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Abstract such unifying result for metric temporal constraints, bainy

, o partial results are known, dfJonsson and Backstrom, 1998;
Temporal reasoning problems arise in many areas  krokhin et al. 2004.

of Al, including planning, natural language under- The situation is very different if we turn our attention to
standing, and reasoning about physical systems.  giscretetemporal constraints where the set of time points is
The computational complexity of continuous-time some subset of the set of integ&rsThere are some scattered
temporal constraint reasoning is fairly well under- — ¢omplexity results (cf[Bettini et al, 1998; Meiri, 1998) but

stood. There are, however, many different cases 5 coherent picture is lacking. This is unsatisfactory sieee
where discrete time must be considered; various — goning apout discrete time is an important part of Al: let us
scheduling problems and reasoning about sampled st mention temporal logics, plan generation, and discret
physical systems are two examples. Here, the COmM-  {ime Markov chains as three concrete examples. Reasoning
plexity of temporal reasoning is notas well-studied 5,5t discrete time is also inevitable in many ‘industréait-

nor as well-understood. In order to get a better un- ings: for systems that are repeatedly sampled (for manigor
derstanding, we consider the powerful Horn DLR or other purposes), we are implicitly forced to assume thet t
formalism adapted for discrete time and study its nqerlying model of time is discrete. Our goal with this pape
computational complexity. We show that the full is to initiate a systematic study of temporal constrainissat
formalism is NP-hard and identify several maximal faction under the assumption that time is discrete instéad o

tractable subclasses. We also 'lift’ the maximality continuous. The focus will be on the computational complex-
results to obtain hardness results for other families v of such problems; more precisely, we aim at identifying
of constraints. Finally, we discuss how the results  egyricted classes of constraints such that the corresmgnd

and techniques presented in this paper can be used  ongiraint satisfaction problem can be solved in polynbmia
for studying even more expressive classes of tem-  {ime Obtaining a full classification of hard and easy cases i

poral constraints. of course highly desirable — it gives us a very powerful tool
for studying the complexity of problems that can be mod-
1 Introduction elled within the language. Since temporal constraint neaso

. L o . e . ing appears as a subproblem in many different types of auto-
Reasoning about time is ubiquitous in artificial intelligen ate( reasoning, we expect such results to be useful in many
and many different branches of computer science. NOt€gtner contexts, too. For instance, note that discrete sezail
worthy examples include planning, diagnosis, and temporgle|ations (to be defined later on) have been used intensively
databases. For a general overview of temporal reasonieg, s§q, 5 long time in, for example, formal verificatidBoujjani

for instance, the handbodkisheret al, 2003. The tempo-  4nq Habermehl, 1996distributed computinfAngluinet al,,
ral constraint satisfaction problem is very well-studied a 2007, and automata theroffParikh, 1966

there has lately been substantial progress in undersgndin |, order to introduce temporal constraint reasoning for-

the complexity of this problem. Bodirsky and K&i201d ~ majiy, we first define the general constraint satisfactiarbpr
have presented a complete classification of the temporal cof .

straint problem for relations that are first-order definadhle . - .

the structuréQ; <). This result subsumes much of the previ- Definition 1 Let I' be a set of finitary relations over some
ous work omualitative(that is, the case where we cannot re- SetD of values. The constraint satisfaction problem oler
fer to individual time points in the underlying time struety ~ (CSRT)) is defined as follows:

temporal constraints such as Allen’s algebra. There are N stance:A setV of variables and a set of constraint appli-

“Partially supported by théwedish Research Coun@i/R) un-  CationsR(vy, ..., vy) wherek is the arity ofR, vy,..., vy €
der grant 621-2009-4431 VandR eI .

tPartially supported by th8wedish National Graduate School in Question: Is there a total functiory : V' — D such that
Computer SciencgCUGS). (f(v1),..., f(vk)) € R for each constrainR(vy, .. .,vx) In



c?

The sefl is referred to as theonstraint languageGiven
a setD, we letT'|p denotel restricted toD, i.e. '|p =
{RND™| R €T andR has arityn}. We sometimes slightly
abuse notation to avoid unnecessary clutter. For instanee,
may say ‘the relation: y + 2’ instead of ‘the relation
{(z,y,2) € Z3 | * = y + 2} A constraint satisfaction
problem CSIT") is globally tractableif CSP(T") is in P and
locally tractableif CSP(T”) is in P for every finite sef” C T'.
Similarly, CSRT") is globally NP-hardif CSP(T") is NP-hard
andlocally NP-hardif CSP(I) is NP-hard for some finite set
IVCT.

