
Min CSP on Four Elements: Moving Beyond

Submodularity

Peter Jonsson1, Fredrik Kuivinen2, and Johan Thapper3

1 Department of Computer and Information Science, Linköpings universitet
SE-581 83 Linköping, Sweden, petej@ida.liu.se

2 frekui@gmail.com
3 École polytechnique, Laboratoire d'informatique (LIX)

91128 Palaiseau Cedex, France, thapper@lix.polytechnique.fr

Abstract. We report new results on the complexity of the valued con-
straint satisfaction problem (VCSP). Under the unique games conjec-
ture, the approximability of �nite-valued VCSP is fairly well-understood.
However, there is yet no characterisation of VCSPs that can be solved
exactly in polynomial time. This is unsatisfactory, since such results are
interesting from a combinatorial optimisation perspective; there are deep
connections with, for instance, submodular and bisubmodular minimisa-
tion. We consider the Min and Max CSP problems (i.e. where the cost
functions only attain values in {0, 1}) over four-element domains and
identify all tractable fragments. Similar classi�cations were previously
known for two- and three-element domains. In the process, we introduce
a new class of tractable VCSPs based on a generalisation of submodular-
ity. We also extend and modify a graph-based technique by Kolmogorov
and �ivný (originally introduced by Takhanov) for e�ciently obtaining
hardness results in our setting. This allow us to prove the result with-
out relying on computer-assisted case analyses (which is fairly common
when studying VCSPs). The hardness results are further simpli�ed by
the introduction of powerful reduction techniques.

Keywords: constraint satisfaction problems, combinatorial optimisa-
tion, computational complexity, submodularity, bisubmodularity

1 Introduction

This paper concerns the computational complexity of an optimisation problem
with strong connections to the constraint satisfaction problem (CSP). An in-
stance of the constraint satisfaction problem consists of a �nite set of variables,
a set of values (the domain), and a �nite set of constraints. The goal is to de-
termine whether there is an assignment of values to the variables such that all
the constraints are satis�ed. CSPs provide a general framework for modelling a
wide variety of combinatorial decision problems [4].

Various optimisation variations of the constraint satisfaction framework have
been proposed and many of them can be seen as special cases of the valued
constraint satisfaction problem (VCSP). This is an optimisation problem which

is general enough to express such diverse problems as Max CSP, where the
goal is to maximise the number of satis�ed constraints, and the minimum cost
homomorphism problem (Min HOM), where all constraints must be satis�ed,
but each variable-value tuple in the assignment is given an independent cost.
We have the following formal de�nition.

De�nition 1. Let D be a �nite domain, and let Γ be a set of functions fi :
Dki → Q≥0∪{∞}. By VCSP(Γ) we denote the following minimisation problem:

Instance: A set of variables V , and a sum
∑m
i=1 %ifi(xi), where %i ∈ Q≥0,

fi ∈ Γ , and xi is a list of ki variables from V .
Solution: A function σ : V → D.
Measure: m(σ) =

∑m
i=1 %ifi(σ(xi)), where σ(xi) is the list of elements from D

obtained by applying σ component-wise to xi.

The set Γ is often referred to as the constraint language. We parameterise
problems with constraint languages throughout the paper. For instance, when
we say that a class of VCSPs X is polynomial-time solvable, then we mean that
VCSP(Γ) is polynomial-time solvable for every Γ ∈ X. Finite-valued functions,
i.e. functions with a range in Q≥0, are sometimes called soft constraints. A promi-
nent example is given by functions with a range in {0, 1}; they can be used to
express instances of the well-known Min CSP and Max CSP problems (which,
for instance, include Max k-Cut, Max k-Sat, and Nearest Codeword as
subproblems). On the other side we have crisp constraints which represent the
standard type of CSP constraints. These can be expressed by cost functions
taking values in {0,∞}.

A systematic study of the computational complexity of the VCSP was ini-
tiated by Cohen et al. [2]. This led to a large number of complexity results
for VCSP: examples include complete classi�cations of conservative constraint
languages (i.e. languages containing all unary cost functions) [5, 9], {0, 1} lan-
guages on three elements [8], and the Min Hom problem [16]. We note that
some of these results have been proved by computer-assisted search�something
that drastically reduces the readability, and insight gained from the proofs. We
also note that there is no generally accepted conjecture stating which VCSPs
are polynomial-time solvable.

The picture is clearer concerning the approximability of �nite-valued VCSP.
Raghavendra [14] has presented algorithms for approximating any �nite-valued
VCSP. These algorithms achieve an optimal approximation ratio for the con-
straint languages that cannot be solved to optimality in polynomial time, given
that the unique games conjecture (UGC) is true. For the constraint languages
that can be solved to optimality, one gets a PTAS. No characterisation of the set
of constraint languages that can be solved to optimality follows from Raghaven-
dra's result. Thus, Raghavendra's result does not imply the complexity results
discussed above (not even conditionally under the UGC).

The goal of this paper is to study VCSPs with {0, 1} cost functions over four-
element domains: we show that every such problem is either solvable in polyno-
mial time or NP-hard. Such a dichotomy result is not known for CSPs on four-
element domains (and, consequently, not for unrestricted VCSPs on four-element

2

domains). Our result proves that, in contrast to the two-element, three-element,
and conservative case, submodularity is not the only source of tractability. In
order to outline the proof, let Γ denote a constraint language with {0, 1} cost
functions over a four-element domain D. We will need one new tractability result
for our classi�cation; this result can be found in Section 3 and our algorithm is
based on a combination of submodular and bisubmodular minimisation [6, 12,
15]. The hardness proof consists of three parts. Section 4 concerns the problem
of adding (crisp) constant unary relations to Γ without changing the compu-
tational complexity of the resulting problem, and Section 5 introduces a graph
construction for studying Γ . This graph provides information about the com-
plexity of VCSP(Γ) based on the two-element sublanguages of Γ . Similar graphs
have been used repeatedly in the study of VCSP, cf. [9, 16]. Equipped with these
tools, we prove our main classi�cation result, Theorem 18, in Section 6. Due to
space constraints, some proofs have been left out. A full version of this paper
can be downloaded from http://arxiv.org/abs/1102.2880

2 Preliminaries

Throughout this paper, we will assume that Γ is a �nite set of {0,1}-valued func-
tions. ByMin CSP(Γ) we denote the problem VCSP(Γ). Note thatMin CSP(Γ)
is polynomial-time equivalent to Max CSP({1 − f |f ∈ Γ}). This implies, for
instance, that the dichotomy theorem for Max CSP over domains over size
three also can be viewed as a dichotomy result for Min CSP. It turns out to
be convenient to work with a slightly more general problem, in which we allow
additional crisp constraints on the solutions.

