
Downloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.org

Complexity of SAT Problems, Clone Theory and the

Exponential Time Hypothesis

Peter Jonsson∗ Victor Lagerkvist† Gustav Nordh‡ Bruno Zanuttini§

Abstract

The construction of exact exponential-time algorithms
for NP-complete problems has for some time been a very
active research area. Unfortunately, there is a lack of
general methods for studying and comparing the time
complexity of algorithms for such problems. We propose
such a method based on clone theory and demonstrate it
on the SAT problem. Schaefer has completely classi�ed
the complexity of SAT with respect to the set of allowed
relations and proved that this parameterized problem
exhibits a dichotomy: it is either in P or is NP-complete.
We show that there is a certain partial order on the
NP-complete SAT problems with a close connection to
their worst-case time complexities; if a problem SAT(S)
is below a problem SAT(S′) in this partial order, then
SAT(S′) cannot be solved strictly faster than SAT(S).
By using this order, we identify a relation R such that
SAT({R}) is the computationally easiest NP-complete
SAT(S) problem. This result may be interesting when
investigating the borderline between P and NP since one
appealing way of studying this borderline is to identify
problems that, in some sense, are situated close to it
(such as a `very hard' problem in P or a `very easy'
NP-complete problem). We strengthen the result by
showing that SAT({R})-2 (i.e. SAT({R}) restricted to
instances where no variable appears more than twice) is
NP-complete, too. This is in contrast to, for example,
1-in-3-SAT (or even CNF-SAT), which is in P under

∗Department of Computer and Information Science,
Linköpings Universitet, Sweden, peter.jonsson@liu.se. Par-
tially supported by the Swedish Research Council (VR) under
grant 621-2009-4431.
†Department of Computer and Information Science,

Linköpings Universitet, Sweden, victor.lagerkvist@liu.se. Par-
tially supported by the Swedish Research Council (VR) under
grant 2008-4675.
‡Department of Computer and Information Science,

Linköpings Universitet, Sweden, gustav.nordh@liu.se. Par-
tially supported by the Swedish Research Council (VR) under
grant 2008-4675.
§GREYC, Université de Caen Basse-Normandie, France,

bruno.zanuttini@unicaen.fr. Partially supported by the French
National Research Agency under grant TUPLES (ANR-10-
BLAN-0210).

the same restriction. We then relate SAT({R})-2 to the
exponential-time hypothesis (ETH) and show that ETH
holds if and only if SAT({R})-2 is not sub-exponential.
This constitutes a strong connection between ETH and
the SAT problem under both severe relational and
severe structural restrictions, and it may thus serve
as a tool for studying the borderline between sub-
exponential and exponential problems. In the process,
we also prove a stronger version of Impagliazzo et al.'s
sparsi�cation lemma for k-SAT; namely that all �nite
Boolean constraint languages S and S′ such that SAT(·)
is NP-complete can be sparsi�ed into each other. This
should be compared with Santhanam and Srinivasan's
recent negative result which states that the same does
not hold for all in�nite Boolean constraint languages.

1 Introduction

This paper is concerned with the SAT(S) class of prob-
lems: given a �nite set of Boolean relations S, decide
whether a conjunction of constraints (where only rela-
tions from S are used) is satis�able or not. This class of
problems is very rich and contains many problems that
are highly relevant both theoretically and in practice.
Since Schaefer's seminal dichotomy result [27], the com-
putational complexity of SAT(S) is completely known:
we know for which S that SAT(S) is polynomial-time
solvable and for which it is NP-complete, and these are
the only possible cases. On the other hand, judging
from the running times of the many algorithms that
have been proposed for di�erent NP-complete SAT(S)
problems, it seems that the computational complexity
varies greatly for di�erent S. As an example, 3-SAT
(where S consists of all clauses of length at most 3)
is only known to be solvable in time O(1.3334n) [22]
(where n is the number of variables), and so it seems
to be a much harder problem than, for instance, pos-
itive 1-in-3-SAT (where S consists only of the rela-
tion {(0, 0, 1), (0, 1, 0), (1, 0, 0)}), which can be solved in
time O(1.0984n) [32]. It is fair to say that we have a
very vague understanding of the time complexity of NP-
complete problems, and this fact is clearly expressed in
Cygan et al. [6].

