
Abstracting Abstraction in Search with Applications to Planning

Christer Bäckström and Peter Jonsson
Department of Computer Science, Linköping University

SE-581 83 Linköping, Sweden
christer.backstrom@liu.se peter.jonsson@liu.se

Abstract

Abstraction has been used in search and planning from
the very beginning of AI. Many different methods and for-
malisms for abstraction have been proposed in the literature
but they have been designed from various points of view
and with varying purposes. Hence, these methods have been
notoriously difficult to analyse and compare in a structured
way. In order to improve upon this situation, we present a
coherent and flexible framework for modelling abstraction
(and abstraction-like) methods based on transformations on
labelled graphs. Transformations can have certain method
properties that are inherent in the abstraction methods and de-
scribe their fundamental modelling characteristics, and they
can have certain instance properties that describe algorithmic
and computational characteristics of problem instances. The
usefulness of the framework is demonstrated by applying it to
problems in both search and planning. First, we show that we
can capture many search abstraction concepts (such as avoid-
ance of backtracking between levels) and that we can put
them into a broader context. We further model five different
abstraction concepts from the planning literature. Analysing
what method properties they have highlights their fundamen-
tal differences and similarities. Finally, we prove that method
properties sometimes imply instance properties. Taking also
those instance properties into account reveals important in-
formation about computational aspects of the five methods.

1 Introduction
1.1 Background and our Approach
The main idea behind abstraction in problem solving is the
following: the original problem instance is transformed into
a corresponding abstract instance, this abstract instance is
solved, and the abstract solution is then used to find a solu-
tion to the original instance. The use of abstraction is an old
and widespread idea in automated reasoning. It has, for ex-
ample, been intensively used in AI, verification, electronic
design and reasoning about physical systems. The literature
is consequently vast and we refer the reader to the surveys
by Giunchiglia et al. (1997) or Holte and Choueiry (2003)
as suitable introductions.

Throughout this paper, we concentrate on abstraction in
search and planning. Abstraction has a long history even if

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

we restrict ourselves in this way; its use dates back to AB-
STRIPS (Sacerdoti 1974) and even to the first version of GPS
(Newell, Shaw, and Simon 1959). In order for abstraction to
be useful, the abstract instance should be easier to solve and
the total time spent should be less than without using ab-
straction. This is a reasonable requirement, yet it has turned
out very difficult to achieve in practice. It has been demon-
strated in many ways that abstraction can be very effective
at decreasing overall solution time but few, if any, methods
give any guarantees. For instance, Knoblock (1994) pro-
posed a way to automatically create abstractions and demon-
strated that it could give exponential speed-up in certain
cases while Bäckström and Jonsson (1995) showed that the
method can also backfire by creating solutions that are ex-
ponentially longer than the optimal solutions. Abstraction
is thus a method that can strike both ways and it requires
a careful analysis of the application domain to know if ab-
straction is useful or not.

A large number of different abstraction and abstraction-
like methods appear in the literature. Unfortunately, many
of these methods are tied to particular formalisms which
make them difficult to analyse and compare in a meaningful
way. We present a framework for comparing and analysing
abstraction and abstraction-like methods based on transfor-
mations between labelled graphs. The idea of using func-
tions (typically homomorphisms) on graphs (or other struc-
tures) for describing abstractions is very natural and has ap-
peared in the literature earlier, cf. Holte et al. (1996) or
Helmert, Haslum, and Hoffmann (2007). We extend this
idea by viewing transformations as tuples 〈f,R〉 where,
loosely speaking, the function f describes the “structure” of
the abstracted graph and R gives an “interpretation” of the
abstracted labels. This gives us a plethora of possibilities to
model and study different kinds of abstraction-like methods.
We stress that we do not set out to create a grand theory of
abstraction. There are attempts in the literature to define and
study abstraction on a very general level which allow for an
in-depth treatment of ontological aspects, cf. Giunchiglia
and Walsh (1992) or Pandurang Nayak and Levy (1995).
Our approach is much more pragmatic, and it is first and
foremost intended for studying computational aspects of ab-
straction in search. This does not exclude that it may be use-
ful in other contexts but we view this as an added bonus and
not a primary goal. We also want to point out that our pur-

pose is not to invent new abstraction methods but to enable
formal analyses of previously proposed methods. However,
we hope that an increased understanding of abstraction will
inspire the invention of new and better methods.

1.2 Results
Within a framework based on transformations, it is natural
to identify and study abstract properties of transformations.
Almost every result in this paper is, in one way or another,
based on this idea. We have found that it is convenient to
divide such properties into two classes:

Method properties characterise different abstraction
methods on an abstract level. For instance, we show that a
particular choice of such properties exactly captures the ab-
straction concept used by Zilles and Holte (2010). Method
properties are used for comparing and analysing general
properties of abstraction methods but they do not provide
any information about specific problem instances.

Instance properties capture properties of problem in-
stances, typically computational ones. For example, we
show that our instance properties can be used to characterise
different notions of backtrack-free search. Instance proper-
ties are used for studying computational aspects of problem
instances but they are not dependent on the particular choice
of abstraction method.

Both types of properties are discussed, in Sections 3 and
4, respectively. While this is a useful conceptual distinction,
we allow ourselves to be flexible. We may, for example, say
that a method has a certain instance property X: meaning
that every instance that can be modelled by the method has
property X . Once again, we emphasise that properties are
defined on transformations and not on methods or instances.
The idea of studying transformations abstractly gives us a
powerful tool for analysing the relationship between mod-
elling aspects and computational aspects. For example, it
enables us to provide results of the type ”if a problem in-
stance I is modelled in a formalism with method property
X , then I has instance property Y ”. Note that we do not
restrict ourselves to a particular formalism here — we are
only restricted to the class of methods having property X .

We now briefly describe what kind of concrete results we
obtain. In Section 5, we take a closer look at the problem
of avoiding backtracking between levels. As we have al-
ready pointed out, abstraction can, under certain conditions,
slow down the search process substantially. One typical rea-
son behind this adverse behaviour is backtracking between
levels, i.e. when there are abstract solutions that cannot
be refined to concrete solutions (and thus force the search
algorithm to look for another abstract plan). This phe-
nomenon has historically been a very active research area
within planning and it still attracts a substantial amount of
research. Partial solutions that have been presented include
the ordered monotonicity criterion by Knoblock, Tenenberg,
and Yang (1991), the downward refinement property (DRP)
by Bacchus and Yang (1994), and the simulation-based ap-
proach by Bundy et al. (1996). Until now, no general con-
ditions that fully capture this concept have been identified
in the literature. We discuss three different notions of back-
tracking avoidance and show how these can be characterized

within our framework.
In the final part of the paper (Sections 6–8), we study and

compare different approaches to abstraction in automated
planning. Abstraction has always attracted great interest
in planning and there is a rich flora of different abstraction
methods. Planning can be viewed as a special case of search
where the state space is induced by a number of variables
and the state transitions are induced by a set of actions. We
demonstrate how to use transformations to model five differ-
ent abstraction(-like) methods in planning, which highlights
some of their differences and similarities. These five meth-
ods are a representative selection but there certainly are other
methods worth studying, cf. Christensen (1990) and Fink
and Yang (1997). We show how to derive instance prop-
erties from the method properties which shows that the five
methods are all quite different. One interesting result is that
the two different variants of ABSTRIPS, which seem to dif-
fer only marginally judged by their formal definitions, ex-
hibit fundamentally different instance properties and, thus,
computational properties. Another interesting result is that
certain methods completely avoid spurious states, a prop-
erty that is important, for example, when using abstraction
for heuristic search (Haslum et al. 2007).

2 STGs and STG Transformations
We first introduce our framework for studying abstractions.
Although the definitions may appear somewhat complex and
difficult to understand at first sight, there is a reason: we
want to prove results, not merely devote ourselves to dis-
cussions. We begin by defining some general notation and
concepts, then we introduce state transition graphs and our
transformation concept.

If X is a set, then |X| denotes the cardinality of X . A
partition of a set X is a set P of non-empty subsets of X
such that (1) ∪p∈P p = X and (2) for all p, q ∈ P , if p 6= q,
then p ∩ q = ∅. Let f : X → Y be a function, then
Rng(f) = {f(x) | x ∈ X} is the range of f and the exten-
sion of f to subsets of X is defined as f(Z) = ∪x∈Zf(x)
for all Z ⊆ X .