De�nition 2. Let Γ be a set of {0, 1}-valued functions on a domain D, and let
∆ be a set of �nitary relations on D. ByMin CSP(Γ,∆) we denote the following
minimisation problem:

Instance: AMin CSP(Γ)-instance I, and a �nite set of constraint applications
{(yj;Rj)}, where Rj ∈ ∆ and yj is a matching list of variables from V .

Solution: A solution σ to I such that σ(yj) ∈ Rj for all j.
Measure: The measure of σ as a solution to I.

2.1 Weighted pp-de�nitions and expressive power

We continue by de�ning two closure operators that are useful in studying the
complexity of Min CSP. Let I be an instance of Min CSP(Γ,∆), and let
x = (x1, . . . , xs) be a sequence of distinct variables from V (I). Let πxOptsol(I)
denote the set {(σ(x1), . . . , σ(xs)) | σ is an optimal solution to I }, i.e. the pro-
jection of the set of optimal solutions onto x. We say that such a relation has
a weighted pp-de�nition in (Γ,∆). Let 〈Γ,∆〉w denote the set of relations which
have a weighted pp-de�nition in (Γ,∆). For an instance J of Min CSP, we
de�ne Opt(J) to be the optimal value of a solution to J , and to be unde-
�ned if no solution exists. The following de�nition is a variation of the concept

3

of the expressive power of a valued constraint language, see for example Co-
hen et al. [2]. De�ne the function Ix : Dk → Q≥0 by letting Ix(a1, . . . , ak) =
Opt(I ∪ {(xi; {ai}) | 1 ≤ i ≤ k}). We say that Ix is expressible over (Γ,∆). Let
〈Γ,∆〉fn denote the set of total functions expressible over (Γ,∆).

Proposition 3. Let Γ ′ ⊆ 〈Γ,∆〉fn and ∆′ ⊆ 〈Γ,∆〉w be �nite sets. Then,
Min CSP(Γ ′, ∆′) is polynomial-time reducible to Min CSP(Γ,∆).

Proof (sketch): The reduction from Min CSP(Γ ′, ∆′) to Min CSP(Γ,∆′) is
a special case of Theorem 3.4 in [2]. We allow weights as a part of our instances,
but this makes no essential di�erence. To prove that there is a polynomial-time
transformation from Min CSP(Γ,∆′) to Min CSP(Γ,∆), we need a way to
`force' constraints in ∆′ \ ∆ to hold in every optimal solution. This can quite
easily be guaranteed by using large weights, and one sees that the representation
size of these weights needs to grow only linearly in the size of the instance. ut

2.2 Multimorphisms and submodularity

We now turn our attention to multimorphisms and tractable minimisation prob-
lems. Let D be a �nite set. Let f : Dk → D be a function, and let x1, . . . ,xk ∈
Dn, with components xi = (xi1, . . . , xin). Then, we let f(x1, . . . ,xk) denote the
n-tuple (f(x11, . . . , xk1), . . . , f(x1n, . . . , xkn)). A multimorphism [2] of Γ is a pair
of functions f, g : D2 → D such that for any h ∈ Γ , and matching tuples x and
y, h(f(x,y)) + h(g(x,y)) ≤ h(x) + h(y).

De�nition 4 (Multimorphism Function Minimisation). Let X be a �nite
set of triples (Di; fi, gi), where Di is a �nite set and fi, gi are functions mapping
D2
i to Di. MFM(X) is a minimisation problem with

Instance: A positive integer n, a function j : [n] → [|X|], and a function h :
D → Z where D =

∏n
i=1Dj(i). Furthermore,

h(x) + h(y) ≥ h(fj(1)(x1, y1), fj(2)(x2, y2), . . . , fj(n)(xn, yn)) +

h(gj(1)(x1, y1), gj(2)(x2, y2), . . . , gj(n)(xn, yn))

for all x,y ∈ D. The function h is given to the algorithm as an oracle, i.e.,
for any x ∈ D we can query the oracle to obtain h(x) in unit time.

Solution: A tuple x ∈ D.
Measure: The value of h(x).

For a �nite set X we say that MFM(X) is oracle-tractable if it can be solved
in time O(nc) for some constant c. It is not hard to see that if (f, g) is a mul-
timorphism of Γ , and MFM(D; f, g) is oracle-tractable, then Min CSP(Γ) is
tractable.

We now give two examples of oracle-tractable problems. A partial order on
D is called a lattice if every pair of elements a, b ∈ D has a greatest lower bound
a∧b (meet) and a least upper bound a∨b (join). A chain on D is a lattice which

4

is also a total order. For i = 1, . . . , n, let Li be a lattice on Di. The product
lattice L1 × · · · × Ln is de�ned on the set D1 × · · · ×Dn by extending the meet
and join component-wise.

A function f : Dk → Z is called submodular on the lattice L = (D;∧,∨) if
f(a∧ b) + f(a∨ b) ≤ f(a) + f(b) for all a,b ∈ Dk. A set of functions Γ is said
to be submodular on L if every function in Γ is submodular on L. This is equiv-
alent to (∧,∨) being a multimorphism of Γ . It follows from known algorithms
for submodular function minimisation that MFM(X) is oracle-tractable for any
�nite set X of �nite distributive lattices (e.g. chains) [6, 15].