1264 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

mailto:peter.jonsson@liu.se
mailto:victor.lagerkvist@liu.se
mailto:gustav.nordh@liu.se
mailto:bruno.zanuttini@unicaen.fr

2

What the �eld of exponential-time algorithms
sorely lacks is a complexity-theoretic frame-
work for showing running time lower bounds.

In this paper, we initiate a systematic study of
the relationships between the worst-case complexity
of di�erent SAT(S) problems, where we measure the
complexity as a function of the number of variables.
Ultimately, one would like to have a `table' that for
each NP-complete SAT(S) problem contains a number c
such that SAT(S) can be solved in Θ(cn) time. It seems
that we are very far from this goal, unfortunately. Let
us imagine a weaker qualitative approach: construct a
table that for every two problems SAT(S) and SAT(S′)
tells us whether SAT(S) and SAT(S′) can be solved
equally fast, whether SAT(S) can be solved strictly
faster than SAT(S′), or vice versa. That is, we have
access to the underlying total order on running times
but we cannot say anything about the exact �gures. Not
surprisingly, we are far from this goal, too. However,
this table can, in a sense, be approximated: there are
non-trivial lattices that satisfy this property whenever
S and S′ are comparable to each other in the lattice.
To obtain such lattices, we exploit clone theory [18,
30]. This theory has proven to be very powerful
when studying the complexity of SAT(S) and its multi-
valued generalization known as constraint satisfaction
problems (CSP) [5]. However, it is not clear how this
theory can be used for studying the worst-case running
times for algorithms. We show how to use it for this
purpose in Section 3, and our basic observation is that
the lattice of partial clones [2, 3] has the required
properties. We would like to emphasize that this
approach can be generalized in di�erent ways; it is
not restricted to Boolean problems and it is applicable
to other computational problems such as counting and
enumeration.

As a concrete application of this method, we iden-
tify the computationally easiest NP-complete SAT(S)
problem in Section 4; by `computationally easiest', we
mean that if any NP-complete SAT(S) problem can be
solved in O(cn) time, then the easiest problem can be
solved in O(cn) time, too. This easiest NP-complete
SAT(S) problem is surprisingly simple: S consists of a
single 6-ary relation R 6= 6=6=

1/3 which contains the three tu-
ples (1, 0, 0, 0, 1, 1), (0, 1, 0, 1, 0, 1), and (0, 0, 1, 1, 1, 0).
This result is obtained by making use of Schnoor and
Schnoor's [28] machinery for constructing weak bases.
We note that there has been an interest in identifying
extremely easy NP-complete problems before. For in-
stance, van Rooij et al. [31] have shown that the Par-
tition Into Triangles problem restricted to graphs
of maximum degree four can be solved in O(1.02445n)
time. They argue that practical algorithms may arise

from this kind of studies, and the very same observa-
tion has been made by, for instance, Woeginger [33]. It
is important to note that our results give much more
information than just the mere fact that SAT({R 6= 6=6=

1/3 })
is easy to solve; they also tell us how this problem is
related to all other problems within the large and di-
verse class of SAT(S) problems. This is one of the ma-
jor advantages in using the clone-theoretical approach
when studying these kind of questions. Another reason
to study such problems is that they, in some sense, are
`close' to the borderline between problems in NP that
are not complete and NP-complete problems (here we
tacitly assume that P 6= NP). The structure of this bor-
derline has been studied with many di�erent aims and
many di�erent methods; two well-known examples are
the articles by Ladner [17] and Schöning [29].

We continue by studying the complexity of
SAT({R 6=6= 6=

1/3 }) and general SAT problems in greater de-
tail by relating them to the exponential time hy-
pothesis (ETH) [13], i.e. the hypothesis that k-SAT
cannot be solved in sub-exponential time for k ≥ 3. The
ETH has recently gained popularity when studying the
computational complexity of combinatorial problems,
cf. the survey by Lokshtanov et al. [19].