The separation of local and global tractability/NP-hasine
is motivated by the following result: 1€f") (theclosureor co-
cloneof I') denote all relations that app-definablén T". A
relation R is pp-definable il if it can be defined by a first-
order formula ovef" without using disjunction and negation,
and with only existential quantification.

Theorem 2 [Jeavons, 1998For every finite® C (T),
CSR©) is polynomial-time reducible to CIP). Further-
more, if R € (I'), then CSPI" U {R}) and CSRFT") are
polynomial-time equivalent problems.

This implies, for instance, that if C$P) is globally
tractable, then CSRT')) is locally tractable.

To1(z,y,2) =2 >0ANy>0A2>0ANc+y+2z=1and
apply Theorem 2. O

Since CSPHz) is locally NP-hard, it makes sense to start
looking for tractable fragments withikz, and this is a nat-
ural first step in a bottom-up approach to classifying the
complexity of CSPD;) and CSRSz). Also note that the
modelling power (in continuous time) Gfk is quite high;
many tractable fragments described in the literature aifgnvi
‘Hr [Jonsson and Backstrom, 1998 his indicates that{y
may be interesting from a modelling point of view, too.

Due to the NP-hardness of C8#;,), we will concentrate
on identifying tractable fragments and study theaximality
in the forthcoming three sections. Given constraint laggsa
I' C O, we say thal" is maximally tractablén © if CSP(T")
is globally tractable and C3PU{R}) is locally NP-hard for
everyR € ©\T'. Maximality can obviously be defined in dif-
ferent ways with respect to local and global propertiesthist t
definition is sufficent for our purposes. We consider prolsdlem
where solutions can be ‘scaled’ in Section 2, problems con-
nected to linear equations in Section 3, and so-cdiledlid
constraints in Section 4. In the proofs, we demonstrate how
concepts and ideas likeduced formulagBodirsky et al.,
20104 and theindependence properffCohenet al, 2004
can be used for studying discrete-time temporal consgaint

Let us now turn our attention to temporal constraint prob-"V€ also show how some of the maximality results can be gen-

lems. We letD C R denote a set dime points Let the set
Sp contain all relationg (1, ..., z,) € D™ | C1A...ACk}
where each claus€; denotes a disjunctiofp;r1¢1 V ... V
PmTmCm). Here,c; is anintegery; € {<,<,=,#,>,>}

eralised to hardness results for larger classes of contdrai
We conclude the paper with a brief discussion concerning the
results and future research directions.

andp;(z1,...,z,) is a linear polynomial (i.e. the degree of 2 Scalable constraints
p equals one) with integer coefficients. We adopt a simpleone way to start looking for tractable fragmentstof is to

representation of relations ifip: every relationR in Sp is

ask under which circumstances a solution to an instdrafe

represented by its defining formula where each coefficient igSp¢y;) implies a solution to the corresponding instarige

written in binary. LetDp C Sp contain the relations that
are defined by a single clause. U, C Dp contain the

relations that are defined by a single clause that contains

most one relation that is not of the typéz) # ¢. The names

of CSP{Hz). We begin with the following lemma.

mma 4 LetI" be a constraint language ov@rsuch that
the following holds.

S, D, andH are chosen to reflect the names given to the cor- 1. Every satisfiable instance of C$P{s satisfied by some

responding relations in the literature: the relationSjinare
calledsemilinear relationsthe relations irDp are calledis-
junctive linear relationgDLRs), and the relations it are
calledHorn DLRs DLRs and Horn DLRs were introduced in
[Jonsson and Backstrom, 1998t only for continuous time
structures (in fact, only for the s& of real numbers).

rational point.

2. Foreachr € T, it holds that ifz = (21, 22,...,2k) €
R, then (ax1,azs,...,ax;) € Rforalla € {y €
R |y > 1}\ X whereX is a (possibly empty) finite
set. The seX may depend on botR andz.

Before we continue, we need some NP-hardness re-3- CSPU) is globally (or locally) tractable.

sults. For distincta,b € Z, define T,
{(a,a,b),(a,b,a),(b,a,a)}. Clearly, CSP{T,}) is NP-
hard problems since it corresponds toNE3-SAT restricted
to clauses without negated literals.

