳ satisfies some literalli ≡ p(x̄) 6= 0, thenp(kȳ) 6= 0 for
all k ∈ R except at most one, and the same holds forR(kȳ).
Thus,ȳ only satisfies a literallj ≡ q(x̄)ra wherer ∈ {<,≤
,=,≥, >}. By observing thatp(x̄) < a ⇔ p(x̄) ≤ a − 1,
we may additionally assume thatr ∈ {≤,=,≥}. Assume
without loss of generality thata ≥ 0; if a < 0, then consider
the equivalent inequality obtained by multiplying with−1. If
r = (≥), thenkȳ satisfiesR for all k ≥ 1. Thus,r ∈ {≤,=}.
If p(ȳ) = 0, thenkȳ satisfiesR for all k ∈ R so we can
safely assume thata > 0. We conclude thatR is on one of the
following forms: (1)p(x̄) = a∨q1(x̄) 6= 0∨ . . .∨qn(x̄) 6= 0
or (2)p(x̄) ≤ a ∨ q1 6= 0 ∨ . . . ∨ qn(x̄) 6= 0 wherea > 0.

Assume first thatR is of type (1). InΛZ ∪ {R}, we can
pp-define the following relation:

S(z) =∃x̄.(p(x̄) = a ∨ q1(x̄) 6= 0 ∨ . . . ∨ qn(x̄) 6= 0)∧

q1(x̄) = 0 ∧ . . . ∧ qn(x̄) = 0 ∧ p(x̄) = z.

The definition ofR is reduced so there exists a vectorx̄
such thatp(x̄) = a andqi(x̄) = 0, 1 ≤ i ≤ n. Thus,S(z)
holds if and only ifz = a; in other words, we have defined
a non-zero constant. This implies that we can pp-define the
constant 1 sincez = 1 ⇔ ∃x1, ..., xa, y.z = x1∧S(y)∧x1 ≥
1 ∧ . . . ∧ xa ≥ 1 ∧ y = x1 + . . .+ xa. It is now straightfor-
ward to pp-define the relationT0,1 and we have proved that
CSP(Γ ∪ {R}) is locally NP-hard.

Assume instead thatR is of type (2). Analogously to
the construction ofS, we can construct a non-empty unary
relationS′ that is upper bounded bya. Thus,S′ contains
a largest elementb and the constantb can be pp-defined
sincez = b⇔ S(z)∧z ≥ b. The proof procedes as above.�

The maximality proof also gives a characterisation of the
relationsR ∈ HZ that do not satisfy requirement 2): given
a relationR, reduce it and check whether it is of one of the
two ‘bad’ types identified in the proof. The maximality proof
can also be generalised to a hardness result for constraint lan-
guages that are not necessarily subsets ofHZ.

Corollary 9 Let Γ be a constraint language overZ such that
the relationsx = y + z andx ≥ 1 are in〈Γ〉. Then,Γ ∪ {R}
is NP-hard wheneverR ∈ HZ \ ΛZ.

Proof: (Sketch)By Theorem 2, we may without loss
of generality assume thatx = y + z and x ≥ 1 are
members ofΓ. By inspecting the proof of Theorem 8,
we see that CSP({R} ∪ X) is NP-hard whereX is a
finite set of homogeneous equations and (possibly) a
relation p(x̄) ≥ a with a > 0. Every homogeneous



equation can be pp-defined with the aid ofx = y + z.
Every relationx ≥ a with a > 0 can be pp-defined since
x ≥ a⇔ ∃y1, . . . , ya.x = y1+. . .+ya∧y1 ≥ 1∧...∧ya ≥ 1
and the equationx = y1 + . . . + ya is homoge-
neous. Thus, p(x̄) ≥ a can be pp-defined since
p(x̄) ≥ a⇔ ∃y.y = p(x̄) ∧ y ≥ a. �

3 Linear equations
In the previous section, we found a large maximally tractable
subsetΛZ of HZ. Clearly, ΛZ does not contain any linear
equationsp(x̄) = a with a 6= 0. We will now look at frag-
ments ofHZ that contain such equations. Similar fragments
have been considered before: it is known that finding inte-
ger solutions to linear equation systems is a tractable prob-
lem[Kannan and Bachem, 1979]. A related problem has also
been discussed in[Bodirskyet al., 2010b, Section 6] but they
restrict themselves to homogeneous equations. We will now
work ‘backwards’ compared to the previous section; instead
of starting withHZ and remove relations, we will extend the
set of linear equations.