We �rst note (in Section 5) that SAT({R 6= 6=6=
1/3 })

restricted to instances where no variable appears more
than twice (the SAT({R 6=6= 6=

1/3 })-2 problem) is still NP-
complete (in contrast to, for instance, positive 1-in-
3-SAT or CNF-SAT, which is in P under the same
restriction). We prove this by using results by Dalmau
and Ford [8] combined with the fact that R 6=6= 6=

1/3 is not
a ∆-matroid relation. We then show (in Section 6)
that the exponential-time hypothesis holds if and only
if SAT({R 6=6= 6=

1/3 })-2 cannot be solved in sub-exponential
time. By using this result, we show the following
consequence: if ETH does not hold, then SAT(S)-B
is sub-exponential for every B whenever S is �nite.
Impagliazzo et al. [13] have proved that many NP-
complete problems in SNP (which contains the SAT
problems) are sub-exponential if and only if k-SAT
is sub-exponential. Thus, we strengthen this result
when restricted to SAT problems. In the process,
we also prove a stronger version of Impagliazzo et
al.'s [13] sparsi�cation lemma for k-SAT; namely that
all �nite Boolean constraint languages S and S′ such
that SAT(·) is NP-complete can be sparsi�ed into each
other. This can be contrasted with Santhanam's and
Srinivasan's [26] recent negative result which states
that the same does not hold for the unrestricted SAT
problem and, consequently, not for all in�nite Boolean
constraint languages.

1265 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

3

2 The Boolean SAT problem

We begin by introducing the notation and basic results
that will be used in the rest of this paper. The set of all
k-tuples over {0, 1} is denoted by {0, 1}k. Any subset
of {0, 1}k is called an k-ary relation on {0, 1}. The set
of all �nitary relations over {0, 1} is denoted by BR. A
constraint language over {0, 1} is a �nite set S ⊂ BR.

Definition 2.1. The Boolean satis�ability problem
over the constraint language S ⊂ BR, denoted by
SAT(S), is de�ned to be the decision problem with in-
stance (V,C), where V is a set of Boolean variables, and
C is a set of constraints {C1, . . . , Cq}, in which each
constraint Ci is a pair (si, Ri) with si a list of variables
of length ki, called the constraint scope, and Ri an ki-
ary relation over the set {0, 1}, belonging to S, called
the constraint relation.

The question is whether there exists a solution to
(V,C), that is, a function from V to {0, 1} such that,
for each constraint in C, the image of the constraint
scope is a member of the constraint relation.

Example. Let RNAE be the following ternary relation on
{0, 1}: RNAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. It is easy
to see that the well known NP-complete problem Not-
All-Equal 3-Sat can be expressed as SAT({RNAE}).

Constraint languages where negation is normally used
needs some extra care: let the sign pattern of a con-
straint γ(x1, . . . , xk) be the tuple (s1, . . . , sk), where
si = + if xi is unnegated, and si = − if xi is
negated. For each sign pattern we can then asso-
ciate a relation that captures the satisfying assignments
of the constraint. For example, the sign pattern of
RNAE(x,¬y,¬z) is the tuple (+,−,−), and its associ-
ated relation is R(+,−,−)

NAE = {0, 1}3 \ {(0, 1, 1), (1, 0, 0)}.
More generally, we write Γk

NAE for the corresponding
constraint language of not-all-equal relations (with all
possible sign patterns) of length k. If φ is a SAT(Γk

NAE)
instance we write γk

NAE(x1, . . . , xk) for a constraint in
φ, where each xi is unnegated or negated. In the same
manner we write Γk

SAT for the constraint language con-
sisting of all k-SAT relations of length k.

When explicitly de�ning relations, we often use the
standard matrix representation where the rows of the
matrix are the tuples in the relation. For example,

RNAE =


0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0



Note that the relative order of the columns in the
matrix representation does not matter since this only
corresponds to a di�erent order of the variables in a
constraint.