Theorem 3 CSR'Hg) is globally tractable while CSR{z)
is locally NP-hard. Furthermore, C&Pp) and CSRSp)
are locally NP-hard whe® € {Z,R}.

Proof: Global tractability of CSPHg) and local
NP-hardness of CSPgr) and CSRSg) follows from
[Jonsson and Backstrom, 1998 For the remaining
cases,
CSRHz). Simply note that we can pp-defifig ; in Hz by

Then, the problem CSP(;) is also globally (or locally)
tractable.

Proof: Let I be an arbitrary satisfiable instance of GBP
with a rational solutionz = (z1/v1,...,2zk/yx) Where
T1,...,x, € Zandyy, ...,y € ZT\ {0}. Letn = Hle Yi
and note that > 1.

For an arbitrary constrain® in I, we know that it is sat-
isfied byaz for everya € {y € R | y > 1} \ X whereX
is finite. For every constrain®; in I, let X; denote the set
of ‘exception’ points, and let = " | | X;| (wherem is the

it is sufficient to prove local NP-hardness ofnumber of constraints if).



It follows that there is at least one in the set
{y € Z |1 <y < t+ 1} such thatanz satisfies].
The vectoranz is integral due to choice of which con-
cludes the proof. O

Given a real vectof = (z1,...,zx), let]|z|| denote its
Euclidean norm, i.e\/z% + ... + z7. Recall that|z + || <
[|1Z|| +||7|] and||az|| = |« - ||Z|| for all real vectorse, ¥ and
arbitrarya € R.

Theorem 5 If I is a satisfiable instance of CS¥), then’
is satisfied by at least one rational point.

Proof: Let 7 be a satisfying real point. Assuniecontains
the constraint§Cy, . .., C,,} where eactC; is a disjunction
lin Vi V...Vl There is (at least) ong; from each
C; that is satisfied by. Sincea < b =a < bVa = b,
a>b=a>bVa=banda#Ab=a<bVa>b wecan
without loss of generality assume that eithgr= p(z) < ¢
orl;; = p(z) = c. Itis clearly sufficient to find a rational
satisfying pointg, that satisfies the formulg, A ... Al .

First consider the literals of the typ€z) < c. The sets of
satisfying points to these kinds of relations are clearlgrop
Hence, there is some rational numbes 0 so that all points
z for which ||7 — z|| < ¢ satisfy these relations.

The remaining literals are of the forp(z) = ¢ and we
can view them as a linear equation systeim = b. Ev-

ery satisfiable system of linear equations has a rational so-

lution and a vectort is a solution if and only if it can be
expressed a8 = ¢ + 2101 + ... + x,0, Where Ay; = 0,
Ac =b,¢,0v1,...,0; are rational vectors, and, ..., x; are
real numbers. -

Since 7 satisfies Ar b, it can be expressed as
¥ = ¢+ riog + ...1.0,, With 7, € R. The rational
numbers are dense in the real numbers so we can fi
rational numbersy; satisfying|r; — ¢;| < ¢, for all ¢ and
foranyd. > 0. Letg = ¢+ 101 + ... + qr0x and we
find that”f — (j” = ||(T‘1 — (h)’ﬁl +oooF(rg — qk)f}kH <
Iri—aqul-[o1][+ -l —qr|-[Oel] < de-([[or]]+. . .+[|0k]])-
By choosing ¢ so that . gets sufficiently small, we
can achieve||r — q|| < 4. It follows that ¢ satisfies
leo /\llj] A\ ---/\lnjn- O

Thus, Hg satisfies requirement 1) and 3) of Lemma 4. We
let Az C Hy contain the relations that satisfy requirement 2)
and have thus proved the following.

Theorem 6 The problem, CSRy) is tractable.

We now verify thatAz is maximally tractable irt{z. We
need the concept séduced relations

Definition 7 [Bodirskyet al, 20103 Letf(zy,...,z,) be a
formula in conjunctive normal form. We cdlreduced if it is
not logically equivalent to any of its subformulas, i.e.rénes
no formulay obtained fromP by deleting literals of clauses
such that(a) = ¢(a) forall a € Z™.

An important property of reduced formulas is thafifis
defined by a reduced formula v ... Vv [, then for each;,
we can find a vectat that satisfies; but notl; for all j # 4.

Theorem 8 CSRAy) is maximally tractable in CSP(z).

