
All PSPACE-complete Planning Problems are Equal
but some are more Equal than Others

Christer Bäckström and Peter Jonsson
Department of Computer Science, Linköping University

SE-581 83 Linköping, Sweden
christer.backstrom@liu.se peter.jonsson@liu.se

Abstract

Complexity analysis of planning is problematic. Even very
simple planning languages are PSPACE-complete, yet cannot
model many simple problems naturally. Many languages with
much more powerful features are also PSPACE-complete. It
is thus difficult to separate planning languages in a useful
way and to get complexity figures that better reflect reality.
This paper introduces new methods for complexity analysis
of planning and similar combinatorial search problems, in
order to achieve more precision and complexity separations
than standard methods allow. Padding instances with the so-
lution size yields a complexity measure that is immune to this
factor and reveals other causes of hardness, that are otherwise
hidden. Further combining this method with limited non-
determinism improves the precision, making even finer sep-
arations possible. We demonstrate with examples how these
methods can narrow the gap between theory and practice.

1 Introduction
Results on complexity in planning have often been per-
ceived as dissapointing, or even irrelevant, by many AI re-
searchers. This is understandable. Almost everything is
PSPACE-complete, or worse. Even the simple language of
propositional STRIPS is PSPACE-complete (Bylander 1994),
yet often considered too restricted for modelling interesting
problems. On the other hand, most benchmark problems for
planning are NP-complete or even tractable (Helmert 2006),
and many planners work well for those problems. It is hardly
surprising if many researchers feel that complexity theory
has failed to deliver for planning.

Since STRIPS is PSPACE-complete it has the same power
as a polynomial-space Turing machine, which is a very pow-
erful device. STRIPS is thus not restricted primarily in com-
putational power, but in expressive power; even if it has the
power to solve difficult problems, modelling those problems
is not straightforward. Of course, programming a Turing
machine is not very straightforward either. It is thus im-
portant to distinguish between the computational power of
a language and its expressive power. A notable contribu-
tion to this is Nebel’s (2000) results on using compilation
techniques to show separations in expressive power between
certain languages that are all PSPACE-complete.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A major reason why planning and similar problems are
PSPACE-complete is that they can be viewed as finding a
path in an implicitly represented graph, which is exponen-
tially larger than its representation. This is contrary to the
usual assumptions in complexity theory and causes prob-
lems, as observed by Balcázar (1996):

“The standard complexity classes of complexity the-
ory do not allow for direct classification of most of the
problems solved by heuristic search algorithms”.

Since the graph is of exponential size also the shortest paths
are of exponential length in the worst case. This reflects
upon the complexity, even if many applications never have
instances with such solutions. Planning is thus PSPACE-
complete already for very simple actions, but also remains
so even for quite powerful actions. That is, the class of
PSPACE-complete problems allows a vast and diverse flora
of languages that cannot easily be further separated. We
have a spectrum of different reasons why such planning
languages are hard, ranging from those where the hard in-
stances have very long plans of simple action to those where
the hard instances have short plans of very powerful actions.

The main purpose of this paper is to introduce new meth-
ods for complexity analysis of planning; methods that give
additional information and reveal more details than the stan-
dard methods do. While our focus is on planning, it should
be obvious that the methods we present are equally useful
for many other hard combinatorial problems, for example,
model checking. The results in this paper should be viewed
primarily as examples of applying these methods. The main
contribution is the methods themselves.

The paper is organized as follows. Section 2 is a brief
overview of central concepts in complexity theory that are
important for the rest of the paper, and Section 3 introduces
our framework for planning. In Section 4 we demonstrate
why both traditional and parameterized complexity analy-
sis seem inadequate to capture important aspects of plan-
ning. In Section 5 we thus introduce the new method of
analysing length-padded instances. This results in a hier-
archy of language classes with different complexity, which
are are all PSPACE-complete under traditional analysis. Sec-
tion 6 gives examples of applying this method, for instance,
demonstrating a corresponding hierarchy of fragments of
PDDL. We also compare our separation results to Nebel’s.
In Section 7 we refine the method further, combining it with

limited non-determinism to allow proving even tighter com-
plexity bounds. Finally, in Section 8, we demonstrate the
power of this refined method, applying it to partial-order
planning as an example. This gives us sufficient preci-
sion to conjecture that partial-order planning is harder than
total-order planning, which could have implications also for
scheduling. Rather than being collected at the end, all dis-
cussion and related work appears att appropriate places in
the paper, in its proper context.

2 Complexity Theory
This paper is technical and makes heavy use of complex-
ity theory. As a service to the reader we thus start with a
very brief reminder of some central concepts, presented in a
way consistent with how we use them. First some notation,
though; we use |x| to denote the cardinality (the number of
elements) of x and ||x|| to denote the size (the number of
bits) of the representation of x.

In complexity theory a problem is a general question, hav-
ing a set of instances we may ask it for. An algorithm for the
problem is a method to answer this question for all instances.
An important distinction is the one between analysing the
complexity of a particular algorithm (algorithm complexity)
and analysing the complexity of the problem itself (problem
complexity). In the latter case we must take all imaginable
algorithms into account, not only the ones we already know.

Problem complexity mainly studies decision problems,
which do not ask for a solution but only whether one ex-
ists or not. This is to simplify the theory, and usually, but
not always, there is a tight correspondence between generat-
ing a solution and deciding if there is one. The complexity
of a problem is measured as a function of the instance size.
When the instance is (or contains) an integer n, the com-
plexity should thus be a function of ||n|| = log n rather than
of n. This subtle but important detail is central to this paper.

A non-deterministic Turing Machine (NTM) is like an or-
dinary deterministic Turing machine (DTM) but with the
added capability of guessing. An NTM first guesses a string;
then continues like a DTM, but with read-only access to the
string it guessed. It always guesses a correct string whenever
such a string exists.