The algorithmic part will use results from[Cohenet al.,
2000] and a property known as1-independence. We note that
the original definitions by Cohen et al. are slightly more gen-
eral than those presented here; they do not restrict themselves
to constraint languages. By the notation CSP∆≤k(Γ∪∆), we
mean the CSP problem with constraints overΓ∪∆ but where
the number of constraints over∆ is less than or equal tok.

Definition 10 For two constraint languagesΓ and∆, we say
that∆ is k-independent with respect toΓ if the following con-
dition holds: any instanceI of CSP(Γ∪∆) has a solution pro-
vided every subinstance ofI belonging to CSP∆≤k(Γ ∪ ∆)
has a solution.

1-independence gives us a way to handle disjunctions effi-
ciently. For constraint languagesΓ and∆, let the constraint
languageΓ×

∨∆∗ contain all relationsR(x̄) ≡ c(x̄) ∨ d1(x̄) ∨
. . . ∨ dn(x̄), n ≥ 0, wherec(x̄) is a constraint overΓ and
d1(x̄), . . . , dn(x̄) are constraints over∆.

Theorem 11 [Cohenet al., 2000] Let Γ and∆ be constraint
languages. If CSP∆≤1(Γ ∪ ∆) is globally tractable, and∆ is
1-independent with respect toΓ, then CSP(Γ×

∨∆∗) is globally
tractable.

Let Γ ⊆ HZ denote all relationsp(x̄) = b and∆ ⊆ HZ

denote all relationsp(x̄) 6= b. We will now prove that
CSP(Γ×

∨∆∗) is globally tractable (Theorem 12) and that it is
a maximal tractable fragment ofHZ (Theorem 13). We will
also extend the maximality result in a way similar to Corol-
lary 9; the omitted proof is analogous.

Theorem 12 CSP(Γ×
∨∆∗) is globally tractable.

Proof: We first prove that∆ is 1-independent with respect
to Γ. Let IΓ be an instance of CSP(Γ) andI∆ an instance of
∆. Assume thatIΓ ∪{di} is satisfiable for eachdi ∈ I∆ with
di ≡ pi(x̄) 6= ci.

We will perform an induction on the size ofI∆. If |I∆| =
1, then satisfiability follows from the assumptions. Assume

that |I∆| = d, d > 1, and that the statement holds for all
I ′∆ ⊂ I∆. We show thatIΓ ∪ I∆ is satisfiable, too.

Let Ii
∆ = I∆ \ {pi(x̄) 6= ci} and consider the instance

IΓ ∪ Ii
∆ for eachi. LetDi, 1 ≤ i ≤ d, be the set of satisfying

points to these subproblems. The setsD1, . . . , Dd are non-
empty due to the induction hypothesis. Arbitrarily choose an
element̄xi ∈ Di for eachi. If x̄i ∈ Dj for anyj 6= i, then
it is a solution to the entire instance and we are done. So we
can assume thatpi(x̄i) = ci for all i.

Take two points̄x1 andx̄2 and definēxk = kx̄1 + (1 −
k)x̄2 for k ∈ Z. Observe that̄xk satisfiesIΓ for all k. We
will now show that there is ak such thatx̄k ∈ Di for all
i; by the previous comment, it is sufficient to consider the
disequations.

For i = 1 we note thatp1(x̄
k) 6= c1 ⇔ kp1(x̄1) + (1 −

k)p1(x̄2) 6= c1 ⇔ (1 − k)(p1(x̄2) − c1) 6= 0 and since
p(x̄2) 6= c1 this is true for allk 6= 1. In the same way, we see
thatx̄k ∈ D2 whenk 6= 0.

For i 6= 1, 2, we note that ifpi(x̄1) = d1 6= ci and
pi(x̄2) = d2 6= ci, thenpi(x̄

k) = k(d1−d2)+d2. If d1 = d2,
then the disequation is always true; otherwise, there is at most
one value fork such thatpi(x̄

k) = ci. Hence, each disequa-
tion is not satisfied bȳxk for at most one value ofk, and we
conclude that there is somek′ such that̄xk′

∈ Di for all i. It
follows thatIΓ ∪ I∆ is satisfiable for any size ofI∆.