3 Partial clones and the complexity of SAT

We will now show that the time complexity of SAT(S)
is determined by the so-called partial polymorphisms
of S. For a more in-depth background on SAT and
algebraic techniques, we refer the reader to Böhler et
al. [4] and Lau [18], respectively. Even though most
of the results in this section hold for arbitrary �nite
domains we present everything in the Boolean setting.
We �rst note that any k-ary operation f on {0, 1} can be
extended in a standard way to an operation on tuples
over {0, 1}, as follows: for any collection of k tuples,
t1, t2, . . . , tk ∈ R, the n-tuple f(t1, t2, . . . , tk) is de�ned
as follows:

f(t1, t2, . . . , tk) =
(
f(t1[1], t2[1], . . . , tk[1]),

f(t1[2], t2[2], . . . , tk[2]),

...

f(t1[n], t2[n], . . . , tk[n])
)
,

where tj [i] is the i-th component in tuple tj . We are
now ready to de�ne the concept of polymorphisms.

Definition 3.1. Let S be a Boolean constraint lan-
guage and R an arbitrary relation from S. If f is an
operation such that for all t1, t2, . . . , tk ∈ R it holds that
f(t1, t2, . . . , tk) ∈ R, then R is closed (or invariant) un-
der f . If all relations in S are closed under f then S
is closed under f . An operation f such that S is closed
under f is called a polymorphism of S. The set of all
polymorphisms of S is denoted by Pol(S). Given a set
of operations F , the set of all relations that are closed
under all the operations in F is denoted by Inv(F).

Example. The ternary majority operation f over the
Boolean domain is the operation satisfying f(a, a, b) =
f(a, b, a) = f(b, a, a) = a for a, b ∈ {0, 1}. Let

R = {(0, 0, 1), (1, 0, 0), (0, 1, 1), (1, 0, 1)}.

It is then easy to verify that for every triple of tuples,
x,y, z ∈ R, we have f(x,y, z) ∈ R. For example, if
x = (0, 0, 1),y = (0, 1, 1) and z = (1, 0, 1) then

f(x,y, z) =(
f(x[1],y[1], z[1]), f(x[2],y[2], z[2]), f(x[3],y[3], z[3])

)
=
(
f(0, 0, 1), f(0, 1, 0), f(1, 1, 1)

)
= (0, 0, 1) ∈ R.

1266 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

4

R1 R0

BF

R

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

Figure 1: The lattice of Boolean clones.

We conclude that R is invariant under f or, equiv-
alently, that f is a polymorphism of R.

Similarly, if g is the ternary a�ne operation over
the Boolean domain, de�ned as g(x, y, z) = x+ y + z (
mod 2), then

g(x,y, z) =(
g(x[1],y[1], z[1]), g(x[2],y[2], z[2]), g(x[3],y[3], z[3])

)
=
(
g(0, 0, 1), g(0, 1, 0), g(1, 1, 1)

)
= (1, 1, 1) /∈ R,

which means that g cannot be a polymorphism of R.

Sets of operations of the form Pol(S) are referred to
as clones. The lattice (under set inclusion) of all clones
over the Boolean domain was completely determined
by Post [24] and it is usually referred to as Post's
lattice. It is visualized in Figure 1. The following
result forms the basis of the algebraic approach for
analyzing the complexity of SAT, and, more generally,
of constraint satisfaction problems. It states that the
complexity of SAT(S) is determined, up to polynomial-
time reductions, by the polymorphisms of S.

Theorem 3.1. (Jeavons [15]) Let S1 and S2 be �nite
non-empty sets of Boolean relations. If Pol(S2) ⊆
Pol(S1), then SAT(S1) is polynomial-time many-one
reducible to SAT(S2).

Schaefer's classi�cation of SAT(S) follows more or less
directly from this result together with Post's lattice of
clones. It is worth noting that out of the countably
in�nite number of Boolean clones, there are just two
that corresponds to NP-complete SAT(S) problems.
These are the clone I2 consisting of all projections (i.e.
the operations of the form fki (x1, . . . , xk) = xi), and the
clone N2 consisting of all projections together with the
unary negation function n(0) = 1, n(1) = 0. It is easy
to realize that Inv(I2) is the set of all Boolean relations
(i.e., BR) and we denote Inv(N2) by IN2 .