The second example is strongly related to submodularity, but here we use a
partial order that is not a lattice to de�ne the multimorphism. Let D = {0, 1, 2},
and de�ne the functions u, v : D2 → D by letting u(x, y) = min{x, y}, v(x, y) =
max{x, y} if {x, y} 6= {1, 2}, and u(x, y) = v(x, y) = 0 otherwise. A function
h : Dk → Z is bisubmodular if h has the multimorphism (u, v). The main result
of [12] implies that MFM({D;u, v}) is oracle-tractable.

3 A New Tractable Class

In this section, we introduce a new class of multimorphisms which ensures
tractability for Min CSP (and more generally for VCSP).

De�nition 5. Let b and c be two distinct elements in D. Let (D;<) be a partial
order which relates all pairs of elements except for b and c. Assume that f, g :
D2 → D are two commutative functions satisfying the following conditions:

� If {x, y} 6= {b, c}, then f(x, y) = x ∧ y and g(x, y) = x ∨ y.
� If {x, y} = {b, c}, then {f(x, y), g(x, y)} ∩ {x, y} = ∅, and f(x, y) < g(x, y).

We call (D; f, g) a 1-defect chain (over (D;<)), and say that {b, c} is the defect
of (D; f, g). If a function has the multimorphism (f, g), then we also say that
(f, g) is a 1-defect chain multimorphism.

Three types of 1-defect chains are shown in Fig. 1(a�c). Note this is not an
exhaustive list, e.g. for |D| > 4, there are 1-defect chains similar to Fig. 1(b),
but with f(b, c) < g(b, c) < b, c. When |D| = 4, type (b) is precisely the product
lattice shown in Fig. 1(d). We denote this lattice by Lad.

Example 6. Let D = {a, b, c, d}, and assume that (D; f, g) is a 1-defect chain,
with defect {b, c}, and that a = f(b, c), d = g(b, c). If a < b, c < d, then f and
g are the meet and join of Lad, cf. Fig. 1(d). When a < d < b, c we have the
situation in Fig. 1(a), and when b, c < a < d we have the situation in Fig. 1(c).
In the two latter cases, f and g are given by the two following multimorphisms
(rows and columns are listed in the order a, b, c, d, e.g. g1(c, d) = c):

f1 :

a a a a
a b a d
a a c d
a d d d

g1 :

a b c d
b b d b
c d c c
d b c d

f2 :

a b c a
b b a b
c a c c
a b c d

g2 :

a a a d
a b d d
a d c d
d d d d

5

(a)

f(b, c)

g(b, c)

b c

(b)

f(b, c)

b c

g(b, c)

(c)

g(b, c)

f(b, c)

b c

(d)

a

b c

d

Fig. 1. Three types of 1-defect multimorphisms with defect {b, c}. (a) f(b, c) < g(b, c) <
b, c. (b) f(b, c) < b, c < g(b, c). (c) b, c < f(b, c) < g(b, c). (d) The Hasse diagram of the
lattice Lad, a special case of (b).

The proof of tractability for languages with 1-defect chain multimorphisms
is inspired by Krokhin and Larose's [10] result on maximising supermodular
functions on Mal'tsev products of lattices. First we will need some notation and
a general lemma on oracle-tractability of MFM problems.

For an equivalence relation θ on D we use x[θ] to denote the equivalence class
containing x ∈ D. The relation θ is a congruence on (D; f, g), if f(x1, y1)[θ] =
f(x2, y2)[θ] and g(x1, y1)[θ] = g(x2, y2)[θ] whenever x1[θ] = x2[θ] and y1[θ] =
y2[θ]. We use D/θ to denote the set {x[θ] | x ∈ D} and f/θ : (D/θ)2 → D/θ to
denote the function (x[θ], y[θ]) 7→ f(x, y)[θ].

Lemma 7. Let f, g be two functions that map D2 to D. If there is a congruence
relation θ on (D; f, g) such that 1) MFM(D/θ; f/θ, g/θ) is oracle-tractable; and
2) MFM({(X; f |X , g|X) | X ∈ D/θ}) is oracle-tractable, then MFM(D; f, g) is
oracle-tractable.

Proof. Let h : Dn → Z be the function we want to minimise. We de�ne a new
function h′ : (D/θ)n → Z by

h′(z1, z2, . . . , zn) = min
xi∈zi

h(x1, x2, . . . , xn).

It is clear that minz∈(D/θ)n h
′(z) = minx∈Dn h(x). By assumption 2 in the state-

ment of the lemma we can compute h′ given z1, z2, . . . , zn. To simplify the no-
tation we let u = f/θ and v = g/θ. We will now prove that h′ is an instance of
MFM(D/θ;u, v).

Let x,y ∈ Dk and choose x′i ∈ xi[θ] and y′i ∈ yi[θ] so that h′(x[θ]) = h(x′)
and h′(y[θ]) = h(y′). We then have

h′(x[θ]) + h′(y[θ]) = h(x′) + h(y′) (1)

≥ h(f(x′,y′)) + h(g(x′,y′)) (2)

≥ h′(f(x′,y′)[θ]) + h′(g(x′,y′)[θ]) (3)

= h′(f(x,y)[θ]) + h′(g(x,y)[θ])) (4)

= h′(u(x[θ],y[θ])) + h′(v(x[θ],y[θ])). (5)

6

Here (1) follows from our choice of x′ and y′, (2) follows from the fact that h
is an instance of MFM(D; f, g), (3) follows from the de�nition of h′, and �nally
(4) and (5) follows as θ is a congruence relation of f and g. Hence, h′ is an
instance of MFM(D/θ;u, v) and can be minimised in polynomial time by the
�rst assumption in the lemma. ut

Armed with this lemma and the oracle-tractability of submodular and bisub-
modular functions described in the previous section, we can now present a new
tractable class of Min CSP-problems.

Proposition 8. If Γ has a 1-defect chain multimorphism, then Min CSP(Γ)
is tractable.

Proof. Assume that Γ has a 1-defect chain multimorphism (f, g) over (D;<)
with defect {b, c}. We prove that MFM(D; f, g) is oracle-tractable.