P (or PSPACE) is the class of all decision problems that
can be solved by some DTM in polynomial time (or space),
while NP consists of all decision problems that can be solved
in polynomial time by some NTM. Since an NTM always
guesses correctly, it can solve an instance by guessing a
string and then check whether this is a witness for a solution
(the witness can itself be a solution). If it runs in polynomial
time, then the witnesses must be of polynomial size and ver-
ifiable in polynomial time. Hence, we can also say that a
problem is in NP if and only if its witnesses can be verified
in polynomial time.

The NTM is a theoretical construction, but it has a very
direct relationship to search. Consider some combinato-
rial problem and some instance with n-bit solutions. Solv-
ing this by search may require examining the whole search
space of 2n strings. If it takes f(n) time to check a string,
then it takes O(2nf(n)) time to solve the instance. In the
worst case, this coincides with the lower bound. An NTM

can instead guess a witness string and then verify this. A
DTM can simulate this, ’guessing’ by searching through
all n-bit strings, which also takes O(2nf(n)) time. Search
and NTMs are thus two different ways to describe the same
thing, but with one important difference: the NTM does not
prescribe how to guess, thus making no assumption that
search is necessary. Basing complexity classes like NP
upon NTMs thus allows for the possibility of more efficient,
yet unknown, algorithms.

Proving that a problem is hard for a complexity class re-
quires a reduction concept. A polynomial many-one reduc-
tion from a decision problem X to another decision problem
Y is denoted X ≤p

m Y, and defined as a polynomial-time
function f that maps every instance x of X to an instance
f(x) of Y that has the same answer as x. Common classes,
like P, NP and PSPACE, are closed under such reductions.
That X is complete for such a class C means that: (a) X is in
C and (b) Y ≤p

m X for some Y already known to be complete
for C. Problem X is hard for C if it satisfies (b).

An oracle TM MC is a DTM (or NTM)M with an oracle
C for a certain problem or complexity class. Whenever M
queries the oracle it immediately receives a correct answer.
Similarly, PC (or NPC) is the class of all problems that can
be solved in polynomial time on a DTM (or NTM) with an
oracle for C. The polynomial hierarchy is a sequence of
complexity classes Σp

k within PSPACE s.t. Σp
0 = P, Σp

1 =

NP, Σp
2 = NPNP, Σp

3 = NPΣp
2 etc.

It is known that NP ⊆ PSPACE, but not whether this
inclusion is proper. However, if NP 6=PSPACE, then every
PSPACE-complete problem must have infinitely many in-
stances s.t. for all its witnesses w either (a) ||w|| is poly-
nomial but w is not verifiable in polynomial time or (b)
||w|| is not polynomial. The negative results for compress-
ing exponential-length plans in the general case (Bäckström
and Jonsson 2011) suggest that case (b) occurs in planning
(although case (a) may also occur). This is another view
of why STRIPS planning is PSPACE-complete. As a conse-
quence, transforming planning to some problem in NP, like
SAT, does not make it simpler. Either we do not solve the
same problem, or the transformation is not a polynomial re-
duction. Hence, the complexity figures for the original and
the transformed problems are not comparable.

For problems with an integer parameter k in addition to
the instance x, traditional complexity theory considers the
aggregation 〈x, k〉 as the instance, measuring the complex-
ity in ||〈x, k〉||. Parameterized complexity theory1 is an al-
ternative way to analyse such problems which considers k
as fixed and separate from x in the following way2. A fixed
parameter tractable (fpt) function is a function h on tuples
〈x, k〉, where k ≥ 0 is an integer, that is computable in time
O(g(k)p(||x||)) for some function g and some polynomial
p. FPT is the class of all problems that can be solved by an
fpt function. Let X and Y be two decision problems with pa-

1The name parameterized complexity often causes confusion
since also traditional complexity theory can handle problems with
parameters. The methods differ only in how they do it.

2See Downey and Fellows (1999) or Flum and Grohe (2006)
for further details.

rameters. A parametric transformation from X to Y is an fpt
function h that maps every instance 〈x, k〉 of X to an instance
〈y, k′〉 of Y with the same answer s.t. k′ depends only on k.
Since neither of k, g and p can depend on x, the parameter-
ized complexity can be viewed asO(g(k)f(||x||)). This sep-
arates it into two independent parts where, intuitively, g(k)
is the hard part, since g is an arbitrary function, and f(||x||)
is the easy part, since f is a polynomial. It is tacitly assumed
that k is small and that g grows moderately fast (although
typically exponentially). This theory must use its own com-
plexity classes, where FPT is intended as a parameterized
version of P (note that P ⊆ FPT) and examples of harder
classes are the W hierarchy W[1],W[2],. . . ,W[SAT],W[P].

3 Planning Framework
In order to make our results general we use an abstract plan-
ning framework, covering most ground planning languages.
Definition 1. An instance of Finite Functional Planning
(FFP) is a tuple p = 〈n,D,A, I,G〉, where the integer
n ≥ 0 is the number of state variables and the finite set D
is the domain for these variables. The state space S is im-
plicitly defined as S = Dn. The state I ∈ S represents the
initial state and the total functionG : S → {0, 1} represents
the goal. A is a set of actions, each action a ∈ A defining
two total functions ϕ(a) : S → {0, 1} (the precondition)
and ψ(a) : S → S (the postcondition).

Let ω = 〈a1, . . . , a`〉 be a sequence of actions from A.
Also let ϕi = ϕ(ai) and ψi = ψ(ai) for all i s.t. 1 ≤ i ≤ `,
and let ψ0 = I and ϕ`+1 = G. The result sequence σ =
〈s0, s1, . . . , s`〉 of states for p and ω is defined s.t. s0 = I
and si = ψi(si−1) for all i s.t. 1 ≤ i ≤ `. The sequence ω
is a solution for p iff both G(s`) = 1 and ϕi(si−1) = 1 for
all i s.t. 1 ≤ i ≤ `. A solution for p is called a plan for p.