Before proceeding we remind the reader that when f is
a function from X to 2Y (for some sets X and Y), then
Rng(f) ⊆ 2Y , that is, the value of f is a subset of Y , not an
element in Y .

Definition 1. A state transition graph (STG) over a set L
of labels is a tuple G = 〈S, E〉 where S is a set of vertices
called states and E ⊆ S×S×L is a set of labelled arcs. The
set of labels in G is implicitly defined as L(G) = L(E) =
{` | 〈s, t, `〉 ∈ E}. A sequence s0, s1, . . . , sk of states in S
is a (state) path in G if either (1) k = 0 or (2) there is some
` s.t. 〈s0, s1, `〉 ∈ E and s1, . . . , sk is a path in G.

More than one arc in the same direction between two
states is allowed, as long as the arcs have different labels.
The intention of the labels is to provide a means to identify
a subset of arcs by assigning a particular label to these arcs.
This is useful, for instance, in planning where a single action
may induce many arcs in an STG. We note that it is allowed
to use the same label for every arc, in which case the STG
concept collapses to an ordinary directed graph.

Definition 2. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be
two STGs. A total function f : S1 → 2S2 is a transfor-
mation function from G1 to G2 if Rng(f) is a partition of
S2. A label relation from G1 to G2 is a binary relation
R ⊆ L(G1)×L(G2). An (STG) transformation from G1 to
G2 is a pair τ = 〈f,R〉 where f is a transformation function
from G1 to G2 and R is a label relation from G1 to G2.

The transformation function f specifies how the transfor-
mation maps states from one STG to the other while the label
relation R provides additional information about how sets of
arcs are related between the two STGs. Note that f is for-
mally a function from S1 to 2S2 , that is, it has a subset of
S2 as value. We use a function rather than a relation since
it makes the theory clearer and simpler and is more in line
with previous work in the area.

Example 3. Consider two STGs: G1 : 00 a→ 01 b→ 10
a→ 11 and G2 : 0 c→ 1. Also define f1 : G1 → G2

such that f1(xy) = {x}. We see immediately that f1

is a transformation function from G1 to G2. Define f2 :
G1 → G2 such that f2(xy) = {x, y}; this function is
not a transformation function since f2(00) = {0} and
f2(01) = {0, 1} which implies that Rng(f2) does not
partition G2. Finally, the function f3(xy) = {2x +
y, 7 − 2x − y} is a transformation function from G1 to
G3=〈{0, . . . , 7}, {〈x, y, d〉 | x 6= y}〉 since Rng(f3) par-
titions {0, . . . , 7} into {{0, 7}, {1, 6}, {2, 5}, {3, 4}}. The
functions f1 and f3 are illustrated in Figure 1.

00 01 10 11
a b aG1:

0 1
cG2:

f1(00) = f1(01) f1(10) = f1(11)

00 01 10 11
a b aG1:

0

1 2

3

7

6 5

4

G3: d

f3(00)
f3(01) f3(10)

f3(11)

Figure 1: The functions f1 and f3 in Example 3.

A high degree of symmetry is inherent in our transfor-
mation concept. It is, in fact, only a conceptual choice to
say that one STG is the transformation from another and not
the other way around. This symmetry simplifies our exposi-
tion considerably: concrete examples are the definitions of
method and instance properties together with some of the
forthcoming proofs.
Definition 4. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be
two STGs, let f be a transformation function from G1 to
G2 and let R be a label relation from G1 to G2. Then, the
reverse transformation function f : S2 → 2S1 is defined as
f(t) = {s ∈ S1 | t ∈ f(s)} and the reverse label relation
R ⊆ L(G2)× L(G1) is defined as R(`2, `1) iff R(`1, `2).

Consider the functions f1 and f3 from Example 3 once
again. We see that f1(0) = {00, 01} and f1(1) = {10, 11},
while f3(0) = f3(7) = {00}, f3(1) = f3(6) = {01},
f3(2) = f3(5) = {10} and f3(3) = f3(4) = {11}.
Lemma 5. Let f be a transformation function from an STG
G1 = 〈S1, E1〉 to an STG G2 = 〈S2, E2〉. Then:

1) for all s1 ∈ S1, s2 ∈ S2, s1 ∈ f(s2) iff s2 ∈ f(s1).
2) f is a transformation function from G2 to G1.
3) If 〈f,R〉 is a transformation from G1 to G2, then 〈f, R〉

is a transformation from G2 to G1.

Proof. 1) Immediate from the definitions.
2) S2 = Rng(f) which readily implies that f is total.

Suppose s ∈ S1 and s 6∈ Rng(f). Then there is some t ∈ S2

s.t. t ∈ f(s) but s 6∈ f(t), which contradicts (1). Hence,
Rng(f) = S1. Let t1, t2 ∈ S2 s.t. f(t1) 6= f(t2). Suppose
s1 ∈ f(t1) − f(t2) and s2 ∈ f(t1) ∩ f(t2). Then t1 ∈
f(s1), t1 ∈ f(s2) and t2 ∈ f(s2) but t2 6∈ f(s1). Hence,
f(s1) 6= f(s2) but f(s1) ∩ f(s2) 6= ∅, which contradicts
that Rng(f) is a partition of S2. Thus, Rng(f) is a partition
of S1.

3) Immediate from (1), (2), and the definitions.

3 Method Properties
One of the main purposes of this paper is to model abstrac-
tions and abstraction-like methods using classes of transfor-
mations with certain properties. In order to describe and
analyse such transformations in a general way, we define the
following method properties.
Definition 6. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be
two STGs and let τ = 〈f,R〉 be a transformation from G1

to G2. Then τ can have the following method properties:
M↑: |f(s)| = 1 for all s ∈ S1.
M↓: |f(s)| = 1 for all s ∈ S2.
R↑: If 〈s1, t1, `1〉 ∈ E1, then there is some 〈s2, t2, `2〉 ∈ E2

such that R(`1, `2).
R↓: If 〈s2, t2, `2〉 ∈ E2, then there is some 〈s1, t1, `1〉 ∈ E1

such that R(`1, `2).
C↑: If R(`1, `2) and 〈s1, t1, `1〉 ∈ E1, then there is some
〈s2, t2, `2〉 ∈ E2 such that s2 ∈ f(s1) and t2 ∈ f(t1).

C↓: If R(`1, `2) and 〈s2, t2, `2〉 ∈ E2, then there is some
〈s1, t1, `1〉 ∈ E1 such that s1 ∈ f(s2) and t1 ∈ f(t2).

Properties M↑/M↓ (upwards/downwards many-one) de-
pend only on f and may thus hold also for f itself. The
intention of M↑ is to say that f maps every state in G1 to
a single state in G2. While this may seem natural we will
see examples later on where this property does not hold. We
often write f(s) = t instead of t ∈ f(s) when f is M↑ and
analogously for f . Properties R↑/R↓ (upwards/downwards
related) depend only on R and may thus hold also for R it-
self. The intention behind R↑ is that if there is a non-empty
set of arcs in G1 with a specific label, then there is at least
one arc in G2 that is explicitly specified via R to correspond
to this arc set. Properties C↑/C↓ (upwards/downwards cou-
pled) describe the connection between f and R. The inten-
tion behind C↑ is to provide a way to tie up f and R to each
other and require that arcs that are related via R must go be-
tween states that are related via f . We use a double-headed
arrow when a condition holds both upward and downward.
For instance, Cl (up-down coupled) means that both C↑ and
C↓ hold. These classifications retain the symmetric nature of
transformations. For instance, 〈f,R〉 is a C↓ transformation
from G1 to G2 if and only if 〈f, R〉 is an C↑ transforma-
tion from G2 to G1. It should be noted that these properties
are only examples that we have choosen to use in this paper
since they are simple, yet powerful. It is naturally possible
to define other method properties within our framework.

Example 7. We reconsider Example 3. The function f1 :
G1 → G2 is M↑ but is not M↓ while function f3 : G1 → G3

is M↓ but not M↑. Define R = {a, b} × {c} and note that
the transformation 〈f1, R〉 : G1 → G2 has both property
R↑ and R↓. Furthermore, 〈f1, R〉 is C↓ but not C↑ (consider
the edge from 00 to 01). One may also note that if R′ =
{a, b} × {d} then 〈f3, R

′〉 is C↑ but not C↓

We proceed to show that these properties can describe
abstraction as defined by Zilles and Holte (2010) and oth-
ers (Haslum et al. 2007; Helmert, Haslum, and Hoffmann
2007; Holte et al. 1996). We refer to such abstraction as
strong homomorphism abstraction (SHA) since the abstrac-
tion function f is a strong homomorphism from G1 to G2.