Theorem 3.1 is not very useful for studying the
complexity of SAT problems in terms of their worst-case
complexity as a function of the number of variables. The
reason is that the reductions do not preserve instance
sizes and may introduce large numbers of new variables.
It also seems that the lattice of clones is not �ne grained
enough for this purpose. For example, 1-in-3-SAT and
k-SAT (for k ≥ 3) both correspond to the same clone
I2.

One way to get a more re�ned framework is to
consider partial operations in De�nition 3.1. That is,
we say that R is closed under the (partial) operation f
if f applied componentwise to the tuples of R always
results in a tuple from R or an unde�ned result (i.e., f
is unde�ned on at least one of the components). The
set of all (partial) operations preserving the relations
in S, i.e., the partial polymorphisms of S is denoted by
pPol(S) and forms a partial clone.

Example. Consider again the relation R and the a�ne
operation g from Example 3 and let p be the partial
operation de�ned as p(x, y, z) = g(x, y, z) except that
it is unde�ned for (1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1).
Now it can be veri�ed that p is a partial polymorphism
of R.

Unlike the lattice of Boolean clones, the lattice of partial
Boolean clones consists of an uncountable in�nite num-
ber of partial clones, and despite being a well-studied
mathematical object [18], its structure is far from being
completely understood.

Before we show that the lattice of partial clones
is �ne-grained enough to capture the complexity of
SAT(S) problems (in terms of the worst-case complexity
as a function of the number of variables) we need to
present a Galois connection between sets of relations
and sets of (partial) functions.

Definition 3.2. For any set S ⊆ BR, the set 〈S〉 con-
sists of all relations that can be expressed (or imple-
mented) using relations from S ∪{=} (where = denotes
the equality relation on {0, 1}), conjunction, and ex-
istential quanti�cation. We call such implementations
primitive positive (p.p.) implementations. Similarly,

1267 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

5

IR0 IR1

IR

IR2

IM

IM0 IM1

IM2

IS2
1

IS3
1

IS1

IS2
12

IS3
12

IS12

IS2
11

IS3
11

IS11

IS2
10

IS3
10

IS10

IS2
0

IS3
0

IS0

IS2
02

IS3
02

IS02

IS2
01

IS3
01

IS01

IS2
00

IS3
00

IS00ID2

ID

ID1

IL2

IL

IL0 IL1IL3

IE2

IE

IE0 IE1

IV2

IV

IV1IV0

II0 II1

IN2

II

BR

IN

Figure 2: The lattice of Boolean co-clones.

for any set S ⊆ BR the set 〈S〉@ consists of all relations
that can be expressed using relations from S ∪ {=} and
conjunction. We call such implementations quanti�er-
free primitive positive (q.p.p.) implementations.

Sets of relations of the form 〈S〉 and 〈S〉@ are referred to
as relational clones (or co-clones) and partial relational
clones, respectively. The lattice of Boolean co-clones
is visualized in Figure 2. There is a Galois connection
between (partial) clones and (partial) relational clones
given by the following result.

Theorem 3.2. [2, 3, 9, 25] Let S1 and S2 be constraint
languages. Then S1 ⊆ 〈S2〉 if and only if Pol(S2) ⊆
Pol(S1), and S1 ⊆ 〈S2〉@ if and only if pPol(S2) ⊆
pPol(S1).

Finally, we show that the complexity of SAT(S) is
determined by the lattice of partial clones.

Theorem 3.3. Let S1 and S2 be �nite non-empty sets
of Boolean relations. If pPol(S2) ⊆ pPol(S1) and
SAT(S2) is solvable in time O(cn), then SAT(S1) is
solvable in time O(cn).