Note that S is not explicitly represented (and usually ex-
ponentially larger than p). The functions for the goal and the
pre- and postconditions need not be explicitly represented
either; planning languages like propositional STRIPS and
SAS+ are typical subcases of FFP. We also assume that
D is an interval of the integers, or similar, so it can be im-
plicitly represented in O(log |D|) space. To refer implicitly
to elements of p we write Ap etc.

As the basis for complexity analysis we use the concept
of validating a plan step (that is, computing ϕ(a) and ψ(a)
for an action a and a state s), which implicitly defines plan
validation. The reason for this is to make not only plan
length, but also action modelling, visible in complexity anal-
ysis later on. To make the rest of the theory clearer, step
complexity is defined using decision problems only.
Definition 2. Step validation is a collective name for the
following three decision problems: (i) given an action a and
a state s, decide if ϕ(a)(s) = 1; (ii) given an action a, a
state s and an integer k, s.t. 1 ≤ k ≤ ||s||, decide if bit k in
the representation of ψ(a)(s) is 1; and (iii) given a state s,
decide if G(s) = 1. Step validation is in a complexity class
C if all three problems are in C. The decision problem plan
validation for FFP is: given an FFP instance p and an action
sequence ω, decide if ω is a plan for p. The complexity of
plan validation is measured in ||p||+ ||ω||.

We make no further assumptions about when a plan step
is valid, but only about the complexity of deciding it.

The restriction of FFP to some subsetX of FFP instances
is denoted FFP(X) and the restriction of FFP to subsets
where step validation is in some complexity class C is de-
noted FFP([C]). This notation will be used also for restrict-
ing corresponding problems.
Lemma 1. Let C be an arbitrary complexity class, then
(a) for all instances p of FFP([C]), all states s ∈ Sp and
all actions a ∈ Ap, the resulting state t = ψ(a)(s) can be
computed in polynomial time by a DTM with an oracle for
C and (b) plan validation for FFP([C]) is in PC .

Proof. (a) A state requires n log |D| < ||p|| bits, so M can
call the oracle once for each bit in t to find its value. (b) is
immediate from (a) and Definitions 1 and 2.

Note that it does not matter for plan validation whether
step validation is in C or in coC, since PC = PcoC .

The two most common decision problems for planning
are the following.
Definition 3. The plan existence problem (PE) for FFP is:
given an instance p of FFP, decide if p has a plan. The
bounded plan existence problem (BPE) for FFP is: given
an instance 〈p, `〉 s.t. p is an FFP instance and ` ≥ 0 an
integer, decide if p has a plan with ` or fewer actions.

The following proposition is straightforward.
Proposition 1. There is a polynomial reduction from plan
existence for propositional STRIPS to PE([P]).

4 Inadequacy of the Standard Methods
We first show that traditional complexity analysis is often
too coarse to capture differences in action modelling.
Theorem 1. PE([C]) and BPE([C]) are PSPACE-complete
for all complexity classes C s.t. P ⊆ C ⊆ PSPACE.

Proof. (Sketch) Let C be such a class. For membership in
PSPACE we use the same technique as Bylander (1994, The-
orem 3.1), but since we also allow oracle calls we get mem-
bership in NPSPACEC rather than in NPSPACE. However,
NPSPACEC = NPSPACE = PSPACE, so BPE([C]) is in
PSPACE. For completeness, note that PE([P]) ≤p

m PE([C])
≤p

m BPE([C]). Hence, PSPACE-completeness follows from
Proposition 1 and that propositional STRIPS planning is
PSPACE-complete (Bylander 1994, Theorem 3.1).

An immediate consequence of this theorem is that
PE([PSPACE]) and BPE([PSPACE]) are in PSPACE, that
is, a planning language no more powerful than STRIPS can
have actions as powerful as the language itself. In other
words, a planner for a PSPACE-complete language can, in
principle, plan for actions that themselves solve PSPACE-
complete planning problems. It is hardly a far-reaching con-
clusion that traditional complexity analysis is too coarse to
improve much on existing results.

Parameterized complexity has proven very useful for
many NP-complete problems, but has not had much impact
on planning. The only general relevant result we know of is

that STRIPS planning is W[1]-hard with plan length as pa-
rameter (Downey, Fellows, and Stege 1999, Theorem 6.5).
However, since the parameter is generally assumed small in
parameterized analysis, plan length is not an obvious choice.
A closer look at this forces us to question the relevance of
their result. Under traditional analysis, planning is more dif-
ficult for long plans, which coincides with how search algo-
rithms behave both in theory and in practice. For parame-
terized analysis, though, we prove the opposite and counter-
intuitive result that planning is hard only for finding very
short plans and otherwise tractable!

Theorem 2. Let h : N → N be an increasing function.
Then the restiction of BPE([P]) to instances p′ = 〈p, `〉 s.t.
|Ap| ≤ h(`) is in FPT.

Proof. Let h and p′ be as specified, and x = ||p||. We ask
for a plan ω s.t. |ω| ≤ `, so ||ω|| ≤ ` log |Ap| ≤ ` log h(`).
There are O(2||ω||) possible plans, each of which is veri-
fiable in O(|ω|p(x)) time, for some polynomial p. Find-
ing a plan thus takes O(2||ω|||ω|p(x)) time, but this is in
O((2` log h(`)`)p(x)) which is in FPT.

Since h may grow arbitrarily fast, the hard instances are
rare exceptions that probably only occur when plans are very
short but there is a very large number of actions to choose
from. The reason is that the fpt definition does not enforce
any restrictions on the function g of the parameter, and it is
well known that pathological cases like this may occur (cf.
Proposition 1.7 in Flum and Grohe (2006)).