Definition 8. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be
two STGs and let f be an M↑ transformation function from
G1 to G2. Then, f is SHA if it satisfies the following two
conditions: (1) for every 〈s1, t1, `1〉 ∈ E1 there is some
〈s2, t2, `2〉 ∈ E2 such that s2 = f(s1) and t2 = f(t1), and
(2) for every 〈s2, t2, `2〉 ∈ E2 there is some 〈s1, t1, `1〉 ∈
E1 such that s2 = f(s1) and t2 = f(t1).

It does not matter that we use labelled graphs since the
labels are not relevant for the definition.

Theorem 9. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two
STGs and let f be an M↑ transformation function from G1

to G2. Then f is a SHA if and only if there is a label relation
R s.t. τ = 〈f,R〉 is an RlCl transformation from G1 to G2.

Proof. if: Suppose τ is RlCl. We first prove condition 1 of
SHA. Let e1 = 〈s1, t1, `1〉 be an arbitrary arc in E1. Since
R↑ holds there is some label `2 s.t. R(`1, `2). Applying C↑
gives that there is some arc 〈s2, t2, `2〉 ∈ E2 s.t. s2 ∈ f(s1)
and t2 ∈ f(t1), but τ is M↑ so f(s1) = s2 and f(t1) =

t2. It follows that condition 1 holds since e1 was chosen
arbitrarily. We then prove condition 2. Let e2 = 〈s2, t2, `2〉
be an arbitrary arc in E2. Since R↓ holds there is some label
`1 s.t. R(`1, `2). Applying C↓ gives that there is some arc
〈s1, t1, `1〉 ∈ E1 s.t. s1 ∈ f(s2) and t1 ∈ f(t2). Hence,
s2 ∈ f(s1) and t2 ∈ f(t1) holds, that is, s2 = f(s1) and
t2 = f(t1) since f is M↑. It follows that also condition 2
holds (since e2 was chosen arbitrarily) so f is SHA if the
transformation τ is RlCl.

only if: Suppose f is SHA. Then it is M↑ by definition.
Define R s.t. R(`1, `2) iff there are arcs 〈s1, t1, `1〉 ∈ E1

and 〈s2, t2, `2〉 ∈ E2 s.t. s2 ∈ f(s1) and t2 ∈ f(t1). We
first prove that τ is R↑. Let e1 = 〈s1, t1, `1〉 be an arbi-
trary arc in E1. Condition 1 of SHA guarantees that there
is some arc e2 = 〈s2, t2, `2〉 ∈ E2 s.t. s2 = f(s1) and
t2 = f(t1). The construction of R guarantees that R(`1, `2)
so R↑ holds since e1 was choosen arbitrarily. Proving that
τ is R↓ is analogous. We now prove that τ is C↑. Sup-
pose e1 = 〈s1, t1, `1〉 ∈ E1 and R(`1, `2). Condition 1 of
SHA guarantees that there is an arc 〈s2, t2, `2〉 ∈ E2 s.t.
s2 = f(s1) and t2 = f(t1). Hence, τ is C↑. Proving that
τ is C↓ is analogous. Since we can always construct R as
above, it follows that if f is SHA, then there is some R s.t.
〈f,R〉 is RlCl.

4 Instance Properties
We now turn our attention to transformation properties that
are related to finding paths in STGs. We refer to these as in-
stance properties since they are not necessarily related to the
particular method (class of transformations) used but may
hold or not on a per instance basis.

In order for an abstraction to be useful, a path in the ab-
stract graph must be useful for finding a path in the original
graph. In loose terms, we say that an abstraction is sound if
every abstract path somehow corresponds to a ground path
and that it is complete if every ground path has some cor-
responding abstract path. We will not define these concepts
formally, but only note that completeness means that we do
not miss any solutions by using abstraction and soundness
means that we do not waste time trying to refine something
that does not correspond to a solution. We will, however,
define and analyse some more specific concepts, but we first
need the concept of reachability.
Definition 10. Let G = 〈S, E〉 be an STG. Then for all
s ∈ S, the set R(s) of reachable states from s is defined
as R(s) = {t ∈ S | there is a path from s to t in G}. We
extend this s.t. for all T ⊆ S, R(T) = ∪s∈TR(s).

When we consider two STGs G1 and G2 simultaneously
we write R1(·) and R2(·) to clarify which graph the reach-
ability function refers to.
Definition 11. Let G1 = 〈S1, E1〉 and G2 = 〈S1, E1〉 be
two STGs and let f be a transformation function from G1 to
G2. Then f can have the following instance properties:
Pk↓: If there are t0, . . . , tk ∈ S2 s.t. ti ∈ R2(ti−1) for

all i (1 ≤ i ≤ k), then there are s0, . . . , sk ∈ S1 s.t.
si ∈ f(ti) for all i (0 ≤ i ≤ k) and si ∈ R1(si−1) for
all i (1 ≤ i ≤ k).

Pk↑: If there are s0, . . . , sk ∈ S1 s.t. si ∈ R1(si−1) for
all i (1 ≤ i ≤ k), then there are t0, . . . , tk ∈ S2 s.t.
ti ∈ f(si) for all i (0 ≤ i ≤ k) and ti ∈ R2(ti−1) for all
i (1 ≤ i ≤ k).

PT↓: P1↓ holds.
PT↑: P1↑ holds.
PW↓: Pk↓ holds for all k > 0.
PW↑: Pk↑ holds for all k > 0.

P↓: If t ∈ R2(f(s)), then f(t) ∩R1(s) 6= ∅.
P↑: If t ∈ R1(s), then f(t) ∩R2(f(s)) 6= ∅.

PS↓: If t ∈ R2(f(s)), then f(t) ⊆ R1(s).
PS↑: If t ∈ R1(s), then f(t) ⊆ R2(f(s)).

The properties marked with a downward arrow can be
viewed as different degrees of soundness and properties
marked with an upward arrow as different degrees of com-
pleteness. We continue by briefly describing the sound-
ness properties and we note that the completeness proper-
ties can be described analogously by using the symmetries
inherent in transformations. Consider a path t0, t1, . . . , tk
in the abstract graph, for some k > 0. If property Pk↓
holds, then there are states s0, s1, . . . , sk in the original
graph such that there is a path from s0 to sk passing through
all of s1, . . . , sk−1 in order. Consider the example in Fig-
ure 2. This transformation function f satisfies P1↓ since
both single-arc paths t0, t1 and t1, t2 in G2 have correspond-
ing paths in G1. However, f does not satisfy P2↓ since the
path t0, t1, t2 does not have a corresponding path in G1; we
can go from f(t0) to f(t1) and from f(t1) to f(t2) but we
cannot go all the way from f(t0) to f(t2).

Immediately by definition, PW↓ (where W stands for
‘weak’) holds if Pk↓ holds for all k (i.e. there is no up-
per bound on the length of the sequence), and property PT↓
(where T stands for ‘trivial’) implies that if there is a path be-
tween two states in the abstract graph, then there is a path be-
tween two corresponding states in the original graph. Prop-
erty P↓ implies that for any state s in the original graph and
any state t in the abstract graph, if there is a path from f(s)
to t in the abstract graph, then there is a path from s to some
u ∈ f̄(t) in the original graph. Property PS↓ (where S stands
for ‘strong’) is defined similarly: if there is a path from f(s)
to t in the abstract graph, then there is a path from s to all
u ∈ f̄(t) in the original graph.

t0 t1 t2G2:

s0

u0

s1

u1

s2

u2

G1:

f(t0) f(t1) f(t2)

Figure 2: A transformation that is P1↓ but not P2↓.