Proof. Given an instance I of SAT(S1) on n variables we
transform I into an equivalent instance I ′ of SAT(S2)

on at most n variables. Since S1 is �xed and �nite we
can assume that the quanti�er-free primitive positive
implementation of each relation in S1 by relations in S2

has been precomputed and stored in a table (of �xed
constant size). Every constraint R(x1, . . . , xk) in I can
be represented as

R1(x11, . . . , x1k1) ∧ · · · ∧Rl(xl1, . . . , xlkl)

where R1, . . . , Rl ∈ S2 ∪ {=} and x11, . . . , xlkl ∈
{x1, x2, . . . , xk}. Replace the constraint R(x1, . . . , xk)
with the constraints R1, . . . , Rl. If we repeat the same
reduction for every constraint in I, it results in an
equivalent instance of SAT(S2 ∪ {=}) having at most
n variables. For each equality constraint xi = xj
we replace all occurrences of xi with xj and remove
the equality constraint. The resulting instance I ′ is
an equivalent instance of SAT(S2) having at most n
variables, hence it can be solved in time O(cn). Finally,
since S1 is �nite, there cannot be more than O(np)
constraints in I, where p is the highest arity of a relation
in S1. Hence computing I ′ from I can be done in time
O(np), and we conclude that SAT(S1) is solvable in time
O(np + cn) = O(cn). �

4 The easiest NP-complete SAT(S) problem

In this section we will use the theory and results
presented in the previous section to determine the
easiest NP-complete SAT(S) problem. Recall that
by easiest we mean that if any NP-complete SAT(S)
problem can be solved in O(cn) time, then the easiest
problem can be solved in O(cn) time, too. Following this
lead we say that SAT(S) is at least as easy as (or not
harder than) SAT(S′) if SAT(S) is solvable in O(cn)
time whenever SAT(S′) is solvable in O(cn) time. A
crucial step for doing this is the explicit construction of
Schnoor and Schnoor [28] that, for each relational clone
X, gives a relation R such that X = 〈{R}〉 and R has
a q.p.p. implementation in every constraint language S
such that 〈S〉 = X. Essentially, this construction gives
the bottom element of the interval of partial relational
clones contained in each relational clone.

Let R = {r1, . . . , rn} be a k-ary relation. The (k +
2n)-ary relation R+ is built from R by viewing it as a n×
k-matrix and adding the 2n Boolean tuples as columns
of this matrix, in an arbitrary order (say, lexicographic).
In the sequel, we use b1 . . . bk as a shorthand for
the tuple (b1, . . . , bk). De�ne the relation R1/3 =
{001, 010, 100} and note that SAT({R1/3}) corresponds
to the 1-in-3-SAT problem. From R1/3 we then get the
following 11-ary relations with 3 tuples:

R+
1/3 =

 001 00001111,
010 00110011,
100 01010101


1268 Copyright © SIAM.

Unauthorized reproduction of this article is prohibited.
Downloaded from knowledgecenter.siam.org

6

Then the extension of R, denoted by R[ext], is the rela-
tion

⋂
R′∈〈{R}〉,R+⊆R′ R′, or, equivalently, the closure of

R+ under the polymorphisms of R.

Theorem 4.1. (Schnoor and Schnoor [28]) Let R
be a Boolean relation. Then R[ext] has a q.p.p. imple-
mentation in {R}. Furthermore, any constraint lan-
guage S such that 〈S〉 = 〈{R}〉 implements R[ext] via a
q.p.p. implementation.

We are now in the position to de�ne the eas-
iest NP-complete SAT(S) problem. The relation
R 6=6= 6=

1/3 = {001110,010101,100011} is formed by tak-
ing R1/3 and adding the negation of each of the
columns, i.e., R 6= 6=6=

1/3 (x1, x2, x3, x4, x5, x6) can be de�ned
as R1/3(x1, x2, x3) ∧ (x1 6= x4) ∧ (x2 6= x5) ∧ (x3 6= x6).

Lemma 4.1. Let S be a constraint language such that
〈S〉 = BR. Then SAT({R 6= 6= 6=

1/3 }) is not harder than
SAT(S).