We conclude that neither traditional complexity analy-
sis nor parameterized complexity analysis seem sufficient to
improve much on the current complexity results for plan-
ning, at least not in any way yet demonstrated. This calls
for new and better methods, and attempts have been made
in that direction. One example is Balcázar (1996), who ap-
proached the general problem of searching implicit graphs
represented by circuits. While this seems to work also for
planning, it gives no new separations, but it is an open ques-
tion if changing the already succinct graph representations
of planning to circuits would give any new insights. We will
choose another approach, which we find simpler and more
immediate, and which gives interesting separation results.

5 Method I: Padded Complexity
While PE/BPE([P]) becomes NP-complete when restrict-
ing plans to polynomial length, this is not as straightfor-
ward as it may sound. There are cases of restricted lan-
guages where all optimal plans are of polynomial length,
but they are too restricted for most applications. On the
other hand, while many application problems for planning
are NP-complete, or simpler, nobody has yet found a general
way to capture this by language restrictions. Alternatively,
we could try to capture the concept of polynomial solutions
with the problem definition rather than the language, for in-
stance, defining a variant of BPE that asks not for a plan of
length ` but of length ||p||`. Just as for BPE, however, there
is no reason for ` to be bounded in the general case, so it is

questionable what can be gained from this. We take a dif-
ferent approach to this and introduce the method of padded
complexity analysis for planning.

Padding refers to the technique of representing one or
more integers in unary notation (representing an integer n
with the string 1n of n 1’s), rather than in binary. Padding
is commonly used in structural complexity theory, to trans-
fer results between complexity classes or to construct com-
plete languages for classes. In problem complexity, how-
ever, padding is usually considered taboo, since it can make
a problem artificially easier by blowing up the instance size
exponentially. It is used, though, to distinguish between
complete problems for NP (and other classes) that remain
complete when representing integers in unary (referred to
as strongly complete problems) and those that do not. For
example, reachability for single-path Petri nets is strongly
PSPACE-complete (Howell, Jančar, and Rosier 1993). Al-
though planning has many similarities with this problem,
it does not share the property of being strongly PSPACE-
complete—which is exactly what we will exploit.

We will boldly break against the padding taboo, and pad
instances with the deliberate intention of actually blowing
up the instance size. When asking for a plan of length ` we
represent ` in unary. Since shortest plans can be of expo-
nential length also ` may be exponential, making the new
padded instance exponentially larger. The point of this is
to get a complexity measure that does not primarily depend
on plan length and that can reveal details that are otherwise
swamped by the complexity caused by the plan length. (This
technique has previously been used by Bonet (2010) in a
different context; defining a complexity measure for find-
ing contingent plans that depends on the number of branch
points in such plans). This is somewhat in line with the idea
of Impagliazzo et al. (2001) that it may be more robust to
measure complexity in the size of the solution than in the
instance. Another view is that if we accept exponential-size
plans, then we must commit to that in advance and pay the
price for it with the size of the instance. In other words, we
must allocate enough memory in advance for the solution we
are actually asking for. Furthermore, it is not uncommon to
measure the complexity in the size of the output (so called
output-sensitive analysis) when analysing algorithms, with
examples also in planning (Jonsson and Bäckström 1998).

Definition 4. The length-padded plan existence problem
(LPPE) for FFP is: given an instance 〈p, 1`〉, where p is
an FFP instance and ` ≥ 0 an integer, decide if p has a plan
with ` or fewer actions.

Planning is obviously NP-complete under padded analy-
sis if step validation is polynomial. We prove a more gen-
eral version of this statement, demonstrating a hierarchy of
increasing hardness that depends on the complexity of step
validation but not on plan length.

Theorem 3. LPPE([C]) is NPC-complete for arbitrary
complexity class C (s.t. NPC has complete problems).

Proof. Membership: Let M be an NTM with an oracle for
C. Given an LPPE([C]) instance pL = 〈p, 1`〉 as input, M
first guesses a plan ω with ≤ ` actions and then validates

it. It only needs to guess a polynomial number of bits since
||ω|| ≤ |ω| log |Ap| ≤ `||p|| < ||pL||

2. Using Lemma 1, M
can thus validate ω in polynomial time since ||p|| + ||ω|| is
polynomial in ||pL||.

Hardness: Let X be an arbitrary problem in NPC . Then
there is a polynomial p and an NTM M with an oracle for
C s.t. for every instance x of X, (1) M halts in at most
p(||x||) steps and (2) M(x) accepts iff x has a solution.
We can thus consider M as equivalent with X. Wlog. we
assume M has only one accepting state and one bidirec-
tional tape, where cells number −1,−2, . . . are used for
oracle queries only. We also assume it has tape alphabet
Γ = {0, . . . , k}, where k > 0 and 0 is the blank symbol.
The input alphabet is implicitly assumed to be {1, . . . , k}.
Let M = 〈Γ, Q,∆, q0, qa〉 be the description of the ma-
chine, where Γ is the tape alphabet, Q the set of states, ∆
the set of transitions, q0 ∈ Q the initial state and qa ∈ Q the
accepting state. We assume that Q contains the usual three
query states qq, qy, qn s.t. in state qq the only possible transi-
tion is the one that queries the oracle, resulting in either the
yes state qy or the no state qn.