We will link many of these properties to different compu-
tational phenomena in this and the next section. This link
will typically be very natural; for instance, the property PW↓
is associated with weak downward state refinements. We
note that the following implications hold:

PS↓ ⇒ P↓ ⇒ PW↓ ⇒ PT↓

That PS↓ ⇒ P↓ and PW↓ ⇒ PT↓ follows directly from the
definitions above, while the implication P↓ ⇒ PW↓ follows
from Theorem 16 (which appears in the next section). We
also see that

PT↓ 6⇒ PW↓ 6⇒ P↓ 6⇒ PS↓

The fact that PW↓ 6⇒ P↓ follows from Theorem 16 while the
other two non-implications can be demonstrated by straight-
forward counterexamples.

We exemplify by returning to Zilles and Holte’s approach.
They defined a property that they refer to as the downward
path preserving (DPP) property. Given a state s in the orig-
inal graph, we define its corresponding set of spurious states
S(s) to be the set R2(f(s)) \ f(R1(s)). The intention be-
hind the DPP property is to avoid spurious states, i.e. guar-
antee that S(s) = ∅ for all s. They introduce two criteria
on SHA abstraction that together define DPP, and we gen-
eralise this idea as follows.
Definition 12. Let G1 = 〈S1, E1〉 and G2 = 〈S1, E1〉 be
two STGs and let f be a transformation function from G1 to
G2. Then f can be classified as:
SH1: R2(f(s)) ⊆ f(R1(s)) for all s ∈ S1.
SH2: f(R1(s)) ⊆ R2(f(s)) for all s ∈ S1.
DPP: Both SH1 and SH2 hold.
Although this definition looks more or less identical to
theirs, it is a generalisation since it does not require f to be
SHA. In our terminology, SH1 is a soundness condition and
SH2 a completeness condition. We see that condition SH1
holds if there are no spurious states, that is, SH1 guarantees
that if we can reach an abstract state, then we can also reach
some corresponding ground state. Additionally, Zilles and
Holte noted that SH2 is inherent in every SHA abstraction
but this is not necessarily true in general abstractions. We
note that both these conditions are captured by the instance
properties P↓ and P↑.
Lemma 13. SH1 is equivalent to P↓ and SH2 is equivalent
to P↑.

Proof. We prove that SH1 is equivalent to P↓.
R2(f(s)) ⊆ f(R1(s)) iff t ∈ R2(f(s)) ⇒ t ∈ f(R1(s))
iff t ∈ R2(f(s)) ⇒ ∃u.(u ∈ R1(s) and t ∈ f(u))
iff t ∈ R2(f(s)) ⇒ ∃u.(u ∈ R1(s) and u ∈ f(t))
iff t ∈ R2(f(s)) ⇒ f(t) ∩R1(s) 6= ∅.
Proving that SH2 is equivalent to P↑ is analogous.

5 Path Refinement
If we want to find a path in an STG by abstraction, then we
must transform this STG into an abstract STG and find a
path in the latter. We must then somehow refine this abstract
path into a path in the original STG. Preferably, we want to
do this without backtracking to the abstract level. We define

three different kinds of path refinements that achieves this,
with varying degrees of practical usefulness.
Definition 14. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be
two STGs and let f be a transformation function from G1 to
G2. Let σ = t0, t1, . . . , tk be an arbitrary path in G2. Then:

1) σ is trivially downward state refinable if there are two
states s0 ∈ f(t0) and s` ∈ f(tk) s.t. there is a path in G1

from s0 to s`.
2) σ is weakly downward state refinable if there is a se-

quence s0, s1, . . . , sk of states in S1 such that si ∈ f(ti) for
all i s.t. 0 ≤ i ≤ k and there is a path from si−1 to si in G1

for all i (1 ≤ i ≤ k).
3) σ is strongly downward state refinable if for every i s.t.

1 ≤ i ≤ k, there is a path from si−1 to si in G1 for all
si−1 ∈ f(ti−1) and all si ∈ f(ti).

Trivial path refinement only requires that if there is a path
between two states in the abstract graph, then there is a path
between two corresponding states in the original graph. The
two paths need not have any other connection at all. The
other two refinements tie the two paths to each other in such
a way that the states along the abstract path are useful for
finding the ground path.

In Figure 3 we provide two algorithms that, under certain
conditions, both avoid backtracking between levels. The
choose statements are non-deterministic, that is, an actual
implementation would use search with the choose state-
ments as backtrack points. Algorithm TPath implements
trivial path refinement. It first finds an abstract path. If this
succeeds, then it calls Refine to find a ground path between
the first and last states. Under the assumption that all paths
are trivially refinable, there is no need for Refine to back-
track up to TPath again. Algorithm WSPath implements
weak and strong path refinement. It first finds an abstract
path. If this succeeds, then it passes the whole path to Refine
so the states along the path can be used as subgoals. If all
paths are weakly refinable, then there is no need for Refine
to backtrack up to WSPath again. If all paths are strongly
refinable, then there is not even any need to backtrack to the
choose points within Refine. The different degrees of refine-
ments are captured by instance properties as follows.
Theorem 15. Let G1 = 〈S1, E1〉 and G2 = 〈S1, E1〉 be
two STGs and let τ = 〈f,R〉 be a transformation from G1

to G2. Then:
1) Every path in G2 is trivially downward state refinable

iff τ is PT↓.
2) Every path in G2 is weakly downward state refinable

iff τ is PW↓.
3) Every path in G2 is strongly downward state refinable

iff τ is PS↓.

Proof. 1) and 2) are straightforward from the definitions.
3) if: Suppose τ is PS↓. Induction over the path length.

Base case: For every path t of length one in G2 every
s ∈ f(t) is a path in G1.
Induction: Suppose every path of length k in G2 is strongly
downwards refinable, for some k > 0. Let σ = t0, t1, . . . , tk
be an arbitrary path in G2. It follows from the induction hy-
pothesis that t1, . . . , tk is strongly downwards refinable, so

1 function TPath(s,t)
2 choose σ = t0, t1, . . . , tk s.t. t0 ∈ f(s), tk ∈ f(t)
3 and σ is a path from t0 to tk
4 if no such σ then fail
5 else return Refine(t0,tk)

1 function WSPath(s,t)
2 choose σ = t0, t1, . . . , tk s.t. t0 ∈ f(s), tk ∈ f(t)
3 and σ is a path from t0 to tk
4 if no such σ then fail
5 else return Refine(σ)

1 function Refine(t0, t1, . . . , tk)
2 choose s0 ∈ f(t0)
3 if k = 0 then return s0

4 else
5 σ2 = Refine(t1, . . . , tk)
6 s1 = first(σ2)
7 choose path σ1 from s0 to s1

8 if no such σ1 then fail
9 else return σ1;σ2

Figure 3: Algorithms for path refinement.

it remains to prove that there is a path in G1 from every
s0 ∈ f(t0) to every s1 ∈ f(t1). Let s0 arbitrary in f(t0).
Hence, t0 ∈ f(s0) and t1 ∈ R2(t0) so t1 ∈ R2(f(s0)). It
follows from PS↓ that f(t1) ⊆ R1(s0) which means there
must be a path in G1 from s0 to every s1 ∈ f(t1). The result
follows since both σ and s0 were chosen arbitrarily.

only if: Suppose all paths in G2 are strongly downwards
refinable. Suppose s0 ∈ S1 and t1 ∈ S2 are two states s.t.
t1 ∈ R2(f(s0)). Then, there is some state t0 ∈ S2 s.t.
t0 ∈ f(s0) and t1 ∈ R2(t0). Hence, there is a path in G2

from t0 to t1. By assumption this path is strongly downward
refinable so there must be a path from every u0 ∈ f(t0) to
every u1 ∈ f(t1). It follows that f(t1) ⊆ R1(s0) and, thus,
that PS↓ holds.

We can now clarify the relation between P↓ and PW↓.

Theorem 16. Let G1 = 〈S1, E1〉 and G2 = 〈S1, E1〉 be
two STGs and let τ = 〈f,R〉 be a transformation from G1

to G2. Then:
1) Every path in G2 is weakly downward state refinable

if τ is P↓.
2) That every path in G2 is weakly downward state refin-

able does not imply that τ is P↓.
3) P↓ ⇒ PW↓ but PW↓ 6⇒ P↓.

Proof. 1) Assume P↓ holds and assume there is a path
t0, ..., tk in G2. For every i, 0 ≤ i < k, it holds that
ti+1 ∈ R2(ti). Property P↓ implies that for arbitrariy
s ∈ f(ti), there is some s′ such that s′ ∈ f(ti+1) and
s′ ∈ R1(si). Now, arbitrarily choose s0 ∈ f(t0). If we for
each i let s = si and choose si+1 to be the corresponding s′

above, then s0, . . . , sk satisfies the conditions for PW↓.