Proof. Since 〈S〉 = BR = 〈{R1/3}〉 we �rst construct

the extension R
[ext]
1/3 of R1/3 with the aim of showing

that S implements R[ext]
1/3 with a q.p.p. implementation,

and then, with a size-preserving reduction, prove that
SAT({R 6=6= 6=

1/3 }) is not harder than SAT({R[ext]
1/3 }). Since

the arity of R1/3 is 3, we augment its matrix represen-
tation with the binary numbers from 0 to 7 as columns,
and close the resulting relation under every polymor-
phism of R1/3. However, the projection functions are
the only polymorphisms of BR = 〈{R1/3}〉, so the rela-
tion is left unchanged and we get

R
[ext]
1/3 =

0 0 1 0 0 0 0 1 1 1 1
0 1 0 0 0 1 1 0 0 1 1
1 0 0 0 1 0 1 0 1 0 1


From 〈{R1/3}〉 = BR and Theorem 4.1 it follows that

S implements R[ext]
1/3 via a q.p.p. implementation and

hence, by Theorem 3.3, that SAT({R[ext]
1/3 }) is not harder

than SAT(S). Now observe that R
[ext]
1/3 is nothing

else than R 6=6= 6=
1/3 with some columns duplicated and

two constant columns adjoined. Hence, there is a
reduction from SAT({R 6= 6= 6=

1/3 }) to SAT({R[ext]
1/3 }) where

each constraint R 6=6= 6=
1/3 (x1, . . . , x6) is replaced with

R
[ext]
1/3 (x1, x2, x3, F, x1, x2, x6, x3, x5, x4, T)

with F, T being two variables common to all constraints.
Since the number of variables is augmented only by 2,
this indeed shows that SAT({R 6=6= 6=

1/3 }) is not harder than
SAT({R[ext]

1/3 }), which is not harder than SAT(S). �

We are left with the relational clone IN2 and need
to make sure that the bottom partial relational clone
in IN2 is not (strictly) easier than R 6=6= 6=

1/3 . We pro-
ceed in an analogous manner to the derivation of R 6= 6= 6=

1/3

and de�ne a maximal extended relation which is then
pruned of super�uous columns. Analogously to the re-
lation R 6= 6= 6=

1/3 in BR, we consider the relation R 6=6= 6= 6=
2/4

= {00111100,01011010,10010110, 11000011,10100101,
01101001} in IN2 .

Lemma 4.2. Let S be a constraint language such that
〈S〉 = IN2 . Then S implements R 6= 6= 6=6=

2/4 via a q.p.p.
implementation.

Proof. Let RNAE be not-all-equal-SAT as de�ned in Sec-
tion 2 and recall that 〈{RNAE}〉 = IN2 . By Theorem
4.1, it is su�cient to show that R[ext]

NAE can implement
R 6= 6=6= 6=

2/4 with a q.p.p. implementation. Since the cardi-

nality of RNAE is 6 and its arity is 3, R[ext]
NAE will have

arity 3 + 26 = 67 and consist of 6 + 6 = 12 tuples. Let
the irredundant core Rirr (see [28]) of a relation R be
obtained by collapsing duplicate columns in the matrix
representation of R. Clearly, Rirr

NAE has a q.p.p. imple-
mentation in R[ext]

NAE . For example, if column 1 is identical
with column 15 in R[ext]

NAE we can de�ne an equivalent re-
lation R′[ext]NAE by identifying the corresponding variables
x1 and x15 with each other in the implementation:

R
′[ext]
NAE (x1, ..., x14, x16, ..., x67) ≡

R
[ext]
NAE (x1, ..., x14, x1, x16, ..., x67)

Hence the core Rirr
NAE consists of 12 tuples where the

columns of the six �rst tuples are the binary numbers
from 0 to 63, and the six last tuples the complements of
the six �rst. The matrix representation is therefore as
follows.

Rirr
NAE =



0 0 · · · 1 1
0 0 · · · 1 1
0 0 · · · 1 1
0 0 · · · 1 1
0 0 · · · 1 1
0 1 · · · 0 1
1 1 · · · 0 0
...

...
. . .