For every valid input x for M , we can construct an LPPE
instance pL = 〈p, 1`〉, where p = 〈n,D,A, I,G〉 and
` = p(||x||), as follows. Let n = 4` + 3 and D =
{0, . . . ,max(k, |Q|)}. We name the variables as follows:
t−`, . . . , t` represent the tape cells, h−`, . . . , h` represent
the position of the head and s holds the current state. (Since
M halts in ` steps, it can never reach further on the tape than
±` cells.) A transition 〈q, x, r, y, L〉 is encoded as 2` actions

s = q, hi = 1, ti = x⇒ s = r, hi = 0, hi−1 = 1, ti = y

for −` < i ≤ ` (in notation ϕ(a) ⇒ ψ(a)). Transitions
moving right are encoded analogously. The action for the
query transition has precondition that s = qq and postcon-
dition that either s = qa or s = qn, depending on what the
oracle answers. All variables have value 0 in I , except that
t0, . . . , t||x||−1 contain the input x, h0 = 1 and s = q0. The
goal function G has value 1 iff s = qa.

This is a polynomial-time construction and pL is an
LPPE([C]) instance, since an oracle for C is sufficient for
step validation. It is straightforward that pL has a plan iff
M(x) accepts. Hence, X ≤p

m LPPE([C]), so we conclude
that LPPE([C]) is NPC-complete.

This implies an immediate relationship to the polyono-
mial hierarchy.
Corollary 1. (a) LPPE([P]) is NP-complete.
(b) LPPE(Σp

k) is Σp
k+1-complete for all integers k ≥ 1.

This provides a complexity hierarchy of FFP fragments
which is immune to plan length and reflects the complexity
of validating plan steps rather than the whole plan. By com-
bining the complexity for PE/BPE with the complexity for
LPPE, we get a more refined picture that tells us something
both about complexity due to plan length and complexity
due to action models. One might say that LPPE gives the
most relevant figure for moderately long plans and PE/BPE
for very long plans.

SAT encodings of planning can also be considered as
padded, but in contrast to our LPPE concept, SAT planning

seems not to give any further insight into different sources
of complexity or allow for any separation results.

The method we have just introduced can obviously cap-
ture distinctions of the kind that Theorem 1 proved impos-
sible with traditional analysis. Yet, we actually still use tra-
ditional complexity analysis and have only abused the stan-
dard for instance encodings. The obvious question, whether
such a change of encodings could also make parameterized
analysis more relevant, must be answered negatively. It adds
no new separations.

Theorem 4. Let X be a set of LPPE instances and define
Y = {〈p, `〉 | 〈p, 1`〉 ∈ X}). If LPPE(X) is in FPT, then
also BPE(Y) is in FPT.

Proof. Assume LPPE(X) is in FPT. Given an instance
〈p, `〉 of BPE(Y), compute a corresponding LPPE instance
〈p, 1`〉 in O(2` · ||p||) time. This is a parametric transforma-
tion and FPT is closed under such transformations.

6 Examples and Connections
One obvious application of padded analysis is planning lan-
guages where step validation must solve constraint prob-
lems (for instance temporal constraint problems (Tsamardi-
nos, Vidal, and Pollack 2003)). Temporal constraint prob-
lems are typically NP-complete so LPPE is complete for
NPNP = Σp

2 for such languages. This separates them as
harder than many other planning languages, which is not
possible to show with traditional complexity analysis.

Such languages move only one step up in the hierachy,
however. To climb further up, we first note that accord-
ing to Corollary 1 each level LPPE([Σp

k]) of this hierar-
chy corresponds to level Σp

k+1 of the polynomial hierarchy.
Furthermore, Σp

k+1 corresponds to satisfiability of quanti-
fied boolean formulae with at most k alternations of quanti-
fiers. Hence, a language with step complexity in NP can be
viewed as having preconditions with existentially quantified
variables, while languages higher up in the hierarchy can
have alternating existential and universal quantifiers, with
the number of alternations depending on the level of the hi-
erarchy. The planning language PDDL allows for arbitrary
alternation of quantifiers in preconditions. It thus contains
an infinite hierarchy of succesively harder fragments cor-
responding to the levels of the LPPE([Σp

k]) hierachy, even
when the variable domains have only two values. This also
means that we cannot cheat with padded complexity and
transform an instance inte one with quantifier-free actions,
since this is not a polynomial reduction.

Yet another example is planning languages with domain
axioms. Although FFP does not allow axioms this would
be trivial to include. The axioms would be an additional
part of the instance and checking them would go into the
pre- and postcondition functions, thus immediately reflect-
ing upon the step complexity. If we know the complexity of
checking the axioms, then we can place the language at the
proper level in the LPPE([Σp

k]) hierachy.
These examples demonstrate how padded complexity

analysis can be used to show separations in complexity for
various planning languages, separations that would not have

been possible to show in a simple and straightforward way
with traditional methods. Padded complexity can thus pro-
vide further insight into, and a separation between, problem
classes that are otherwise PSPACE-complete.

While the LPPE([Σp
k]) hierarchy shows a separation

between languages at different levels, it says little about
languages within the same level. For example, each
level LPPE([Σp

k]) is closed under ≤p
m, yet it can con-

tain subsets X and Y s.t. LPPE(X) 6≤p
m LPPE(Y). Sim-

ilarly, BPE(X)≤p
mBPE(Y) does not imply LPPE(X)≤p

m
LPPE(Y) or vice versa. However, with a more restricted
reduction, that additionally promises to increase the size of
solutions at most polynomially, we get the following rela-
tionship between BPE and LPPE.

Theorem 5. Let X and Y be sets of FFP instances and
function f a polynomial many-one reduction from BPE(X)
to BPE(Y). If there is a polynomial p s.t. for all 〈p, `〉 in
X , the corresponding 〈p′, `′〉 = f(〈p, `〉) in Y satisfies that
`′ ≤ p(||p||+ `), then LPPE(X) ≤p

m LPPE(Y).