2) Suppose S1 = {sa
0 , sb

0, s1}, S2 = {t0, t1}, E1 =
{〈sa

0 , s1, `1〉} and E2 = {〈t0, t1, `2〉}. Also define a trans-
formation function f s.t. f(sa

0) = f(sb
0) = t0 and f(s1) =

t1. Then, there are three paths in G2: two atomary paths t0
and t1 and the path t0, t1. These are all weakly refinable to
paths in G1. That is, all paths in G2 are weakly refinable.
Obviously t0 ∈ f(sb

0) and t1 ∈ R2(t0), so t1 ∈ R2(f(sb
0)).

However, f(t1) = {s1} but R1(sb
0) = {sb

0} so P↓ does not
hold for this example.

3) Combine 1) and 2) with Theorem 15.

One consequence of this result is that if an abstraction
avoids spurious states (for instance, by satisfying the DPP
or the P↓ condition), then the WSPath algorithm can solve
the problem without doing any backtracking to the abstract
level. Avoiding spurious states is, however, not a necessary
condition for avoiding backtracking between levels.

6 Planning
We will now consider state spaces that are induced by vari-
ables. A state is then defined as a vector of values for these
variables. We will, however, do this a bit differently and use
a state concept based on sets of variable-value pairs. While
this make the basic definitions slightly more complicated, it
will simplify the forthcoming definitions and proofs.

Definition 17. A variable set V is a set of objects called
variables. A domain function D for V is a function that
maps every variable v ∈ V to a corresponding domain Dv

of values. An atom over V and D is a pair 〈v, x〉 (usually
written as (v = x)) such that v ∈ V and x ∈ Dv . A state is
a set of atoms and V ·D = ∪v∈V ({v}×Dv) denotes the full
state (the set of all possible atoms over V and D). A state
s ⊆ V ·D is

1) consistent if each v ∈ V occurs at most once in s,
2) total if each v ∈ V occurs exactly once in s.

The filter functions T and C are defined for all S ⊆ V ·D as:
1) C(S) = {s ⊆ S | s is consistent }.
2) T (S) = {s ⊆ S | s is total }.

For arbitrary states s, t ∈ C(V ·D), variable set U ⊆
V and variable v ∈ V : V (s) = {v | (v = x) ∈ s},
s[U] = s ∩ (U ·D), s[v] = s[{v}], s n t = s[V − V (t)] ∪ t,
s=c = {(v = c) ∈ s} and U :=c = {(v = c) | v ∈ U}.

The operator n is typically used for updating a state s with
the effects of an action a; this will be made formally clear
in Definition 19. Note that T (V ·D) is the set of all total
states over V and D and C(V ·D) is the set of all consistent
states. Unless otherwise specified, states will be assumed
total and we will usually write state rather than total state.
The following observations will be tacitly used henceforth.

Proposition 18. Let V be a variable set, let D be a domain
function for V and let s, t ∈ C(V ·D). Then:

1) s[U] ⊆ s for all U ⊆ V .
2) s ⊆ t ⇒ s[U] ⊆ t[U] for all U ⊆ V .
3) s = t ⇒ s[U] = t[U] for all U ⊆ V .
4) s[V1] ∪ s[V2] = s[V1 ∪ V2] for disjunct V1, V2 ⊆ V .
5) s[U] ? t[U] = (s ? t)[U], where ? is ∪ or n .
6) If s is total, then s n t is total.

We define MSTRIPS as a variant of STRIPS that uses mul-
tivalued variables instead of propositional atoms, as follows.
Definition 19. An MSTRIPS instance is a tuple p =
〈V,D,A, I,G〉 where V is a variable set, D is a domain
function for V , A is a set of actions, I ∈ T (V ·D) is
the initial state and G ∈ C(V ·D) is the goal. Each ac-
tion a ∈ A has a precondition pre(a) ∈ C(V ·D) and
a postcondition post(a) ∈ C(V ·D). The STG G(p) =
〈S, E〉 for p is defined s.t. 1) S = T (V ·D) and 2) E =
{〈s, t, a〉 | a ∈ A,pre(a) ⊆ s and t = s n post(a)}. Let
ω = a1, . . . , ak be a sequence of actions in A. Then, ω
is a plan for p if there is a path s0, s1, . . . , sk in G(p) s.t.
I = s0 and G ⊆ sk.

It is clear that many propositional planning formalisms
over finite domains, such as STRIPS and SAS+, can be mod-
elled within MSTRIPS.

7 Abstraction in Planning
The goal of this section is to model five different abstraction-
like methods within our framework. We note that even
though the methods are quite different, they can all be mod-
elled in a highly uniform and reasonably succinct way. One
may, for instance, note that labels will exclusively be used
for keeping track of action names in all five examples. This
coherent way of defining the methods makes it possible to
systematically study their intrinsic method properties; some-
thing that will be carried out in the next section. In order to
simplify the notation, we extend the transformation concept
to planning instances such that τ is a transformation from p1
to p2 if it is a transformation from G(p1) to G(p2).

ABSTRIPS Style Abstraction. ABSTRIPS (Sacerdoti 1974) is
a version of the STRIPS planner using state abstraction. The
idea is to identify a subset of the atoms as critical and make
an abstraction by restricting the preconditions of all actions
to only these critical atoms while leaving everything else un-
altered. The intention is that the critical atoms should be
more important and that once an abstract plan is found, it
should be easy to fill in the missing actions to take all atoms
into account. This idea has been commonly used, for in-
stance, in the ABTWEAK planner (Bacchus and Yang 1994).
We refer to Sacerdotis original idea as ABSTRIPS I (ABI),
which is a transformation as follows.
Definition 20. (ABI) Let p1 = 〈V1, D1, A1, I1, G1〉 and
p2 = 〈V2, D2, A2, I2, G2〉 be two MSTRIPS instances and
let τ = 〈f,R〉 be a transformation from G(p1) = 〈S1, E1〉
to G(p2) = 〈S2, E2〉. Then, τ is an ABI transformation if
there is a set of critical variables VC ⊆ V1 and a bijection
g : A1 → A2 s.t. the following holds:

1) V1 = V2, D1 = D2, I1 = I2, G1 = G2.
2) g(a) = 〈pre(a)[VC],post(a)〉 for all a ∈ A1.
3) A2 = {g(a) | a ∈ A1}.
4) f(s) = {t ∈ S2 | s[VC] = t[VC]} for all s ∈ S1.
5) R = {〈a, g(a)〉 | a ∈ A1}.

Variations on this idea occur in the literature. For in-
stance, Knoblock (1994) removes the non-critical atoms ev-
erywhere, not only in preconditions. We refer to his variant
as ABSTRIPS II (ABII).

Definition 21. (ABII) Let p1 = 〈V1, D1, A1, I1, G1〉 and
p2 = 〈V2, D2, A2, I2, G2〉 be two MSTRIPS instances and
let τ = 〈f,R〉 be a transformation from G(p1) = 〈S1, E1〉
to G(p2) = 〈S2, E2〉. Then, τ is an ABII transformation if
there is a set of critical variables VC ⊆ V1 and a bijection
g : A1 → A2 s.t. the following holds:

1) V2 = VC , I2 = I1[VC], G2 = G1[VC].
2) g(a) = 〈pre(a)[VC],post(a)[VC]〉 for all a ∈ A1.
3) A2 = {g(a) | a ∈ A1}.
4) f(s) = s[VC] for all s ∈ S1.
5) R = {〈a, g(a)〉 | a ∈ A}.

Removing Redundant Actions. As a response to the belief
that it is good for a planner to have many choices, Haslum
and Jonsson (2000) showed that it may be more efficient to
have as few choices as possible. They proposed removing
some, or all, redundant actions. While the authors did not
think of this as an abstraction, it is quite reasonable to do so:
we abstract away redundant information by removing redun-
dant actions. We refer to this method as Removing Redun-
dant Actions (RRA). The original paper considered various
degrees of avoiding redundancy so we define two extreme
cases, RRAa and RRAb, differing in condition 3 below.