By Theorem 11, it is now sufficient to prove that CSP∆≤1(Γ∪
∆) is tractable. LetI be an instance of CSP∆≤1(Γ ∪ ∆).
We view I as an equation systemAx̄ = b̄ together with a
disequationp(x̄) 6= c. We start by finding a satisfying integer
point x̄ toAx̄ = b̄; this is tractable by[Kannan and Bachem,
1979]. If no such point exists, thenI is not satisfiable. If the
found solution̄x also satisfiesp(x̄) 6= c, then we have found a
solution toI, too. Otherwise, note that if̄y 6= x̄ andAȳ = b̄,
thenA(ȳ − x̄) = b̄ − b̄ = 0̄. By letting x̄h = ȳ − x̄, we see
that any satisfying point̄z can be written as̄z = x̄ + x̄h for
somex̄h such thatAx̄h = 0̄. Sincep(x̄) = c, we note that
p(z̄) 6= c ⇔ p(x̄) + p(x̄h) 6= c ⇔ p(x̄h) 6= 0. From this we
conclude that we can find a solution toI if and only if we can
find a pointx̄h such thatAx̄h = 0̄ andp(x̄h) 6= 0.

Now we solve the systemAx̄ = 0̄ ∧ p(x̄) = 1 over the
rational numbers. If this system has no solution, then thereis
no point x̄h since some rational multiple of̄xh would have
been a solution. If we find a solution̄xq to this system, then
there exists an integerk 6= 0 such thatkx̄q is an integer
point satisfyingAkx̄q = 0̄ andp(kx̄q) = k 6= 0. We see
that we can let̄xh = kx̄q and conclude thatI is satisfi-
able. As this only requires solving two linear systems, one
over the integers and one over the rational numbers, this is
a polynomial-time algorithm for solving CSP∆≤1(Γ∪∆). �

Theorem 13 Γ×

∨∆∗ is maximally tractable inHZ.

Proof: The relations inHZ \ (Γ×

∨∆∗) are of the formR ≡
p(x̄) ≤ c ∨

∨n

i=1(qi(x̄) 6= ai). Note that we do not have to
consider relations with< separately since those are always
equivalent to a relation using≤. We assume without loss of
generality that the definition ofR is reduced.



We will now show how to pp-defineTz0,z1
for somez0 6=

z1 in Z. By reasoning as in the proof of Theorem 8, we see
that we can pp-define a unary relationS(z) that is a subset
of {z ∈ Z | z ≤ c} by S(z) ≡ ∃x̄.(z = p(x̄)) ∧ (p(x̄) ≤
c ∨

∨n

i=1(qi(x̄) 6= ai)) ∧ (
∧n

i=1(qi(x̄) = ai)).
We first prove that|S| > 1. If |S| = 0, then(

∧n

i=1(qi(x̄) =
ai)) ⇒ p(x̄) > c but since the definition ofR is reduced, we
know that there exists an integral vectorx̄ satisfyingp(x̄) ≤
c. If |S| = 1, then

∧n

i=1(qi(x̄) = ai)) ⇒ p(x̄) = d for
somed ≤ c but thenR = Zn and we have a contradiction
sinceR ∈ Γ×

∨∆∗. To see this, let̄x be an arbitrary vector in
Zn. If it satisfies one of the disequations, then we are done.
Otherwise,p(x̄) = d and it clearly satisfies the inequality
p(x̄) ≤ c. Consequently,|S| > 1.

Definez0 = max{z | S(z)} andz1 = max{z | S(z), z 6=
z0} and note that these constants are pp-definable inΓ∪{R}.
Now, Tz0,z1

(x, y, z) ≡ S(x) ∧ S(y) ∧ S(z) ∧ x + y + z =
(2z0 + z1) and NP-hardness follows from Theorem 2. �

Corollary 14 LetΓ be a constraint language overZ such that
the relationsx = y + z andx = 1 are in〈Γ〉. Then,Γ ∪ {R}
is NP-hard wheneverR ∈ HZ \ (Γ×

∨∆∗).