Proof. Assume that f is as claimed, 〈p, `〉 is in BPE(X)
and 〈p′, `′〉 = f(〈p, `〉). Then 〈p, 1`〉 is in LPPE(X) and
〈p′, 1`′〉 is in LPPE(Y). By definition of f there are poly-
nomials p and q s.t. `′ ≤ p(||p|| + `) and ||p′|| ≤ q(||p||).
Hence, ||〈p′, 1`′〉|| ≤ q(||p||) + p(||p|| + `), which is poly-
nomial in ||〈p, 1`〉||.

The converse of this theorem does not hold, but its con-
trapositive yields some insight: if there is no polynomial re-
duction from LPPE(X) to LPPE(Y), then there is no such
solution-constrained reduction from BPE(X) to BPE(Y).
This suggests a connection to the separation results for plan-
ning languages by Nebel (2000). He used compilation tech-
niques to separate a number of variants of STRIPS into
classes with different expressive power, but did not show
any separations in complexity. For all cases he considered
the compilations could as well be viewed as polynomial re-
ductions with the additional condition that the plan size in-
creases at most polynomially3. That is, what Nebel used is
essentially a reduction of the type described in Theorem 5.
Since he only considered planning languages with step com-
plexity in P, all his separation results are between languages
that all belong to LPPE([P]), that is, they cannot be sep-
arated by our padded analysis. It thus seems that Nebels
separation results and ours are orthogonal to each other, cap-
turing different aspects of planning languages.

7 Method II: Limited Nondeterminism
Knowing that a problem is in NP guarantees that there is
some polynomial p and some NTM M that solves any in-
stance x of size x in time O(p(x)). Let g(x) be the number
of bits M guesses and f(x) the time it takes to verify the
guess. Then g(x) ≤ f(x) since M must at least read the
guess to verify it. Further than that we can only conclude

3A compilation leaves some parts of the instance to be filled
in later (like our reformulation concept (Bäckström and Jonsson
2011)). Since this is assumed simpler than the compilation, the
overall process is essentially a reduction.

that both g(x) and f(x) are in O(p(x)). Hence, all we know
is that M guesses O(p(x)) bits and takes O(p(x)) time to
verify the guess, and that the problem thus can be solved by
search in time O(2p(x)p(x)). This clearly overestimates the
number of bits to guess. For example, to solve a SAT in-
stance we need to guess at most one bit per variable. Even
if overestimating this figure by x, we can solve the instance
by search in O(2xp(x)) time, which is a factor 2p(x) bet-
ter than the previous figure O(2p(x)p(x)). Unfortunately,
classes like NP cannot capture such ‘subtle’ differences.

Kintala and Fischer (1977) suggested to treat also non-
determinism as a quantifiable resource, and they invented
what is known as limited nondeterminism. For our purposes,
the following definition of a restricted family of complexity
classes based on limited non-determinism is sufficient.
Definition 5. Let g : N → N be a time-constructible func-
tion. The complexity class g(x)-P consists of all decision
problems that can be solved in polynomial time on some
NTM that guesses at most O(g(x)) bits, where x is the size
of the instance.

This means that a problem in g(x)-P can be solved by
search in time 2O(g(x))p(x), for some polynomial p. Also
note that log x-P = P and ∪c>1(xc-P) = NP. Kintala
and Fischer (1977) studied the hierarchy P = log x-P ⊆
(log x)2-P ⊆ . . . ⊆ x-P ⊆ x2-P ⊆ . . . ⊆ NP of classes
between P and NP. It is still not known if any of these inclu-
sions are strict, and proving that one of them is would imply
that P 6= NP. However, the classes are also useful due to the
connection between non-determinism and search.

Limited non-determinism has mostly been used in struc-
tural complexity (see Goldsmith et al. (1996) for an
overview and Williams (2010) for recent result using this
concept). It has also been used to achieve more precise
results for certain problems. Examples are that comput-
ing V-C dimension (used in learning, for instance) is in
(log x)2-P (Papadimitriou and Yannakakis 1996) and more
precise complexity bounds for satisfiability of restricted
CNF formulas (Gottlob, Pichler, and Wei 2008).

We now proceed to combine our padding method with
limited non-determinism to achieve even more precision.
We still use LPPE and it is only how we analyse it that dif-
fers. Our first result is a tighter upper bound for LPPE([P]).
Theorem 6. LPPE([P]) is in x log x-P.

Proof. Let pL = 〈p, 1`〉 be an LPPE([P]) instance and ω
a plan for pL. We note that (1) ||p|| + ` ≤ ||pL||, (2)
|Ap| < ||Ap|| < ||p|| and (3) ||ω|| ≤ ` log |Ap|. Hence,
it is sufficient to guess a plan of size ||ω|| < ||pL|| log ||pL||
and then verify it, which is in PP = P. Hence, LPPE([P])
is in x log x-P.

While this result might seem trivial, it could hardly have
been proved by standard methods. Proving completeness is
less straightforward, though. While polynomial reductions
are sufficient to prove completeness for classes of the type
(log x)k-P, much studied in the literature, they are, some-
what counterintuitively, not useful for classes of the type
xk-P or x1/k-P, which are not even closed under logspace

reductions. It is an open question if completeness can be
proved using som other reduction, like quasilinear reduction.

As an alternative option we use the Exponential Time Hy-
pothesis (ETH) to establish a reasonably tight lower bound.
ETH was suggested by Impagliazzo and Paturi (2001) and
says, in one of several forms it can be stated (Impagliazzo,
Paturi, and Zane 2001), that 3-SAT cannot be solved in
subexponential time, that is, in time 2o(m) where m is the
number of clauses. While ETH is not obviously as strong
as the hypothesis that P 6= NP, it still has a similar flavour:
many NP-complete problems are related s.t. if ETH is true,
then none of them can be solved in subexponential time, and
if ETH is false, then all of them can.