Proof: Let R be an arbitrary relation (of arity) in Hy that
does not satisfy requirement 2). Hence, there exists awreal
vectory and an infinite seb C R such that; satisfiesR but
for everys € S, sy does not satisfyR. Assume without loss
of generality thatR is defined by a reduced formula(z) v

... V1 (Z) wherely, ..., i are linear expressions.

Suppose that somie = p(Z) # ¢ wherec # 0. If p(g) #
¢, thenp(ky) # c for all k € R except at most one, and
the same holds foR(ky). If p(y) ¢, thenp(ky) # ¢
for all k € R™ except at most one, and the same holds for
R(ky). This leads to a contradiction and we can assume that
if a literal [; = p(&) # ¢, thenc = 0.

If § satisfies some literd) = p(z) # 0, thenp(ky) # 0 for
all & € R except at most one, and the same holdsH(ky).
Thus,g only satisfies a literal; = ¢(z)ra wherer € {<, <
,=,>,>}. By observing thap(z) < a < p(Z) < a — 1,
we may additionally assume thate {<,=,>}. Assume
without loss of generality that > 0; if a < 0, then consider
the equivalent inequality obtained by multiplying with.. If
r = (>), thenky satisfiesR forall k > 1. Thus,r € {<,=}.

If p(g) = 0, thenky satisfiesR for all Kk € R so we can
safely assume that> 0. We conclude thaR is on one of the
following forms: (1)p(Z) = aV @1 (Z) #0V...Vgu(Z) #0
or(2)p(z) < avVgr #0V...Vq,(z)# 0wherea > 0.

Assume first thaf? is of type (1). InAz U {R}, we can
pp-define the following relation:

S(z) =3z.(p(Z) =aV q1(Z) A0V ...V qn(Z
@(Z) =0A ... Agn(T) =0Ap(T) =

The definition of R is reduced so there exists a vector
such thatp(z) = a and¢;(z) = 0, 1 < i < n. Thus,S(z)
holds if and only ifz = a; in other words, we have defined
a non-zero constant. This implies that we can pp-define the

nstantlsince = 1< 3x1,...,24,y.2 = ©1AS(y)Azy >
IN...ANxe > 1Ay =21+ ...+ x4 Itis now straightfor-
ward to pp-define the relatiofy ; and we have proved that
CSRT U {R}) is locally NP-hard.

Assume instead thaR is of type (2). Analogously to
the construction of5, we can construct a non-empty unary
relation .S’ that is upper bounded by. Thus, S’ contains
a largest element and the constank can be pp-defined
sincez = b < S(z)Az > b. The proof procedes as abovel

) # 0)A

The maximality proof also gives a characterisation of the
relationsR € Hy that do not satisfy requirement 2): given
a relationR, reduce it and check whether it is of one of the
two ‘bad’ types identified in the proof. The maximality proof
can also be generalised to a hardness result for constraint |
guages that are not necessarily subsefqnf

Corollary 9 LetT be a constraint language ov&isuch that
the relationst = y + z andx > 1 arein(T"). ThenI' U {R}
is NP-hard wheneveR € Hy \ Az.

Proof:  (Sketch)By Theorem 2, we may without loss
of generality assume that = y + z andz > 1 are
members ofl". By inspecting the proof of Theorem 8,
we see that CSPR} U X) is NP-hard whereX is a
finite set of homogeneous equations and (possibly) a
relation p(z) > a with @ > 0. Every homogeneous



equation can be pp-defined with the aid of= y + z.  that|Ia] = d, d > 1, and that the statement holds for all
Every relationz > a with a > 0 can be pp-defined since I, C In. We show thafr U I, is satisfiable, too.

r>ae Iy, Yak = Y1t FYaAYL > TALAY, > 1 Let IY = Ia \ {pi(Z) # ¢} and consider the instance
and the equationz = 1 + ... + ya. is homoge- .U T foreachi. LetD;,1 <1 < d, be the set of satisfying
neous. Thus,p(z) > a can be pp-defined since points to these subproblems. The sBks ..., Dy are non-
p(Z) > ae Jyy=p@) Ay >a U empty due to the induction hypothesis. Arbitrarily choose a

elementr; € D; for eachi. If z; € D; for anyj # 4, then
) _ it is a solution to the entire instance and we are done. So we
3 Linear equations can assume that (z;) = ¢; for all 4.