4 Constraints that arek-valid
We will now demonstrate that there are an infinite number of
distinct maximally tractable fragments withinHZ. This fact
makes complexity classifications harder since a description of
the tractable cases must be more elaborate than just listingthe
maximally tractable fragments.

A relationR is said to bek-valid, k ∈ Z, if (k, . . . , k) ∈ R.
A constraint languageΓ is k-valid if every relation inΓ is k-
valid. LetΓk, k ∈ Z, denote the set ofk-valid relations inHZ

together with the empty relation. Clearly,Γi 6= Γj whenever
i 6= j; Γi contains the relation(x = i) but does not con-
tain (x = j) and vice versa. Solving instances of CSP(Γk)
is obviously trivial (simply check whether some constraintis
based on the empty relation) but such classes have to be con-
sidered, too, in order to obtain full complexity classifications.
The maximality proof fork-valid constraints differs slightly
from the proofs in the preceeding sections. There, we man-
aged to construct explicit NP-hard constraint languages. This
proof is slightly non-constructive since we obtain a sequence
of constraint languages and prove that (at least) one of them
is NP-hard. However, we do not know which one.

For distincta, b, c ∈ Z, defineT ′
a,b,c(x, y) ≡ {a, b, c}2 \

{(a, a), (b, b), (c, c)}. CSP({T ′
a,b,c}) is an NP-hard problem

since it corresponds to the 3-COLOURABILITY problem.

Theorem 15 For eachk ∈ Z, Γk is a maximally tractable
language inHZ.

Proof: The problem CSP(Γk) is obviously globally
tractable. To prove maximality, arbitrarily choose a relation
R ∈ HZ that is notk-valid. Letm denote the arity ofR and
consider the following relations:

U1(z) ≡ ∃y, x2, . . . , xm.R(z, x2, x3, . . . , xm) ∧ y = k

U2(z) ≡ ∃y, x3, . . . , xm.R(y, z, x3, x4, . . . , xm)∧ y = k

...

Um(z) ≡ ∃y.R(y, y, y, . . . , y, z) ∧ y = k

Um+1(z) ≡ ∃y.R(y, y, y, . . . , y, y) ∧ y = k

The relationsU1, . . . , Um+1 are pp-definable inΓk ∪ {R}
since the relationy = k is k-valid. We claim that there exists
an index1 ≤ j ≤ m such thatUj 6= ∅ andk 6∈ Uj . Since
R is not k-valid, it follows thatUm+1 = ∅ so there exists
a smallest index2 ≤ j′ ≤ m + 1 such thatUj′ = ∅. Let
j = j′ − 1. Clearly,Uj is non-empty and ifk ∈ Uj , then
Uj+1 = Uj′ is non-empty which leads to a contradiction.

We now letca(z) ≡ (z = a) and pp-define the relation
ck′(z) for somek′ 6= k. Assume without loss of generality
that there is some element inUj that is larger thank; if not,
then there is some element inUj that is smaller thank and
the reasoning is symmetric. Letk′ = min{x ∈ Uj | x > k}
and note thatz = k′ ⇔ Uj(z) ∧ (z ≥ k) ∧ (z ≤ k′).
The relations(z ≥ k) and (z ≤ k′) are bothk-valid so
(z = k) is pp-definable inΓk ∪ {R}. Using the relation
z = k′, we conclude the proof by the following pp-definition:
T ′

k−1,k,k+1(x, y) ≡ ∃z, w.(z = w∨x 6= y)∧ck(z)∧ck′(w)∧

∧(k − 1 ≤ x) ∧ (x ≤ k + 1) ∧ (k − 1 ≤ y) ∧ (y ≤ k + 1).
NP-hardness of CSP({T ′

k−1,k,k+1}) implies NP-hardness of
CSP(Γk ∪ {R}) via Theorem 2. �

5 Discussion
The results reported in this paper constitute a step towardsa
better understanding of the complexity of temporal reasoning
in discrete time structures. Below, we discuss how this work
can be continued.

5.1 Horn DLRs
Completely classifying the complexity of CSP(HZ) appears
to be a quite hard problem. Consider the NP-complete integer
feasibility problem: given a system of inequalitiesAx ≥ b,
decide whether there exists a satisfying integer vectorx or
not. Note that each row of the system can be viewed as a
relation inHZ. Thus, a complete classification of CSP(HZ)
would give us a classification of the integer feasibility prob-
lem (parameterised by allowed row vectors). Such a classifi-
cation is not currently known and, in fact, there are no clas-
sifications even if we restrict ourselves to finite domains orif
we consider the closely related integer optimisation problem.