Definition 22. (RRA) Let p1 = 〈V1, D1, A1, I1, G1〉 and
p2 = 〈V2, D2, A2, I2, G2〉 be two MSTRIPS instances and
let τ = 〈f,R〉 be a transformation from G(p1) = 〈S1, E1〉
to G(p2) = 〈S2, E2〉. Then, τ is an RRA transformation if
the following holds:

1) V1 = V2, D1 = D2, I1 = I2, G1 = G2.
2) A2 ⊆ A1.
3a) {〈s, t〉 | 〈s, t, `〉 ∈ E1} = {〈s, t〉 | 〈s, t, `〉 ∈ E2}.
3b) {〈s, t〉 | 〈s, t, `〉 ∈ E1} = {〈s, t〉 | 〈s, t, `〉 ∈ E2}+.
4) f is the identity function.
5) R = {〈a, a〉 | a ∈ A2}.

Variant 3a (RRAa) says that if an action a induces an arc
from s to t in the STG and we remove a, then there must
be some remaining action that induces an arc from s to t.
Variant 3b (RRAb), on the other hand, only requires that
there is still a path from s to t (the ‘+’ denotes transitive
closure). While 3a preserves the length of solutions, 3b does
not.

Ignoring Delete Lists. The idea of removing the negative
postconditions from all actions in STRIPS (Bonet, Loerincs,
and Geffner 1997; McDermott 1996) is known as ignoring
delete lists. This means that false atoms can be set to true,
but not vice versa. The method is commonly used as an ab-
straction for computing the h+ heuristic in planning (Hoff-
mann 2005). We refer to this method as IDL.

Definition 23. (IDL) Let p1 = 〈V1, D1, A1, I1, G1〉 and
p2 = 〈V2, D2, A2, I2, G2〉 be two MSTRIPS instances with
binary variables and let τ = 〈f,R〉 be a transformation from
G(p1) to G(p2). Then, τ is an IDL transformation if there
is a bijection g : A1 → A2 s.t. the following holds:

1) V1 = V2, D1 = D2, I1 = I2 and G1 = G2.
2) g(a) = 〈pre(a),post(a)=1〉 for all a ∈ A1.
3) A2 = {g(a) | a ∈ A1}.
4) f is the identity function.
5) R = {〈a, g(a)〉 | a ∈ A1}.

Explicit Landmark Abstraction. A landmark is a necessary
subgoal for a plan. Sets of landmarks are usually added as
separate information to planners as extra guidance for how
to solve a particular instance (Hoffmann, Porteous, and Se-
bastia 2004). However, Domshlak, Katz, and Lefler (2010)
suggested to combine abstraction with landmarks by encod-
ing the landmark set explicitly in the instance. We refer to
this method as Explicit landmark abstraction (ELA).
Definition 24. (ELA) Let p1 = 〈V1, D1, A1, I1, G1〉
and p2 = 〈V2, D2, A2, I2, G2〉 be two MSTRIPS in-
stances and let τ = 〈f,R〉 be a transformation from
G(p1) = 〈S1, E1〉 to G(p2) = 〈S2, E2〉. Furthermore,
let M ⊆ V1 ·D1 be a set of landmarks. Define the
variable set VM = {vu,x | (u = x) ∈ M} with domain
function DM : VM → {0, 1}. For each a ∈ A1, define
postM (a) = {(vu,x = 1) | (u = x) ∈ post(a) ∩M}.
Then, τ is an ELA transformation if there is a bijection
g : A1 → A2 s.t. the following holds:

1) V2 = V1 ∪ VM , D2 = D1 ∪DM , I2 = I1 ∪ VM
:=0

and G2 = G1 ∪ VM
:=1.

2) g(a) = 〈pre(a),post(a) ∪ postM (a)〉 for all a ∈ A1.
3) A2 = {g(a) | a ∈ A1}.
4) f(s) = {t ∈ S2 | s ⊆ t} for all s ∈ S1.
5) R = {〈a, g(a)〉 | a ∈ A1}.

8 Analysis of Planning Abstraction
We can now analyse the methods presented in the previous
section with respect to their method properties. From this,
we will also get a number of results concerning their com-
putational properties; we will see that certain combinations
of method properties imply certain instance properties. The
reader should keep the following in mind.
Proposition 25. Let p1 = 〈V1, D1, A1, I1, G1〉,
p2 = 〈V2, D2, A2, I2, G2〉 be two MSTRIPS instances
and let VC ⊆ V and M ⊆ V1 ·D1. Define VC = V1 − VC

and assume τ = 〈f,R〉 to be a transformation from
G(p1) = 〈S1, E1〉 to G(p2) = 〈S2, E2〉. Then:

1) If τ is ABI, then for all s ∈ S2:
a) f(s) = {s[VC] ∪ t | t ∈ T (VC ·D)}.
b) f(s) = {t ∈ S1 | s[VC] = t[VC]}.

2) If τ is ABII, then for all s ∈ S2:
a) f(s) = {s ∪ t | t ∈ T (VC ·D)}.
b) f(s) = {t ∈ S1 | s[VC] = t[VC]}.

3) If τ is ELA, then for all s ∈ S1):
a) f(s) = {s ∪ t | t ∈ T (VM ·DM)}.
b) f(s) = s[V1].

The following theorem presents the method properties in-
herent in the methods in the previous section. The results
are summarised in column 2 of Table 1.
Theorem 26. Let p1 = 〈V1, D1, A1, I1, G1〉 and p2 =
〈V2, D2, A2, I2, G2〉 be two MSTRIPS instances and let τ =
〈f,R〉 be a transformation from G(p1) = 〈S1, E1〉 to
G(p2) = 〈S2, E2〉. Then if τ is:

1) ABI, then it is RlCl but not necessarily M↑ or M↓.
2) ABII, then it is M↑RlCl but not necessarily M↓.

3) RRAa or RRAb, then it is MlR↓Cl but not necessar-
ily R↑.

4) IDL, then it is MlRl but not necessarily C↑ or C↓.
5) ELA, then it is M↓RlCl but not necessarily M↑.

Proof. We will tacitly make frequent use of Propositions 18
and 25 in the following proof.

ABI: Let VC ⊆ V1 denote the set of critical variables
and VC = V1 − VC . Suppose 〈s1, t1, a1〉 ∈ E1 and note
that pre(a1) ⊆ s1. Let a2 = g(a1). Then, R(a1, a2) by
definition and pre(a2) = pre(a1)[VC] ⊆ pre(a1) ⊆ s1 so
〈s1, s1 n post(a2), a2〉 ∈ E2 and it follows that τ is R↑.

Suppose instead that 〈s2, t2, a2〉 ∈ E2 and note that
pre(a2) ⊆ s2. Let a1 = g−1(a2). Then, R(a1, a2)
by definition, pre(a1)[VC] = pre(a2) and pre(a1)[VC] ∈
C(VC ·D). There must thus be some state s1 ∈
{s2[VC] ∪ t | t ∈ T (VC ·D)} = f(s2) s.t. pre(a1) ⊆ s1.
Hence, 〈s1, s1 n post(a1), a1〉 ∈ E1 τ is R↓.

We now turn our attention to properties C↑ and C↓. Sup-
pose 〈s1, t1, a1〉 ∈ E1 and R(a1, a2). Then, pre(a1) ⊆ s1

and t1 = s1 n post(a1). Furthermore a2 = g(a1) so
pre(a2) = pre(a1)[VC] and post(a2) = post(a1). Thus,
pre(a2) ⊆ s1 and s1 n post(a2) = s1 n post(a1) = t1.
Consequently, 〈s1, t1, a2〉 ∈ E2 and it follows that τ is C↑
since s1 ∈ f(s1) and t1 ∈ f(t1).

Suppose instead that 〈s2, t2, a2〉 ∈ E2 and R(a1, a2).
Then, pre(a2) ⊆ s2, t2 = s2 npost(a2) and a1 = g−1(a2).
With the same argument as in the R↓ case, there must be
some s1 ∈ f(s2) s.t. pre(a1) ⊆ s1. Let t1 = s1 n post(a1)
and observe that t1[VC] = s1[VC] n post(a1)[VC] =
s2[VC] n post(a1)[VC] = s2[VC] n post(a2)[VC] = t2[VC]
so t1 ∈ f(t2). Hence, 〈s1, t1, a1〉 ∈ E1 and it follows that τ
is also C↓.