Assume that b and c are maximal elements, i.e. x < b, c for all x ∈ D\{b, c}. In
this case the equivalence relation θ with classes A = D\{b, c}, B = {b}, C = {c}
is a congruence relation of (D; f, g). Furthermore, MFM({A,B,C}; f/θ, g/θ) and
MFM(A; f |A, g|A) are oracle-tractable [12, 15]. It now follows from Lemma 7 that
MFM(D; f, g) is oracle-tractable. The same argument works for the case when
b and c are minimal elements.

If f(b, c) < g(b, c) < b, c, but b and c are not maximal, then we can use the
congruence relation θ′ with classes A = {x | x ≤ b or x ≤ c} and B = D \ A.
Here, ({A,B}; f/θ′, g/θ′) and (B; f |B , g|B) are chains, and (A; f |A, g|A) is a
1-defect chain of the previous type. One can show that when MFM(X) and
MFM(Y) are both oracle-tractable, then so is MFM(X ∪ Y). Combining this
with the technique used above, we can now solve the minimisation problem. An
analoguous construction works in the case when b, c < f(b, c), g(b, c), using the
congruence consisting of the class {x | x ≥ b or x ≥ c} and its complement.
Finally, when f(b, c) < b, c < g(b, c), we can use the congruence relation θ′′ with
classes B = {x | x ≤ b} and C = {x | x ≥ c}. Here, ({B,C}, f/θ′′, g/θ′′),
(B, f |B , g|B), and (C, f |C , g|C) are all chains and thus the MFM problem for
these triples is oracle-tractable [15]. ut

We now turn to prove a di�erent property of functions with 1-defect chain
multimorphisms. It is based on the following result for submodular functions on
chains, which was derived by Queyranne et al. [13].

Lemma 9. A function f : Dk → Z is submodular on a chain (D;∧,∨) if and
only if the following holds: every binary function obtained from f by replacing
any given k − 2 variables by any constants is submodular on this chain.

It is straightforward to extend this lemma to products of chains, such as Lad.
Here, we outline the proof of the corresponding property for arbitrary 1-defect
chains, which will be needed in Section 6.

Lemma 10. A function h : Dk → Z, k ≥ 2, has the 1-defect chain multimor-
phism (f, g) if and only if every binary function obtained from h by replacing
any given k − 2 variables by any constants has the multimorphism (f, g).

7

Proof (sketch): Every function obtained from h by �xing a number of variables
is clearly invariant under every multimorphism of h. For the opposite direction,
assume that h does not have the multimorphism (f, g). We want to prove that
there exist vectors x,y ∈ Dk such that

h(x) + h(y) < h(f(x,y)) + h(g(x,y)), (6)

with dH(x,y) = 2, where dH denotes the Hamming distance on Dk, i.e. the
number of coordinates in which x and y di�er.

Assume to the contrary that the result does not hold. We can then choose a
function h of minimal arity such that min{ dH(x,y) | x and y satisfy (6) } > 2.
The arity of h must in fact be equal to the least dH(x,y). Otherwise, we could
obtain a function h′ of strictly smaller arity by �xing the variables in h on which
x and y agree. This would contradict the minimality in the choice of h.

This means that for any vectors which share an element in some coordinate,
the reverse (non-strict) inequality holds in (6). It is possible to combine such
inequalities to prove that there are x and y, with dH(x,y) = k, and satisfying
(6), such that {xi, yi} 6= {b, c} for all i, where {b, c} is the defect of (f, g).

Let D′ = D \ {b, c} ∪ {B}. For each i, let ϕi : D′ → D be an injection which
�xes D \ {b, c}, and sends B to b or c in such a way that {xi, yi} ⊆ ϕi(D).
Let (D′; f ′, g′) be the chain de�ned by x <′ y if x, y 6= B and x < y, x <′ B
if x < b, c, and B <′ y if b, c < y. Then, ϕi(f ′(x, y)) = f(ϕi(x), ϕi(y)), and
ϕi(g

′(x, y)) = g(ϕi(x), ϕi(y)), for all i. Let ϕ(z) = (ϕ1(z1), . . . , ϕk(zk)), and let
x′,y′ ∈ (D′)k be such that ϕ(x′) = x and ϕ(y′) = y. De�ne h′(z′) = h(ϕ(z′)).
Then, h′(x′) + h′(y′) = h(x) + h(y) < h(f(x,y)) + h(g(x,y)) = h′(f ′(x′,y′)) +
h′(g′(x′,y′)). It follows that h′ is not submodular on (D′, f ′, g′). By Lemma 9,
there are elements z′,w′ ∈ (D′)k with dH(z′,w′) = 2 such that h′(z′)+h′(w′) <
h′(f ′(z′,w′)) + h′(g′(z′,w′)). Hence, h(ϕ(z′)) + h(ϕ(w′)) = h′(z′) + h′(w′) <
h′(f ′(z′,w′)) + h′(g′(z′,w′)) = h(f(ϕ(z′), ϕ(w′))) + h(g(ϕ(z′), ϕ(w′))), and we
have dH(ϕ(z′), ϕ(w′)) = 2. This contradicts the original choice of h. ut

4 Endomorphisms, Cores and Constants

In this section, we show that under a natural condition, it is possible to add
constant unary relations to Γ without changing the computational complexity
of the corresponding Min CSP-problem. Let h : Dk → {0, 1}. A function g :
D → D is called an endomorphism of h if for every k-tuple (x1, . . . , xk) ∈ Dk,
it holds that h(x1, . . . , xk) = 0 =⇒ h(g(x1), . . . , g(xk)) = 0. The function g is
an endomorphism of Γ if it is an endomorphism of each function in Γ . A set of
functions, Γ , is said to be a core if all of its endomorphisms are injective. The
idea is that if Γ is not a core, then we can apply a non-injective endomorphism
to every function in Γ , and obtain a polynomial-time equivalent problem on a
strictly smaller domain. We can then use results previously obtained for smaller
domains [2, 8]. Thus, we can restrict our attention to the case when Γ is a core.

The set of all endomorphisms of Γ is denoted by End (Γ). Recall that a
bijective endomorphism is called an automorphism and that the automorphisms
of Γ form a group under composition.