In the previous section, we found a large maximally tragtabl _ 12Ke two pointsz; andz, and definer® = ki, + (1 —
subset?\z of Hy. Clearly, Az does no% contain anyy linear k)@? for k € Z. Observe _thaf’“ Sa“Sf'eS{g for all k. We
equationg)(z) = a with a # 0. We will now look at frag-  Will now show that there is & such thatz® € D; for all
ments ofH;, that contain such equations. Similar fragmentst; PY the previous comment, it is sufficient to consider the
have been considered before: it is known that finding intediseguations. L _
ger solutions to linear equation systems is a tractable-prob FOré = 1 we note thap: (z%) # ¢1 < kpi(71) + (1 —
lem [Kannan and Bachem, 197 related problem has also ¥)P1(Z2) # ¢1 & (1 — k)(p1(Z2) — c1) # 0 and since
been discussed {Bodirskyet al, 2010b, Sectionjebut they P $22k7é ci this is true for allk # 1. In the same way, we see
restrict themselves to homogeneous equations. We will nod1at%" € D2 whenk # 0. L
work ‘backwards’ compared to the previous section; instead F07¢ 7 1,2, we notgkthat ifp;(21) = di # ¢ and
of starting withz and remove relations, we will extend the pi(T2) = ds # ci, Fher}pi(m ) = k(d _d2)+.d?' If dy = da,
set of linear equations. then the disequation is alwziqk/s true; otherwise, there isost m
The algorithmic part will use results frofi€ohenet al, ~ ON€ value fork such trﬁwi(z ) = ¢;. Hence, each disequa-
2000 and a property known dsindependencéNe note that tion is not satisfied pyt for at most one/value of, and we
the original definitions by Cohen et al. are slightly more-gen conclude that there is sonié such thate” € D; for all i. It
eral than those presented here; they do not restrict theessel follows thatlr U I, is satisfiable for any size dfx.

to constraint languages. By the notation GSR(I'UA), we By Theorem 11, itis now sufficient to prove that CSR (T'U
mean the CSP problem with constraints averA but where A) is tractable. Letl be an instance of CSR;(I' U A).

the number of constraints ovéris less than or equal to. We view I as an equation systemz — b together with a

Definition 10 For two constraint languagé&sandA, we say  disequation(Z) # c. We start by finding a satisfying integer
thatA is k-independent with respectIuif the following con-  pointz to Az = b; this is tractable byKannan and Bachem,
dition holds: any instanceof CSP{ UA) has a solution pro-  1979. If no such point exists, thehis not satisfiable. If the
vided every subinstance dfbelonging to CSR<x(I" U A) found solutionz also satisfieg(z) # ¢, then we have found a
has a solution. solution to/, too. Otherwise, note thatif # z andAy = b,

1-independence gives us a way to handle disjunctions effinenA(y —z) = b —b = 0. By lettingz;, =y — 7, we see

ciently. For constraint languagé&sandA, let the constraint that any satisfying point can be written as = z + 3y, for

M . : e . somez;, such thatAz; = 0. Sincep(z) = ¢, we note that

languagd ¥ A* contain all relationsR(z) = ¢(z) V d1(Z) V . - v a ;
g\]/ dg(f) n > 0, wherec(z) is a(cgnstragin)t ovell£ zgmd p(2) # ¢ < p(z) + plIn) # ¢ = p(Tn) # 0. From this we
'd'l'(j) " P (;E)_aré constraints ovek conclude that we can find a solution&df and only if we can

find a pointz;, such thatdz;, = 0 andp(z;) # 0.
Theorem 11 [Cohenet al, 2004 Let T andA be constraint Now we solve the systemz = 0 A p(z) = 1 over the
languages. If CSR<; (I' U A) is globally tractable, andh is  rational numbers. If this system has no solution, then tisere
1-independent with respectIg then CSPI(¥A*)is globally  no pointz; since some rational multiple af, would have
tractable. been a solution. If we find a solutian, to this system, then

. N there exists an integér # 0 such thatkz, is an integer

LetI’ C Hy denote all relations(z) = b andA C Hy : e - z _ q

denote all relationg(z) # b. V%e(z \)/vill now prove that PONt satisfyingAkz, = 0andp(kzy) =k # 0. We see

CSRTIX¥A*) is globally tractable (Theorem 12) and that it is thb"’l‘t we C"‘;]r.‘ len_}h = ki andl (_:oncludell that is satisfi-
a maximal tractable fragment &f; (Theorem 13). We will able. As this only requires solving two linear systems, one

also extend the maximality result in a way similar to Corol- ©Ve" (€ integers and one over the rational numbers, this is
lary 9; the omitted proof is analogous. a polynomial-time algorithm for solving CSR 1 (T UA). O

Theorem 12 CSP{'¥A*) is globally tractable.