Theorem 7. If LPPE(P) is in g(x)-P for some function g
s.t. g(x) ∈ o(x/log x), then ETH is false.

Proof. Suppose LPPE(P) is in g(x)-P, where g(x) ∈
o(x/log x). Let s be an arbitrary 3-SAT instance (a 3-CNF
formula) with n variables and m clauses. Then ||s|| ∈
Θ(m log n), but n ≤ 3m and m < 8n3, so ||s|| ∈
Θ(m logm). Construct an FFP([P]) instance p with n bi-
nary variables, one action for each (setting it true) and the
goal G implementing the CNF of s. Then, s is satisfiable iff
p has a plan of length n or shorter and s can be encoded
s.t. ||p|| ∈ Θ(m logm). Construct the padded instance
pL = 〈p, 13m〉, also of size Θ(m logm). Since n ≤ 3m,
also pL has a solution iff s is satisfiable. Let x = ||pL||.
By assumption, it suffices to guess O(g(x)) bits to solve pL,
which is equivalent to guessing O(g(m logm)) bits since
x ∈ Θ(m logm). Also by assumption, g(m logm) is in
o((m log m)

log(m log m)) = o(m log m
log m) = o(m), so for some polyno-

mial p, we can solve pL, and thus also s, in 2o(m)p(m) =
2o(m) time, which contradicts ETH.

We can thus bound the complexity of LPPE(P) to be-
tween x/log x-P and x log x-P (assuming ETH is true).

We can further define a more precise hierarchy of upper
bounds, similar to Theorem 3.

Theorem 8. LPPE([f(x)-P]) is in x2f(x)-P, for arbitrary
time constructible function f : N → N.

Proof. Let pL = 〈p, 1`〉 be such an instance and x = ||pL||.
Guess a plan ω for pL. Since |ω| < x and ||ω|| < x log x,
there are ≤ x steps to validate, each requiring < x calls to
an f(x)-P oracle. Hence, plan validation requires guessing
in total ≤ x2f(x) bits. This dominates the plan size, so
LPPE(f(x)-P) is in x2f(x)-P.

8 An Example: Partial-order Plans
So far plans have been total-order plans (sequences of ac-
tions), but partial-order plans are also important and fre-
quently used. We now turn our attention to such plans as
an example of applying the method from the previous sec-
tion. A partial-order plan is a partially ordered set of action
occurences (we must now explicitly distinguish different oc-
curences of the same action). That two actions are mutually
unordered can either mean that they can be scheduled con-
currently, or only that they can be scheduled in either order,

depending on the application. A partial-order plan is thus
more flexible, allowing for a scheduler to post-process and
optimise the action ordering according to further criteria.

Definition 6. Let p be an FFP instance. A partial-order
plan for p is a tuple ρ = 〈B,≺〉 s.t. B is a set of action
occurences over Ap and ≺ is a partial order on B. If ≺ is a
total order, then ρ is also a total-order plan.

Note that it is sufficient to encode as much of the ordering
as is necessary to reconstruct its transitive closure, so we
should not assume an explicit partial order represented.

Validation of partial-order plans is not as straightforward
as for total-order plans (Nebel and Bäckström 1994). Step
validation is no longer obviously useful since there is no
well-defined state to validate an action against. Hence, we
switch to using plan validation as the primary concept.

Definition 7. The partial-order length-padded plan exis-
tence problem (PO-LPPE) for FFP is: given an instance
〈p, 1`〉, where p is an FFP instance and ` ≥ 0 an integer,
decide if p has a partial-order plan ρ = 〈B,≺〉 s.t. |B| ≤ `.
Given a complexity class C, PO-LPPE([C]) refers to the
restriction where plan validation is in PC .

An obvious definition of validity for partial-order plans is
that all topological sortings of it must be valid. That is point-
less, however; since every total-order plan is also a partial-
order plan, an algorithm could always return a total-order
plan. To make a partial-order plan interesting at all, we must
have some additional criteria that makes it more useful than
any of its topological sortings. Just as for step complexity,
we make no assumptions about when a plan is valid, but only
about the complexity of deciding this. Intuitively, the reader
should bear in mind that, in this context, the concept of plan
validation can include, for instance, optimization criteria on
the plan order. Examples of such criteria are the ones sug-
gested by Bckstrm (1998), intended to maximize the flexi-
bility of the plan to allow for better scheduling and other post
processing. However, PO-LPPE([C]) is still a richer class
of instances than LPPE([C]) even without such explicit re-
quirements, since plan validation in PC is a weaker criterion
than step validation in C. The following result is thus not
exactly comparable to Theorem 6, but similarly provides an
upper bound.

Theorem 9. PO-LPPE([P]) is in x2 log x-P.

Proof. Let pL = 〈p, 1`〉 be an PO-LPPE([P]) instance and
x = ||pL||. Guess a plan ρ = 〈B,≺〉 (B assumed en-
coded as a sequence of actions from Ap and ≺ as pairs of
sequence indices). By requirement, |B| ≤ `, so ||B|| ≤
` log |Ap| ≤ x log x. Obviously, | ≺ | ≤ `2, so || ≺ || ≤
`2(2 log `) ≤ 2x2 log x. Hence, it is sufficient to guess
O(x log x + 2x2 log x) = O(x2 log x) bits. Since valida-
tion of ρ is in PP = P, it follows that PO-LPPE([P]) is in
x2 log x-P.

Padding alone is not sufficient to even suggest a differ-
ence between LPPE([P]) and PO-LPPE([P]), since these
are both NP-complete; limited nondeterminism is necessary
to get different results. Proving completeness is as difficult

as before, though, and ETH seems not immediately appli-
cable here. However, we note that there are plans where
the partial order must be of quadratic size if we require
any of Bckstrm’s optimality criteria, even if not represent-
ing the transitive closure explicitly, In fact, Kleitman and
Rotschild (1970) showed that the number of different partial
orders over a set of n elements is 2n2/4+o(n2). Hence, we
conjecture that partial-order planning is actually harder than
total-order planning.