8

Jeavons et al. [7] de�ned the notion of an indicator problem of order k for
CSPs. We will exploit indicator problems of order 1 here, adapted to the setting
of Min CSP. Let Γ be a �nite set of {0, 1}-valued functions over D. Let XD

denote the set containing a variable xd for each d ∈ D, and for a = (a1, . . . , ak) ∈
Dk, let xa = (xa1 , . . . xak) ∈ Xk

D. The indicator problem IP(Γ) is de�ned as the
instance of Min CSP(Γ) with variables XD, and sum

∑
fi∈Γ

∑
a∈f−1

i (0) fi(xa),
where ki is the arity of the function fi.

Let CD = {{d} | d ∈ D} be the set of constant unary relations over D.
The proof of the following result follows the lines of similar results for related
problems, such as the CSP decision problem.

Proposition 11. Let Γ be a core over D. Then,Min CSP(Γ, CD) is polynomial-
time reducible to Min CSP(Γ).

Proof. Let ι : D → XD be the function de�ned by ι(d) = xd. Theorem 3.5 in [7]
implies the following property of IP(Γ): the set of optimal solutions to IP(Γ)
is equal to {σ : XD → D | σ ◦ ι ∈ End (Γ)}.

Let J be an instance of Min CSP(Γ, CD). The only way for J to be un-
satis�able is if it contains two contradicting constraint applications (y; {a}) and
(y; {b}), with a 6= b. This is easily checked in polynomial time.

Otherwise, let x be a list of the variables XD, and let R = πxOptsol(IP(Γ)).
Now modify J to an instance J ′ ofMin CSP(Γ,R) as follows. Add the variables
in XD to V (J ′), and add the constraint application (x;R). Furthermore, remove
each constraint (y; {a}), and replace y by xa throughout the instance. Let σ′ be
an optimal solution to J ′. Since Γ is a core, g = σ′|XD

◦ ι is an automorphism
of Γ , and so is its inverse, g−1. Hence, σ = g−1 ◦σ′ is also an optimal solution to
J ′. From σ we easily recover a solution to J of equal measure, and conversely,
any solution to J can be interpreted as a solution to J ′. It follows that we
have a reduction from Min CSP(Γ, CD) to Min CSP(Γ,R). By Proposition 3,
we �nally have a reduction from Min CSP(Γ,R) to Min CSP(Γ). ut

For a, b ∈ D, let eab : D → D denote the function eab(a) = b and eab(x) = x
for x 6= a. The proof of the following lemma is straightforward.

Lemma 12. If eab 6∈ End (Γ), then 〈Γ, CD〉fn contains a unary {0, 1}-valued
function u such that u(a) = 0 and u(b) = 1.

5 A Graph of Partial Multimorphisms

Let Γ be a core over D. In this section, we de�ne a graph G = (V,E) which en-
codes either the NP-hardness ofMin CSP(Γ, CD) or provides a multimorphism
for the binary functions in 〈Γ, CD〉fn. The graph is a variation of a graph de�ned
by Kolmogorov and �ivný [9].

Let V be the set of partial functions (f, g) : D2 → D2 such that (1) f and g
are de�ned on a subset {a, b} ⊆ D; (2) f and g are idempotent and commutative;
and (3) {f(a, b), g(a, b)} = {a, b} or {f(a, b), g(a, b)}∩{a, b} = ∅. We allow a = b

9

in the de�nition of V so there is precisely one vertex for each singleton in D. For
a, b ∈ D, we let G[a, b] denote the graph induced by the set of vertices de�ned
on {a, b}. Let (f1, g1) ∈ G[a1, b1] and (f2, g2) ∈ G[a2, b2]. There is an edge in E
between (f1, g1) and (f2, g2) if there is a binary function h ∈ 〈Γ, CD〉fn such that

min{h(a1, a2) + h(b1, b2), h(a1, b2) + h(b1, a2)} <
h(f1(a1, b1), f2(a2, b2)) + h(g1(a1, b1), g2(a2, b2)). (7)

We can now see howG describes multimorphisms of binary functions in 〈Γ, CD〉fn.

Lemma 13. Let I ⊆ V be an independent set in G with precisely one ver-
tex (f{x,y}, g{x,y}) from each subgraph G[x, y] Then, every binary function h ∈
〈Γ, CD〉fn has the multimorphism (f, g) de�ned by f(x, y) = f{x,y}(x, y) and
g(x, y) = g{x,y}(x, y).

Proof. Assume to the contrary that (f, g) is not a multimorphism of h. Then,
there are tuples (a1, a2), (b1, b2) ∈ D2 such that

h(a1, a2) + h(b1, b2) < h(f(a1, b1), f(a2, b2)) + h(g(a1, b1), g(a2, b2)).

But this would imply that {(f{a1,b1}, g{a1,b1}), (f{a2,b2}, g{a2,b2})} ∈ E, which is
a contradiction since I is an independent set. ut

For distinct a, b ∈ D, let
−→
ab denote the vertex (f, g) ∈ G[a, b] such that

f(a, b) = a and g(a, b) = b. We say that such a vertex is conservative. Let V ′

denote the set of all conservative vertices, and let G′ = G[V ′] be the subgraph
of G induced by V ′. Let V ′Γ ⊆ V ′ be the set of vertices −→xy such that {x, y} ∈
〈Γ, CD〉w. For conservative vertices

−−→
a1b1 and

−−→
a2b2, condition (7) reduces to:

h(a1, b2) + h(b1, a2) < h(a1, a2) + h(b1, b2). (8)

For a vertex x = (f, g), we let x denote the vertex (g, f). It follows immedi-
ately from (7) that {x, y} ∈ E i� {x, y} ∈ E. We also need to establish a number
of additional properties of the graph G.

Lemma 14. If {
−−→
a1b1,

−−→
a2b2} ∈ E, then there exists a function h ∈ 〈Γ, CD〉fn

such that h(a1, b2) = h(b1, a2) < h(a1, a2) = h(b1, b2).