Proof: We first prove thatA is 1-independent with respect
toI'. Let It be an instance of CSPland/a an instance of
A. Assume thafr U {d;} is satisfiable for eact; € I with
d; = pi(‘f) # ¢.

We will perform an induction on the size @k. If |In| =
1, then satisfiability follows from the assumptions. Assume

Theorem 13 I'YA* is maximally tractable irty.

Proof: The relations iz \ (I'¥A*) are of the formR =
p(z) < eV Vi, (¢:(z) # a;). Note that we do not have to
consider relations with< separately since those are always
equivalent to a relation using. We assume without loss of
generality that the definition a® is reduced.



We will now show how to pp-definé, ., for somez, #
z1 in Z. By reasoning as in the proof of Theorem 8, we see
that we can pp-define a unary relatiifz) that is a subset
of {z€Z|z<c}byS(z) =3z.(z = p(@) A (p(T) <
eV Vi1 (6:(2) # @) AN(AZ (@:(@) = ai)).

We first prove thatS| > 1. If |S| = 0, then(A!, (¢:(Z) =
a;)) = p(Z) > ¢ but since the definition oR is reduced, we
know that there exists an integral vectosatisfyingp(z) <
c. If]S] =1, then\’ (¢;(z) = a;)) = p(z) = d for

Un(z) =3y.R(y,y,y, ...
Un+1(2) = 9. R(Y, 4,4, -y, y) Ny =k

The relationsls, . .., U,,+1 are pp-definable il U {R}
since the relatioy = k is k-valid. We claim that there exists
an indexl < j < m such that/; # @ andk ¢ U;. Since
R is not k-valid, it follows thatU,,.; = @ so there exists

LA S a smallest index < j* < m + 1 such thatU;, = . Let
somed < c but thenkR = Z" and we have a contradiction j = j' — 1. Clearly,U; is non-empty and if: € U;, then

. e : : . .
o o eSSy VECIr 1 1™~ Uy s ety whic eacs 0. contaccton
: 9 ! * We now lete,(z) = (¢ = a) and pp-define the relation

Otﬁerwise,p(a‘:) = ¢ and it clearly satisfies the inequality ¢ (z) for somek’ # k. Assume without loss of generality
p(z) < c. Consequently,5| > 1. that there is some element i that is larger thark; if not,

Definezp = max{z | S(z)} andz; = max{z | S(z),z # : :
. J then there is some element i that is smaller tha and
zo} and note that these constants are pp-definalileifiR}. the reasoning is symmetric. &L%‘[ —min{z € U |z > k}

Now, T, 2 (9, 2) = S(@) A S AS() Az +y+2=" gp4 note that — ¥ (2)A(z > k)A(z < K
(229 + z1) and NP-hardness follows from Theorem 2. [J The relations(> > k)ingé )S/\k(') are t))o/t\h(k-valid s)o
(z = k) is pp-definable inl';, U {R}. Using the relation
z = k', we conclude the proof by the following pp-definition:
Ty g g1 (2, y) = Fz,w.(2 = wVa # y) Acg(2) Acg (w) A
AE=1<z)AN(z<k+DA-1<y)A(y<k+1).

_ ) NP-hardness of CSRT},_, ; ;.,}) implies NP-hardness of
4 Constraints that are k-valid CSRT'\, U {R}) via Theorem 2. O

We will now demonstrate that there are an infinite number of
distinct maximally tractable fragments with#z. This fact ] ]
makes complexity classifications harder since adescripfio 5 Discussion

the tractable cases must be more elaborate than just Itsng  The results reported in this paper constitute a step towards

Y, 2) Ny =k

Corollary 14 LetI" be a constraint language ov&such that
the relations: = y + z andx = 1 are in(T"). Then,I' U{R}
is NP-hard wheneveR € Hz \ ([¥A*).

maximally tractable fragments.