Finally, we show that ABI is not necessarily M↑ or M↓ by
a counterexample. Let V1 = {u, v}, Du = Dv = {0, 1} and
VC = {u}. Let s0, s1 ∈ S1 s.t. s0 = {(u = 0), (v = 0)}
and s1 = {(u = 0), (v = 1)}. Let τ ′ be an arbitrary ABI
transformation from G1 to G2. Since S2 = S1 we also have
s0, s1 ∈ S2. Then, s0[VC] = s1[VC] so f(s0) = {s0, s1}
and it follows that τ ′ is not M↑. Since f(s0) = f(s1) we
also get f(s0) = {s0, s1} so τ ′ is not M↓ either.

ABII: Let VC ⊆ V1 denote the set of critical variables
and VC = V1 − VC . Using the same example as in the
ABI case shows that ABII is not necessarily M↓. However,
f(s) = s[VC] for every state s so τ is M↑.

Suppose 〈s1, t1, a1〉 ∈ E1 and note that pre(a1) ⊆ s1.
Let a2 = g(a1) and R(a1, a2) holds by definition. Let s2 =
s1[VC]. Then, pre(a2) = pre(a1)[VC] ⊆ s1[VC] = s2,
so 〈s2, s2 n post(a2), a2〉 ∈ E2. It follows that R↑ holds.
Property R↓ holds by the same argument as for ABI.

Suppose 〈s1, t1, a1〉 ∈ E1 and R(a1, a2). Then,
pre(a1) ⊆ s1, t1 = s1 n post(a1), and a2 = g(a1). By
letting s2 = f(s1) = s1[VC], it follows that pre(a2) =
pre(a1)[VC] ⊆ s1[VC] = s2. Let t2 = s2 n post(a2) =
s1[VC] n post(a1)[VC] = t1[VC] = f(t1). Then,
〈s2, t2, a2〉 = 〈f(s1), f(t1), a2〉 ∈ E2 so τ is C↑.
Suppose 〈s2, t2, a2〉 ∈ E2 and R(a1, a2). Then,
pre(a2) ⊆ s2, t2 = s2 n post(a2), and a1 =

g−1(a2). Since pre(a1)[VC] = pre(a2) ⊆ s2 and
pre(a1)[VC] ∈ C(VC ·D1), it follows that there is some
s1 ∈ {s2 ∪ t | t ∈ T (VC ·D1)} = f(s2) s.t. pre(a1) ⊆ s1.
Let t1 = s1 n post(a1) = (s1[VC] n post(a1)[VC]) ∪
(s1[VC] n post(a1)[VC]) = (s2 n post(a2)) ∪ (s1[VC] n
post(a1)[VC]) = t2 ∪ (s1[VC] n post(a1)[VC]). Hence,
t1[VC] = t2[VC] and, thus, t1 ∈ f(t2). Since 〈s1, t1, a1〉 ∈
E1, it follows that τ is C↓, too.

RRAa/RRAb: The proofs hold both for variant 3a and
3b so these cases need not be distinguished. Since f is the
identity function, τ is Ml. Suppose 〈s, t, a〉 ∈ E1, a ∈
A1 and a 6∈ A2, which is possible since A2 ⊆ A1. Then,
R(a, a) does not hold so τ is not R↑. Suppose instead that
a ∈ A2 and 〈s, t, a〉 ∈ E2. Then, a ∈ A1 since A2 ⊆ A1.
Furthermore, 〈s, t, a〉 ∈ E1 because S1 = S2. Since R(a, a)
must hold it follows that τ is R↓.

Suppose 〈s1, t1, a1〉 ∈ E1 and R(a1, a2). Then, a1 = a2

and a2 ∈ A2 so 〈s1, t1, a2〉 = 〈f(s1), f(t1), a2〉 ∈ E2.
Hence, τ is C↑. Proving that τ is C↓ is analogous.

IDL: Since f is the identity function, τ is Ml. Sup-
pose 〈s1, t1, a1〉 ∈ E1 and note that pre(a1) ⊆ s1. Let
a2 = g(a1). Then, R(a1, a2) by definition and pre(a2) =
pre(a1) ⊆ s1. Hence, 〈s1, s1 n post(a2), a2〉 ∈ E2 and τ
is R↑. Proving R↓ is analogous.

Next, we show that IDL is not C↑ nor C↓ by a counterex-
ample. Let V = {v}, Dv = {0, 1}, s0 = {(v = 0)},
s1 = {(v = 1)}, and A1 = {a1} where pre(a1) =
s1 and post(a1) = s0. Let τ ′ be an IDL transforma-
tion from G1 to G2. Then, A2 = {a2} where a2 =
g(a1) so pre(a2) = s1 and post(a2) = ∅. Obviously,
〈s1, s0, a1〉 ∈ E1 and R(a1, a2) holds by definition. How-
ever, 〈f(s1), f(s0), a2〉 = 〈s1, s0, a2〉 6∈ E2 since s1 n
post(a2) = s1. Consequently, τ ′ is not C↑. Proving that
τ ′ is not C↓ is analogous, using the same example.

ELA: Arbitrarily choose s ∈ S1 and observe that f(s) =
{s ∪ t | t ∈ T (VM ·DM)} so |f(s)| > 1 unless VM = ∅. It
follows that τ is not M↑.

Let t ∈ S2. Then, f(t) = t[V1] and τ is M↓.
Suppose 〈s2, t2, a2〉 ∈ E2. Then, pre(a2) ⊆ s2. Let

a1 = g−1(a2) and we have R(a1, a2) by definition. Let
s1 = s2[V1] = f(s2). Then, pre(a1) ⊆ s1 since pre(a2) =
pre(a1) ⊆ C(V1 ·D1). Hence, 〈s1, s1 n post(a1), a1〉 ∈ E1

and τ is R↓. Property R↑ can be shown similarly.
Suppose 〈s2, t2, a2〉 ∈ E2 and R(a1, a2). Then, a1 =

g−1(a2) and pre(a2) ⊆ s2. Let s1 = f(s2) = s2[V1]
and t1 = f(t2) = t2[V1]. Now, t2 = s2 n post(a2) =
(s2[V1]npost(a2)[V1])∪(s2[VM]npost(a2)[VM]) = (s1n
post(a1)) ∪ (s2[VM] n postM (a1)). Hence, t1 = t2[V1] =
s1 n post(a1) so 〈s1, t1, a1〉 = 〈f(s2), f(t2), a1〉 ∈ E1 and
it follows that τ is C↓. Showing C↑ is similar.

We are now ready to analyse the methods with respect to
instance properties. This is done by combining Theorem 26
with the next result.

Theorem 27. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be
two STGs and let τ = 〈f,R〉 be a transformation from G1

to G2. Then, the following holds for properties of τ :
1a) M↓R↓C↓ ⇒ PS↓ 1b) M↑R↑C↑ ⇒ PS↑
2a) M↓ ⇒ (PW↓ ⇔ PS↓) 2b) M↑ ⇒ (PW↑ ⇔ PS↑)

Proof. 1a) Suppose τ is M↓R↓C↓. We first prove by induc-
tion over the path length that every path in G2 is strongly
downward state refinable.

Base case: For every path t of length one in G2 every
s ∈ f(t) is a path in G1.
Induction: Suppose every path of length k in G2 is strongly
downwards refinable, for some k > 0. Let σ = t0, t1, . . . , tk
be a path in G2. There must be some `2 s.t. 〈t0, t1, `2〉 ∈ E2.
It follows from R↓ that there is some `1 s.t. R(`1, `2).
Hence, it follows from C↓ that there is some 〈s0, t0, `1〉 ∈
E1 s.t. s0 ∈ f(t0) and s1 ∈ f(t1). The transformation τ is
M↓ so there is an arc 〈s0, t0, `1〉 ∈ E1 for every s0 ∈ f(t0)
and every s1 ∈ f(t1). It follows from the induction hy-
pothesis that there is a path from every s1 ∈ f(t1) to every
sk ∈ f(tk), implying that there must be a path from every
s0 ∈ f(t0) to every sk ∈ f(tk).

This ends the induction and we conclude that every path
in G2 is strongly downwards state refinable. The result is
now immediate from Theorem 15.