One obvious difficulty when classifying CSP(HZ) is that
we do not know what algorithmic techniques will be needed.
The results in this paper are based on either solving linear
equations or solving linear programming problems over the
real numbers. Completely different methods may be needed
in other cases, though. As a concrete example, consider the
constraint languageΓ containing all relations of the typeax+
by = c, x ≤ c, andx ≥ c (wherea, b, c ∈ Z) and note that
Γ ⊆ HZ. Bodirsky et al.[2009] have shown that CSP(Γ) is
tractable by using a graph-theoretic approach; it is not clear
how (or if) this algorithm can be recast in more familiar terms.

Another difficulty is that there are tractable cases where we
have not been able to prove maximality. One example is the



previously mentioned class by Bodirsky et al. Another exam-
ple is constraints of the typesax − by ≤ c andax − by = c
wherea, b ∈ {0, 1}andc ∈ Z. LetΣZ denote the correspond-
ing constraint language. The tractability of CSP(ΣZ) problem
follows from combining Theorem 19.1 and Theorem 19.3(iv)
in [Schrijver, 1986] with the fact that linear programs can be
solved in polynomial time. This result is interesting sinceit
implies tractability of the discrete-time analogue of Dechter
et. al’s[1991] well-knownsimple temporal networks.

Deciding maximality forΣZ and similar classes appear to
be non-trivial. Apparently,ΣZ may be difficult to extend with
disequality relationsp(x̄) 6= a. It is, for instance, straightfor-
ward to prove that CSP(ΣZ ∪{x 6= y}) is NP-hard. It may be
the case thatΣZ can be extended in other ways, though.

5.2 Semilinear relations and DLRs
If we turn our attention to semilinear relations and DLRs,
then we immediately note that they give rise to a much richer
class of CSPs than Horn DLRs. The following is an inter-
esting consequence: for every finite constraint languageΓ
over a finite domainD, there exists a finite setΓ′ ⊆ SZ

such that CSP(Γ) and CSP(Γ′) are polynomial-time equiv-
alent. This can be demonstrated as follows: given a rela-
tion R ⊆ Dk whereD = {d1, . . . , dm} is finite, define
R′(x1, . . . , xk) ≡

∧k

i=1(xi = d1 ∨ . . . ∨ xi = dm) ∧
∧

(t1,...,tk)∈Dk,(t1,...,tk) 6∈R(x1 6= t1 ∨ . . . ∨ xk 6= tk). It is
now straightforward to see thatR′ is a semilinear relation and
that CSP({R}) is polynomial-time equivalent to CSP({R′}).
This idea is straightforward to extend to constraint languages,
so a complete classification of CSP(SZ) would also consti-
tute a complete classification of finite-domain CSPs. Such
a classification has for many years been a major open ques-
tion within the CSP community. We can also observe that
the resulting constraint languageΓ′ is typically not a subset
of DZ. The simpler structure ofDZ may very well simplify
the classification task. We note that the finite-domain CSP
problem for so-calledclausalrelations is completely classi-
fied [Creignouet al., 2008], and this kind of relations are de-
fined by single clauses satisfying certain properties.

When studying the complexity of CSP(SZ) and CSP(DZ),
it appears that the known sources of tractable fragments in-
crease drastically. An obvious example are the relations that
are first-order definable over(Q;<). Every tractable subclass
has been identified by Bodirsky and Kara[2010] so we letΓ
denote one of their tractable classes. The structure(Q;<)
admits quantifier elimination andΓ ⊆ SZ. By combining
this fact with Lemma 4, it can be shown that an instanceI of
CSP(Γ) has a solution if and only ifI|Z has a solution. Thus,
CSP(Γ|Z) is tractable, too. Note that there is no a priori rea-
son to believe thatΓ|Z is maximally tractable withinDZ or
SZ (even thoughΓ is maximal within the relations that are
first-order definable within(Q, <)). It may be the case that
there are many different tractable classes that containsΓ|Z.
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