ArelationR is said to beé:-valid, k € Z, if (k,...,k) € R.
A constraint languagg is k-valid if every relation inl" is k-
valid. LetT'y, k& € Z, denote the set df-valid relations irHz,
together with the empty relation. Clearly; # I'; whenever
i # j; T; contains the relatioiz = ¢) but does not con-
tain (z = j) and vice versa. Solving instances of CEP)
is obviously trivial (simply check whether some constragnt
based on the empty relation) but such classes have to be ¢
sidered, too, in order to obtain full complexity classifioas.
The maximality proof fork-valid constraints differs slightly

from the proofs in the preceeding sections. There, we ma

aged to construct explicit NP-hard constraint languagbs T
proof is slightly non-constructive since we obtain a segeen

of constraint languages and prove that (at least) one of the

is NP-hard. However, we do not know which one.

For distincta, b, c € Z, defineT), , .(z,y) = {a,b,c}*\
{(a,a), (b,0), (c,c)}. CSR{T, .}) is an NP-hard problem
since it corresponds to the 36COURABILITY problem.

Theorem 15 For eachk € Z, I'y, is a maximally tractable
language iy,

Proof: The problem CSH';) is obviously globally
tractable. To prove maximality, arbitrarily choose a rielat
R € Hy that is notk-valid. Letm denote the arity ofz and
consider the following relations:

Ui(z) =3y, 2z2,...,2m . R(z, 22,23, . ..

Us(z) =y, a3, .., em - R(y, 2,23, 24, . . .

(o)

better understanding of the complexity of temporal reaspni
in discrete time structures. Below, we discuss how this work
can be continued.

5.1 Horn DLRs

Completely classifying the complexity of C8R;) appears

to be a quite hard problem. Consider the NP-complete integer
feasibility problem: given a system of inequalitids: > b,
Hacide whether there exists a satisfying integer vegtor

not. Note that each row of the system can be viewed as a
relation inHz. Thus, a complete classification of CS&;)

Would give us a classification of the integer feasibility Ipro

lem (parameterised by allowed row vectors). Such a classifi-
cation is not currently known and, in fact, there are no clas-

Ltications even if we restrict ourselves to finite domaini or

we consider the closely related integer optimisation probl
One obvious difficulty when classifying C8Rz) is that

we do not know what algorithmic techniques will be needed.

The results in this paper are based on either solving linear

equations or solving linear programming problems over the

real numbers. Completely different methods may be needed

in other cases, though. As a concrete example, consider the

constraint language containing all relations of the typer +

by = ¢, x < ¢, andx > ¢ (wherea, b, c € Z) and note that

I' C Hyz. Bodirsky et al[2009 have shown that CSP) is

tractable by using a graph-theoretic approach; it is narcle

how (or if) this algorithm can be recast in more familiar term
Another difficulty is that there are tractable cases where we

have not been able to prove maximality. One example is the



previously mentioned class by Bodirsky et al. Another exam{Bettini et al, 1999 C. Bettini, X. Wang, and S. Jajodia. A
ple is constraints of the types: — by < candaz — by = ¢ general framework for time granularity and its application
wherea, b € {0,1} andc € Z. LetX; denote the correspond-  to temporal reasoning.Ann. Math. Artif. Intell, 22(1—
ing constraint language. The tractability of GSR) problem 2):29-58, 1998.

follows from combining Theorem 19.1 and Theorem 19.3(ivV)[godirsky and Kara, 2010M. Bodirsky and J. Kara. The
in [Schrijver, 198§ with the fact that linear programs can be * complexity of temporal constraint satisfaction problems.
solved in polynomial time. This result is interesting sitice J. ACM 57(2), 2010.

implies tractability of the discrete-time analogue of Diech [Bodirskyet al, 2009 M. Bodirsky, G. Nordh, and T. von

et. al's[1991] well-knownsimple temporal networks Oert nt / ith 2-variabl
Deciding maximality fors; and similar classes appearto ~ -cr2€n. -~ Integer programming with z-variable equa-
tions and 1-variable inequalitiesnform. Process. Lett.

be non-trivial. Apparently.; may be difficult to extend with )
disequality relationg(z) # a. It is, for instance, straightfor- 199(11)'572_575' 2009. .
ward to prove that CSEz U {z # y}) is NP-hard. Itmay be [Bodirskyetal, 20104 M. Bodirsky, H. Chen, and M.

the case that; can be extended in other ways, though. Pinsker. The reducts of equality up to primitive positive
- _ definability. J. Symb. Log.75(4):1249-1292, 2010.
5.2 Semilinear relations and DLRs [Bodirskyet al, 20104 M. Bodirsky, P. Jonsson, and T.