To further consider also parallel execution of actions, we
follow Bckstrm’s (1998) concepts and definitions.

Definition 8. Let p be an FFP instance. A non-concurrency
relation over Ap is a reflexive and symmetric relation # ⊆
A2, that implicitly transfers to action occurences. Let
ρ = 〈B,≺〉 be a partial-order plan for p and # a non-
concurrency relation overAp. A parallel execution of length
m for ρ is a partitioningB1, . . . , Bm ofB s.t. for all bi ∈ Bi

and bj ∈ Bj , it holds that (1) bi ≺ bj implies i < j and (2)
bi#bj implies i 6= j.

Definition 9. The parallel length-padded plan exis-
tence problem (PAR-LPPE) is: given a instance p′ =
〈p,#, 1`, k〉, where p is an FFP instance, # is a non-
concurrency relation over Ap and `, k > 0 integers, decide
if p has a partial-order plan ρ = 〈B,≺〉 s.t. |B| ≤ ` and ρ
has a parallel execution of length k or shorter.

Theorem 10. PAR-LPPE([P]) is in x log x-P.

Proof. Let p′ = 〈p,#, 1`, k〉 be such an instance and
x = ||p′||. Guess a set B of at most ` action occurences
over Ap and a partitioning B1, . . . , Bk of B. Encode the
partitions in order as sequences of actions, which allows
mulitple occurences of an action in a partition and requires
O(` log |Ap|) ⊆ O(x log x) bits. Since plan validation is in

PP = P, the problem is in x log x-P.

This indicates that finding an optimally scheduled parallel
plan is no harder than finding a total-order plan. This does
not contradict our conjecture, however. PAR-LPPE asks for
a plan and one optimal schedule, while PO-LPPE allows
asking for a plan that can be scheduled in several differ-
ent optimal ways. (Although PAR-LPPE([P]) logspace re-
duces to PO-LPPE([P]), this is not relevant since the classes
x log x-P and x2 log x-P are not closed under logspace re-
ductions). A practical consequence of this is that if we know
the scheduling constraints already at planning time, then it
could actually be exponentially more efficient to combine
planning and scheduling, than to first generate a plan and
then schedule it separately. We finally note that the lower
bound of Theorem 7 holds also for PAR-LPPE([P]).

References
Bäckström, C., and Jonsson, P. 2011. Limits for compact
representations of plans. In 21st Int’l Conf. Automated Plan-
ning and Scheduling, (ICAPS’11), Freiburg, Germany. 18-
25.
Bäckström, C. 1998. Computational aspects of reordering
plans. J. Artif. Intell. Res. 9:99–137.

Balcázar, J. 1996. The complexity of searching implicit
graphs. Artif. Intell. 86(1):171–188.
Bonet, B. 2010. Conformant plans and beyond: Principles
and complexity. Artif. Intell. 174(3-4):245–269.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artif. Intell. 69(1-2):165–204.
Downey, R., and Fellows, M. 1999. Parameterized Com-
plexity. Monographs in Computer Science. Springer.
Downey, R.; Fellows, M.; and Stege, U. 1999. Parame-
terized Complexity: A Framework for Systematically Con-
fronting Computational Intractability, volume 49 of DI-
MACS Series in Disc. Math. Theor. Comput. Sci. 49–99.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory. Springer.
Goldsmith, J.; Levy, M.; and Mundhenk, M. 1996. Limited
nondeterminism. SIGACT News 27(2):20–29.
Gottlob, G.; Pichler, R.; and Wei, F. 2008. Monadic
datalog over finite structures with bounded treewidth.
arXiv:0809.3140v1.
Helmert, M. 2006. New complexity results for classical
planning benchmarks. In 6’th Int’l Conf. Automated Plan-
ning and Scheduling, (ICAPS’06), Cumbria, UK, 52–62.
Howell, R.; Jančar, P.; and Rosier, L. 1993. Completeness
results for single-path Petri nets. Inf. Comput. 106(2):253–
265.
Impagliazzo, R., and Paturi, R. 2001. On the complexity of
k-SAT. J. Comput. Syst. Sci. 62(2):367–375.
Impagliazzo, R.; Paturi, R.; and Zane, F. 2001. Which
problems have strongly exponential complexity? J. Com-
put. Syst. Sci. 63(4):512–530.
Jonsson, P., and Bäckström, C. 1998. Tractable plan exis-
tence does not imply tractable plan generation. Ann. Math.
Artif. Intell. 22(3-4):281–296.
Kintala, C., and Fischer, P. 1977. Computations with a
restricted number of nondeterministic steps. In 9th ACM
Symp. Theory Comput. (STOC’77), Boulder, CO, USA, 178–
185.
Kleitman, D., and Rotschild, B. 1970. The number of finite
topologies. Proc. Amer. Math. Soc. 25:276–282.
Nebel, B., and Bäckström, C. 1994. On the computational
complexity of temporal projection, planning, and plan vali-
dation. Artif. Intell. 66(1):125–160.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. J. Artif. Intell. Res.
12:271–315.
Papadimitriou, C., and Yannakakis, M. 1996. On limited
nondeterminism and the complexity of the V-C dimension.
J. Comput. Syst. Sci. 53(2):161–170.
Tsamardinos, I.; Vidal, T.; and Pollack, M. 2003. CTP:
A new constraint-based formalism for conditional, temporal
planning. Constraints 8(4):365–388.
Williams, R. 2010. Improving exhaustive search implies
superpolynomial lower bounds. In 42nd ACM Symp. Theory
Comput. (STOC’10), Cambridge, MA, USA, 231–240.