The proof of Lemma 14, and of properties (1�3) of the following lemma are
very similar to the proof of Lemma 11 in Kolmogorov and �ivný [9]. The main
di�erence is that we do not have access to all unary functions, so we must be a
bit more careful. Property (4) provides a way to deduce the existence of a set of
neighbours for non-isolated conservative vertices; (5) and (6) follow from (4).

Lemma 15. Let x1, . . . , xn be conservative vertices.

1. If {x1, x2}, {x2, x3} ∈ E and x2 ∈ V ′Γ , then {x1, x3} ∈ E.
2. Let (x1, . . . , xn), n ≥ 2, be a path in G, with x2, . . . , xn−1 ∈ V ′Γ . If n is even,

then {x1, xn} ∈ E, otherwise {x1, xn} ∈ E.

10

3. If (x1, . . . , xn, x1), n ≥ 3 is an odd cycle in G and x2, . . . , xn ∈ V ′Γ , then
there is a loop on x1.

4. If {
−−→
a1b1,

−−→
a2b2} ∈ E, then for each element x 6= a2, b2, either {

−−→
a1b1,

−→a2x} ∈ E
or {
−−→
a1b1,

−→
xb2} ∈ E.

5. If {−→xy,−→yx}, {−→yz,−→zy} ∈ E and {−→xy,−→yz} 6∈ E, then {−→xy,−→zx}, {−→yz,−→zx} ∈ E.
6. If there is a loop on −→xz, but −→xy and −→yz are loop-free, then {−→xy,−→yz} ∈ E.

6 Classi�cation for |D| = 4

We will now completely classify the complexity ofMin CSP over a four-element
domain. From here on, we assume that D is the domain {a, b, c, d}. First, we
prove a result which describes the structure of the unary functions in 〈Γ, C〉fn,
when Γ is a core. Let Σ = {{x, y} ⊆ D | x 6= y}, Σ0 = Σ \ {{b, c}, {a, d}}, and
let ΣΓ = 〈Γ, CD〉w ∩ Σ. For distinct x, y ∈ D, let uxy(z) = 0 if z ∈ {x, y}, and
uxy(z) = 1 otherwise.

Proposition 16. Let Γ be a core over {a, b, c, d} and assume that {b, c} 6∈ ΣΓ .
Then, Σ0 ⊆ ΣΓ and for all unary functions u ∈ 〈Γ, CD〉fn, we have u(a)+u(d) ≤
u(b) + u(c). If Σ0 = ΣΓ , then u(a) + u(d) = u(b) + u(c).

Proof (sketch): Let U be the set of unary functions in 〈Γ, CD〉fn. If {b, c} 6∈ ΣΓ ,
then ubc 6∈ U . Since Γ is a core, eba, eca, ebd, ecd 6∈ End (Γ), so by Lemma 12,
there must be a number of unary {0, 1}-valued functions in U to witness this.
The set {ubd, ucd, uab, uac} ful�ls this condition, and due to the absence of ubc,
one can argue that this set must indeed lie entirely in U . The last part of the
proposition can be shown using the observation that this set can express every
unary function u such that u(a) + u(d) = u(b) + u(c), and considering what
happens when one adds a function v with v(a) + v(d) < v(b) + v(c). ut

It is possible to link properties of G′ to the existence of certain multimor-
phisms. Note that if {x, y} ∈ ΣΓ , then −→xy,−→yx ∈ V ′Γ . Proposition 16 therefore
gives us good control over the size of V ′Γ . In general G[V ′Γ] needs to be bipartite
unlessMin CSP(Γ) is NP-hard (cf. the proof of Theorem 18), so a lower bound
on Σ implies that a large induced subgraph of G′ needs to be bipartite. This
connection is made formal by the following proposition, the proof of which is
deferred to Appendix A.

Proposition 17. Assume that Σ0 ⊆ ΣΓ . If G′ is bipartite, then the set of
binary functions in 〈Γ, CD〉fn is submodular on a chain. If G′ is not bipartite
but G[V ′Γ] is, then the set of binary functions in 〈Γ, CD〉fn has a 1-defect chain
multimorphism.

We are now in a position to state and prove the main theorem.

Theorem 18. Let Γ be a core over D = {a, b, c, d}. If Γ is submodular on
a chain, or if Γ has a 1-defect chain multimorphism, then Min CSP(Γ) is
tractable. Otherwise, it is NP-hard.

11

Proof. Assume that G[V ′Γ] has a loop on a vertex −→xy. It then follows from
Lemma 14 that there is a function h ∈ 〈Γ, CD〉fn such that h(x, y) = h(y, x) <
h(x, x) = h(y, y), and {x, y} ∈ 〈Γ, CD〉w. By Proposition 5.1 in [2], the problem
Min CSP(Γ, CD) is NP-hard. By Proposition 11, Min CSP(Γ, CD) reduces to
Min CSP(Γ). Hence, the latter problem is NP-hard as well.

If instead G[V ′Γ] is loop-free, then it is bipartite, by Lemma 15(3). We may
assume that Σ0 ⊆ ΣΓ : this is trivial if ΣΓ = Σ. If ΣΓ is strictly contained in Σ,
then up to an automorphism we may assume that {b, c} 6∈ ΣΓ , and the inclusion
follows by Proposition 16. For a k-ary function h ∈ Γ , let Φ(h) be the set of
binary functions which can be obtained from h by �xing k− 2 variables, and let
Γ ′ be the union of Φ(h) over all h ∈ Γ .

Now, if G′ is bipartite, then by Proposition 17, the set of binary functions
in 〈Γ, CD〉fn is submodular on a chain. Since this set contains Γ ′, we may con-
clude, by Lemma 9, that Γ is submodular on this chain as well. It follows that
Min CSP(Γ) is tractable [6, 15].