If we turn our attention to semilinear relations and DLRs, von Oertzen. Horn versus full first-order: com-
then we immediately note that they give rise to a much richer plexity dichotomies in algebraic constraint satisfaction
cIa_ss of CSPs than Horn DLRs. _T_he foIIowir_lg is an inter- arXiv:1005.1141v2.

esting consequence: for every finite C(_)n_stralntl language [Boujjani and Habermehl, 1996A. Boujjani and P. Haber-
over a finite domainD, ther/e exists a finite sdt’ C Sz mehl. Constrained properties, semilinear systems, and
such that CSH’) and CSRL”) are polynomial-time equiv-  peyi nets. InProc. of CONCUR '96, Concurrency The-
alent. This can be demonstrated as follows: given a rela- ory, 7th International Conferencpages 481-497, 1996.

ton R C D* whereD = {di,...,d,} is finite, define

n — AR (= di Vo — do) A [Coheret al, 200d D. Cohen, P. Jeavons, P. Jonsson, and

A (@) = Ai:lExl ; ‘ 1\/ \/ xz;é_t )ml)t is M. Koubarakis. Building tractable disjunctive constraint
(t1,0tk)EDF (b1t ) g RATL 72 U1V oo V T 72 Tk J. ACM 47:826-853, September 2000.

now straightforward to see th& is a semilinear relation and [Creignouet al, 2008 N Creignou M Hermann

that CSR{z}) is polynomial-time equivalent to C$Pr }). A. Krokhin, and G. Salzer. Complexity of clausal

This idea is straightforward to extend to constraint langpsa ) ; )
so a complete classification of C&R,) would also consti- gggsgg'gés over chaing’heor. Comput. Sys#2(2):239-

tute a complete classification of finite-domain CSPs. Such
a classification has for many years been a major open queEPechteret al, 1991 R. Dechter, I. Meiri, and J. Pearl. Tem-
tion within the CSP community. We can also observe that poral constraint networkdrtif. Intell., 49:61-95, 1991.

the resulting constraint languagé is typically not a subset [Fisheret al, 2009 M. Fisher, D. Gabbay, and L. Vila, edi-

of Dz. The simpler structure db; may very well simplify tors. Handbook on Temporal Reasoning in Artificial Intel-
the classification task. We note that the finite-domain CSP ligence Elsevier, 2005.

problem for so-callealausalrelations is completely classi-
fied [Creignouet al., 2004, and this kind of relations are de- combinatorial problems. Theoret. Comput. S¢i200(1—
fined by single clauses satisfying certain properties. 2):185-204 1$|9098 ' ' put

When studying the complexity of C&F;,) and CSPDy,), ' R
it appears that the known sources of tractable fragments i,{Jonﬂsson and Backstrom, 199B.  Jonsson and  C.
crease drastically. An obvious example are the relatioas th ~ Backstrom. A unifying approach to temporal con-
are first-order definable ové®; <). Every tractable subclass ~ Straint reasoningArtif. Intell., 102(1):143-155, 1998.
has been identified by Bodirsky and Kd201d so we letl’ [Kannan and Bachem, 19F®R. Kannan and A. Bachem.

[Jeavons, 1998P. Jeavons. On the algebraic structure of

denote one of their tractable classes. The strucfQre<) Polynomial algorithms for computing the Smith and Her-
admits quantifier elimination antl C Sz. By combining mite normal forms of an integer matrigIAM J. Comput.
this fact with Lemma 4, it can be shown that an instahoé 8(4):499-507,1979.

CSRT) has a solution if and only if|z, has a solution. Thus,  [rokhinet al, 2004 A. Krokhin, P. Jeavons, and P. Jon-
CSRI'|;) is tractable, too. Note that there is no a priori rea-" g5on Constraint satisfaction problems on intervals and
son to believe thaF|; is maximally tractable withirDz or lengths.SIAM J. Discrete Math17(3):453-477, 2004.

Sz (even though is maximal within the relations that are [Meiri, 1996 I. Meiri. Combining qualitative and quantita-

first-order definable withirfQ, <)). It may be the case that tive constraints in temporal reasoningrtif. Intell., 87(1
there are many different tractable classes that conigins . . )
yd i 2):343-385, 1996.
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