2a) Suppose τ is M↓PW↓. For arbitrary k > 0, let
t0, t1, . . . , tk ∈ S2 be arbitrary states s.t. ti ∈ R2(ti−1) for
all i (1 ≤ i ≤ k). It follows from PW↓ that there are states
s0, s1, . . . , sk ∈ S1 s.t. si ∈ f(ti) for all i (0 ≤ i ≤ k) and
si ∈ R1(si−1) for all i (1 ≤ i ≤ k). However, M↓ implies
that |f(ti)| = 1 for all i (0 ≤ i ≤ k). It thus follows that for
all i (1 ≤ i ≤ k), si ∈ R1(si−1) for all si−1 ∈ f(ti−1) and
all si ∈ f(ti). Hence, PS↓ holds. The opposite direction is
immediate since PS↓ always implies PW↓.

1b and 2b follow from symmetry.

Some consequences of this theorem are summarised in
column 3 of Table 1. It should be pointed out that the in-
stance properties in the table are only those that we could
derive directly from Theorem 27. Thus, we do not exclude
the possibility that also other properties hold. Several con-
clusions can be drawn from these consequences; one is that
spurious states are inherently avoided in RRA and ELA
since both methods are PS↓ and, consequently, P↓. We also
note that there is a significant computational difference be-
tween ABI and ABII; this is a bit surprising since these two
methods have almost identical definitions.

Theorem 28. ABI is not PS↑.

Proof. Let V = {u, v}, Du = Dv = {0, 1} and VC = {u}.
Let sxy = {(u = x), (v = y)} for x, y ∈ {0, 1}. Let
A1 = {a1} where pre(a1) = s00 and post(a1) = s10. That
is, E1 = {〈s00, s10, a1〉}. Then, A2 = {a2} where a2 =
g(a1), pre(a2) = {(u = 0)} and post(a2) = s10 so E2 =
{〈s00, s10, a2〉, 〈s01, s10, a2〉}. We have s10 ∈ R1(s00) but
f(s10) = {s10, s11} while R2(f(s00)) = {s00, s10} so
f(s10) 6⊆ R2(f(s00)). Hence, τ is not PS↑.

Type of Properties
method Method Instance
ABI RlCl —
ABII M↑RlCl PS↑
RRAa/RRAb MlR↓Cl PS↓, PW↑ ⇔ PS↑
IDL MlRl PW↑ ⇔ PS↑, PW↓ ⇔ PS↓,
ELA M↓RlCl PS↓

Table 1: Transformation properties of different methods.

9 Discussion
We have presented a general and flexible framework for
modelling different methods for abstraction and similar con-
cepts in search and planning. We have shown that this frame-
work enables us to study many different aspects of both gen-
eral methods and individual problem instances. Such in-
sights are important, for instance, when using abstractions
for constructing heuristics (Culberson and Schaeffer 1998;
Helmert, Haslum, and Hoffmann 2007). However, these
properties and classifications should only be viewed as ex-
amples of what our framework can do. The strength of a uni-
fying framework is that it opens up for a multitude of differ-
ent comparisons and analyses. For instance, using transfor-
mations for quantitative analyses of abstraction (in the vein
of Korf (1987)) is a natural continuation of this research.

We acknowledge that the framework may need ad-
justments and/or generalisations in order to be applica-
ble in different situations — such variations appear to be
simple to implement, though. One generalisation is to
study hierarchies of abstraction levels instead of a single
level (Knoblock 1994; Sacerdoti 1974). Generalising the
framework in this way is straightforward, and we find it
probable that the highly symmetric nature of transformations
will simplify the study of complex abstraction hierarchies.

Labels are important in our framework and the examples
have ranged from hardly using them at all (as in SHA) to
using them massively (as in the planning examples). La-
bels can be used in many different ways. One example
is path refinement via arc paths rather than state paths,
which is common in planning (Bacchus and Yang 1994;
Knoblock 1994). Then the actions along the abstract path
are used as a skeleton for the ground path and then subplans
are filled in between these actions. Using actions as labels
give an immediate refinement specification from the label
relation: if R(a1, a2) holds then a1 is a possible refinement
of an abstract action a2. Holte et al. (1996) investigated this
method using labelled graphs similar to ours, but dismissed
it as inferior to refining state sequences. However, they only
investigated the restricted case where an action must be re-
fined into itself (meaning, in our framework, that R(a1, a2)
implies a1 = a2) so their conclusion is not necessarily true
in the general case. We want to emphasise that our frame-
work does not prescribe how to use labels and that it is en-
tirely up to the user to decide how to use them. We expect
that the labels can be used in completely different (and sur-
prising) ways for adding and handling auxiliary information
in search problems.

References
Bacchus, F., and Yang, Q. 1994. Downward refinement
and the efficiency of hierarchical problem solving. Artificial
Intelligence 71(1):43–100.
Bäckström, C., and Jonsson, P. 1995. Planning with ab-
straction hierarchies can be exponentially less efficient. In
Proc. 14th International Joint Conference on Artificial Intel-
ligence (IJCAI’95), Montréal, QC, Canada, 1599–1605.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and
fast action selection mechanism for planning. In Proc. 14th
National Conference on Artificial Intelligence (AAAI’97),
Providence, RI, USA, 714–719.
Bundy, A.; Giunchiglia, F.; Sebastiani, R.; and Walsh, T.
1996. Calculating criticalities. Artificial Intelligence 88(1-
2):39–67.
Christensen, J. 1990. A hierarchical planner that generates
its own hierarchies. In Proc. 8th National Conference on
Artificial Intelligence (AAAI’90), Boston, MA, USA, 1004–
1009.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Domshlak, C.; Katz, M.; and Lefler, S. 2010. When abstrac-
tions met landmarks. InProc. 20th International Confer-
ence on Automated Planning and Scheduling (ICAPS’2010),
Toronto, ON, Canada, 50–56.
Fink, E., and Yang, Q. 1997. Automatically selecting and
using primary effects in planning: theory and experiments.
Artificial Intelligence 89(1-2):323–389.
Giunchiglia, F., Villafiorita, A., and Walsh, T. 1997. Theo-
ries of abstraction. AI Communications 10(3-4):167–176.
Giunchiglia, F., and Walsh, T. 1992. A theory of abstraction.
Artificial Intelligence 57(2-3):285–315.
Haslum, P., and Jonsson, P. 2000. Planning with reduced
operator sets. In Proc. 5th International Conference on Arti-
ficial Intelligence Planning Systems (AIPS’2000), Brecken-
ridge, CO, USA, 150–158.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proc. 22nd
National Conference on Artificial Intelligence (AAAI’2007),
Vancouver, BC, USA, 1007–1012.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flex-
ible abstraction heuristics for optimal sequential planning.
In Proc. 17th International Conference on Automated Plan-
ning and Scheduling (ICAPS’2007), Providence, RI, USA,
176–183.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215–278.
Hoffmann, J. 2005. Where ’ignoring delete lists’ works:
local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.
Holte, R. C. and Choueiry, B. C. 2003. Abstraction and
reformulation in artificial intelligence. Philosophical Trans-
actions of the Royal Society London B 358:1197–1204.

Holte, R. C.; Mkdami, T.; Zimmer, R. M.; and MacDonald,
A. J. 1996. Speeding up problem solving by abstraction:
A graph oriented approach. Artificial Intelligence 85(1–
2):321–361.
Knoblock, C. A.; Tenenberg, J. D.; and Yang, Q. 1991.
Characterizing abstraction hierarchies for planning. In
Proc. 9th National Conference on Artificial Intelligence
(AAAI’1991), Anaheim, CA, USA, 692–697.
Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. Artificial Intelligence 68(2):243–302.
Korf, R. E. 1987. Planning as search: A quantitative ap-
proach. Artificial Intelligence 33(1):65–88.
McDermott, D. V. 1996. A heuristic estimator for
means-ends analysis in planning. In Proc. 3rd Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS’1996), Edinburgh, Scotland, 142–149.
Newell, A.; Shaw, J. C.; and Simon, H. A. 1959. Report
on a general problem-solving program. In IFIP Congress,
Paris, France, 256–264. UNESCO.
Pandurang Nayak, P. and Levy, P. 1995. A semantic theory
of abstractions. In Proc. 14th International Joint Conference
on Artificial Intelligence (IJCAI’95), Montréal, QC, Canada,
196–203.
Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence 5(2):115–135.
Zilles, S., and Holte, R. C. 2010. The computational com-
plexity of avoiding spurious states in state space abstraction.
Artificial Intelligence 174(14):1072–1092.