Otherwise, G′ is not bipartite, and by Proposition 17, the set of binary func-
tions in 〈Γ, CD〉fn have a 1-defect chain multimorphism. Since this set contains
Γ ′, we may conclude, by Lemma 10 this time, that Γ has a 1-defect chain multi-
morphism. It now follows from Proposition 8 thatMin CSP(Γ) is tractable. ut

7 Discussion

We have presented a complete complexity classi�cation for Min CSP over a
four-element domain. More importantly, we have compiled a powerful set of tools
which will allow further systematic study of this problem. In particular, we have
shown that it is possible to add (crisp) constants to an arbitrary core, without
changing the complexity of the problem. This result holds in the more general
case of �nite-valued VCSP as well, thus answering Question 4 in �ivný [17]. We
have also demonstrated that the techniques used by Krokhin and Larose [10]
for lattices can be used e�ectively in the context of arbitrary algebras, and in
doing so, we have given the �rst example of an instance of Min CSP where
submodularity does not su�ce to explain tractability. Finally, we have shown
that graph representations such as the one de�ned by Kolmogorov and �ivný [9]
can be used to great e�ect, even in a non-conservative setting.

The curious readers may ask themselves several questions at this point, and
the following one is particularly important: do 1-defect chain multimorphisms de-
�ne genuinely new tractable classes? There is still a possibility that the tractabil-
ity can be explained in terms of submodularity. We answer this question nega-
tively with the following example.

Example 19. Consider the language Γ = {ubd, ucd, uab, uac, h} where h : D2 →
{0, 1} is de�ned such that h(x, y) = 1 if and only if x = c or y = b. Γ is a core on
{a, b, c, d} but it is not submodular on any lattice. However, Γ have the 1-defect
chain multimorphisms (f1, g1) and (f2, g2) from Example 6.

12

A related question is why bisubmodularity does not appear in the classi�ca-
tion of Min CSP over domains of size three [8]. The reason is that for any cost
function h : {0, 1, 2}k → {0, 1} which is bisubmodular, the tuple (0, 0, . . . , 0)
minimises h. It follows that any {0, 1} constraint language over three elements
which is bisubmodular is not a core.

There are several ways of extending this work, and one obvious way is to study
VCSP instead ofMin CSP. It is known that the fractional polymorphisms of the
constraint language, introduced by Cohen et al. [1], characterise the complexity
of this problem (see also [3]). Multimorphisms are a special case of fractional
polymorphisms. As for Min CSP, it is currently not known whether submod-
ularity over every �nite lattice implies tractability for VCSP. This is known
to be true for distributive lattices, and for certain constructions on lattices,
e.g. homomorphic images and Mal'tsev products [10]. The �ve element modular
non-distributive lattice (also known as the diamond) implies tractability for un-
weighted VCSP [11]. Finally, it is known that submodularity over �nite modular
lattices implies containment in NP ∩ coNP [11]. It is thus clear that in order to
approach further classi�cation of either Min CSP or VCSP, it will be necessary
to study the complexity of minimising submodular cost functions over new �nite
lattices.

References

1. D. Cohen, M. Cooper, and P. Jeavons. An algebraic characterisation of complexity
for valued constraints. In Proceedings of the International Conference on Principles
and Practice of Constraint Programming (CP-2006), pages 680�684, 2006.

2. D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. The complexity of soft con-
straint satisfaction. Arti�cial Intelligence, 170(11):983�1016, 2006.

3. D. A. Cohen, P. Creed, P. G. Jeavons, and S. Zivny. An algebraic theory of com-
plexity for valued constraints: Establishing a galois connection. Technical Report
RR-10-16, OUCL, November 2010.

4. N. Creignou, P. G. Kolaitis, and H. Vollmer, editors. Complexity of Constraints: An
Overview of Current Research Themes, volume 5250 of Lecture Notes in Computer
Science. Springer-Verlag, 2008.

5. V. Deineko, P. Jonsson, M. Klasson, and A. Krokhin. The approximability of MAX
CSP with �xed-value constraints. Journal of the ACM, 55(4):1�37, 2008.

6. S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. J. ACM, 48(4):761�777, 2001.

7. P. Jeavons, D. Cohen, and M. Gyssens. How to determine the expressive power of
constraints. Constraints, 4(2):113�131, 1999.

8. P. Jonsson, M. Klasson, and A. Krokhin. The approximability of three-valued
MAX CSP. SIAM J. Comput., 35(6):1329�1349, 2006.

9. V. Kolmogorov and S. �ivný. The complexity of conservative �nite-valued CSPs.
CoRR, abs/1008.1555, 2010.

10. A. Krokhin and B. Larose. Maximizing supermodular functions on product lattices,
with application to maximum constraint satisfaction. SIAM J. Discrete Math.,
22(1):312�328, 2008.

11. F. Kuivinen. Algorithms and Hardness Results for Some Valued CSPs. PhD thesis,
Linköping University, TCSLAB, 2009.

13

12. S. T. McCormick and S. Fujishige. Strongly polynomial and fully combinatorial
algorithms for bisubmodular function minimization. Math. Program., 122(1):87�
120, 2010.

13. M. Queyranne, F. Spieksma, and F. Tardella. A general class of greedily solvable
linear programs. Math. Oper. Res., 23(4):892�908, 1998.

14. P. Raghavendra. Optimal algorithms and inapproximability results for every CSP?
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC-2008), pages 245�254, 2008.

15. A. Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. Comb. Theory, Ser. B, 80(2):346�355, 2000.

16. R. Takhanov. A dichotomy theorem for the general minimum cost homomorphism
problem. In Proceedings of the 27th International Symposium on Theoretical As-
pects of Computer Science (STACS-2010), pages 657�668, 2010.

17. S. �ivný. The Complexity and Expressive Power of Valued Constraints. PhD thesis,
Oxford University Computing Laboratory, 2009.

A Proof of Proposition 17

We will need three supporting lemmas, which are stated here without proofs.
They follow without too much di�culty from the de�nition of the graph G,
Lemma 15, and Proposition 16.

Lemma 20. If Σ0 ⊆ ΣΓ , and x ∈ V ′ is not isolated in G′, then {x, x} ∈ E.

Lemma 21. Assume that ΣΓ ⊆ Σad and that there is an edge {(f, g), z} ∈ E,
z ∈ V ′. Then, {

−→
ab, z} ∈ E or {−→ac, z} ∈ E, and {

−→
bd, z} ∈ E or {

−→
cd, z} ∈ E.

Lemma 22. Assume that ΣΓ ⊆ Σ0. If there is a loop on
−→
bc or

−→
ad, then there

is a loop on at least one of the vertices
−→
ab, −→ac,

−→
bd,
−→
cd.

Proposition 17. Assume that Σ0 ⊆ ΣΓ . If G′ is bipartite, then the set of
binary functions in 〈Γ, CD〉fn is submodular on a chain. If G′ is not bipartite
but G[V ′Γ] is, then the set of binary functions in 〈Γ, CD〉fn has a 1-defect chain
multimorphism.

Proof. We start by proving the case when G′ is bipartite. For an independent set
I in G′, let RI denote the binary relation on D de�ned by (x, y) ∈ RI i� −→xy ∈ I.
Let {I, J} be a 2-colouring of the subgraph of G′ induced by the non-isolated
vertices. We �rst show that RI is a partial order on D. Let (x, y), (y, z) ∈ RI .
Then, −→xy and −→yz have the same colour in I, and it follows that {−→xy,−→yz} 6∈
E. Hence, by Lemma 15(5), we have {−→xy,−→zx}, {−→yz,−→zx} ∈ E. By Lemma 20,
{−→zx,−→xz} ∈ E, so −→xz ∈ I and (x, z) ∈ RI . Now, let (D;<) be a linear extension of
RI , and let I ′ ⊇ I be the corresponding subset of V ′. The set I ′ is independent
since I is independent and I ′ \ I is a set of isolated vertices in G′. Since there
are no edges from V ′ to the singleton vertices in G, we can add all of these to I ′

as well. Thus, by Lemma 13, every binary function in 〈Γ, CD〉fn is submodular
on the chain (D;∧,∨), where ∧ and ∨ are de�ned with respect to (D;<).

14

Let (f, g) denote the vertex in G given by f(b, c) = f(c, b) = a and g(b, c) =
g(c, b) = d. We follow a similar strategy for the case when G′ is not bipartite.
However, instead of using G′ we now consider the graph G[V ′ad ∪{(f, g), (g, f)}],
where V ′ad = V ′ \ {

−→
bc,
−→
cb}. First, we show that G[V ′ad] is bipartite. If ΣΓ = Σad,

then G[V ′ad] = G[V ′Γ] is bipartite by assumption. Otherwise, ΣΓ = Σ0. Since
G[V ′Γ] = G[V ′0] is loop-free, we know from Lemma 22 that there is no loop on
−→
bc, nor on

−→
ad. Thus, by Lemma 15(3), G[V ′ad] is bipartite.

Assume for the moment that the following holds:

For y ∈ D \ {b, c}, there is an odd path in G[V ′ad] from
−→
by to −→yc . (9)

Let {I, J} be a 2-colouring of the subgraph of G[V ′ad] induced by the non-
isolated vertices. We claim that RI is a partial order on D. Let (x, y), (y, z) ∈ RI
and observe that (9) implies {x, z} 6= {b, c}. As in the case for bipartiteG′, we can
argue that −→xz is connected by even paths to both −→xy and −→yz. Since {x, z} 6= {b, c},
it follows that (x, z) ∈ I. Now take a transitive extension of RI which orders all
pairs of elements except for b and c, and let I ′ ⊇ I be the corresponding subset
of V ′ad. We can assume (possibly by swapping I and J) that

−→
ad ∈ I ′.

Next we show that I ′∪{(f, g)} is independent. This will ensure that f(b, c) =
a < d = g(b, c) holds in the constructed multimorphism. If (f, g) is not con-
nected to any vertex in V ′ad, then I

′ ∪ {(f, g)} is trivially independent. Other-
wise, by Lemma 21, (9), and Lemma 20, we can show that from any z ∈ V ′ad
such that {(f, g), z} ∈ E, there are odd paths in G[V ′ad] to each vertex in the
set S = {

−→
ab,−→ac,

−→
bd,
−→
cd}. Since G[V ′ad] is bipartite, it follows that {

−→
ab,
−→
bd} 6∈ E,

so {
−→
ab,
−→
da} ∈ E by Lemma 15(5). Hence, I ′ = I = S ∪ {

−→
ad}, and z 6∈ I ′.

It remains to verify that I ′ ∪ {(f, g)} together with the singleton vertices in
G also form an independent set, i.e. that there is no edge between a singleton
and (f, g). But by condition (7) this is equivalent to saying that each row and
column of every binary function in 〈Γ, CD〉fn is submodular on Lad, which follows
from Proposition 16. By Lemma 13, every binary function in 〈Γ, CD〉fn has the
1-defect chain multimorphism corresponding to I ′ ∪ {(f, g)}.

Finally, we prove property (9). If ΣΓ = Σad, then by Lemma 15(3), and the
fact that G′ contains an odd cycle, we have a loop on

−→
bc. Since

−→
by and −→yc are

loop-free for y ∈ D \ {b, c}, we have {
−→
by,−→yc} ∈ E by Lemma 15(6). Otherwise,

ΣΓ = Σ0. We argued above that G′ does not contain any loop in this case.
Thus, by Lemma 15(3), every odd cycle C in G′ must intersect both {

−→
bc,
−→
cb}

and {
−→
ad,
−→
da}. Now, by repeatedly applying Lemma 15(2) to C, we obtain a

triangle on a subset of {
−→
bc,
−→
cb,
−→
ad,
−→
da}. By Lemma 20, we can conclude that

G′ in fact contains the complete graph on these four vertices. In particular, we
have both {

−→
ad,
−→
bc} ∈ E and {

−→
da,
−→
bc} ∈ E. By Lemma 15(4), we therefore have

either {
−→
ad,
−→
ba} ∈ E or {

−→
ad,−→ac} ∈ E, and furthermore, either {

−→
da,
−→
ba} ∈ E or

{
−→
da,−→ac} ∈ E. Since there is no loop on

−→
ad, we conclude that either the path

(
−→
ba,
−→
ad,
−→
da,−→ac) or the path (

−→
ba,
−→
da,
−→
ad,−→ac) is in G[V ′ad]. In the same way, we �nd

an odd path from
−→
bd to

−→
dc. ut

15