...
1 0 · · · 1 0


Let c1, . . . , c64 denote the columns in the matrix repre-
sentation of Rirr

NAE. We must now prove that Rirr
NAE can

implement R 6= 6= 6= 6=
2/4 with a q.p.p. implementation. Note

that c1 and c2 only di�er in one row (and its comple-
ment). If we identi�ed c1 and c2 we would therefore
obtain a relation where those two tuples were removed.
But since R 6= 6=6= 6=

2/4 only has 6 tuples we want to identify
two columns that di�er in 6 positions.

1269 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

7

c1 =



0
0
0
0
0
0
1
1
1
1
1
1



, c8 =



0
0
0
1
1
1
1
1
1
0
0
0


Therefore identifying c1 and c8 will remove rows 4, 5, 6
and 10, 11, 12 from Rirr

NAE. If we then collapse identical
columns the resulting matrix will be:

R′irrNAE =


0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0


It can be veri�ed that this relation is nothing else than
a rearranged version of R 6=6= 6= 6=

2/4 since every constraint
R 6=6= 6= 6=

2/4 (x1, x2, x3, x4, x5, x6, x7, x8) can be reduced to
R′irrNAE(x8, x1, x2, x7, x3, x6, x5, x4). Since S can q.p.p.
implement R[ext]

NAE (Theorem 4.1) and hence Rirr
NAE, which

in turn can q.p.p. implement R 6= 6= 6= 6=
2/4 , it follows that S

can also q.p.p. implement R 6= 6=6= 6=
2/4 . �

Both SAT({R 6= 6= 6=
1/3 }) and SAT({R 6= 6=6= 6=

2/4 }) can be
viewed as candidates for the easiest NP-complete
SAT(S) problem. In order to prove that SAT({R 6= 6=6=

1/3 })
is not harder than SAT({R 6= 6=6= 6=

2/4 }) we must give
a size-preserving reduction from SAT({R 6= 6= 6=

1/3 }) to
SAT({R 6=6= 6= 6=

2/4 }).

Lemma 4.3. SAT({R 6=6= 6=
1/3 }) is not harder than

SAT({R 6= 6=6= 6=
2/4 }).

Proof. Let φ be an instance of SAT({R 6=6= 6=
1/3 }) and C =

R 6= 6=6=
1/3 (x1, x2, x3, x4, x5, x6) be an arbitrary constraint

in φ. Let Y1 and Y2 be two global variables. Then the
constraint C ′ = R 6= 6= 6= 6=

2/4 (x1, x2, x3, Y1, x4, x5, x6, Y2) is
satis�able if and only if C is satis�able, with Y1 = 1
and Y2 = 0 (we may assume that Y1 = 1 since
the complement of a satis�able assignment is also a
satis�able assignment for constraint languages in IN2).
If we repeat this reduction for every constraint in φ
we get a SAT({R 6= 6= 6= 6=

2/4 }) instance which is satis�able
if and only if φ is satis�able. Since the reduction
only introduces two new variables, it follows that an

O(cn) algorithm for SAT({R 6= 6= 6= 6=
2/4 }) can be used to solve

SAT({R 6= 6= 6=
1/3 }) in O(cn) time, too.

Since SAT(S) is NP-complete if and only if 〈S〉 =
BR or 〈S〉 = IN2 , Lemma 4.1 together with Lemma 4.3
gives that SAT({R 6=6= 6=

1/3 }) is the easiest NP-complete
SAT(S) problem.

Theorem 4.2. Let S be a �nite Boolean constraint
language such that SAT(S) is NP-complete. Then
SAT({R 6= 6= 6=

1/3 }) is not harder than SAT(S).

5 SAT problems with bounded degree

In this section, we investigate the SAT(S) problem
where restrictions are placed on the number of occur-
rences per variable. If x occurs in B constraints then
we say that the degree of x is B. If S is a constraint
language, then SAT(S)-B is the SAT(S) problem where
the degree of each variable is at most B. This restric-
tion is of particular interest since, for all constraint lan-
guages S such that SAT(S) is NP-complete, SAT(S)-B
is NP-complete for some B.

Theorem 5.1. (Jonsson et al. [16]) For any �xed
S such that CSP(S) is NP-complete, there is an integer
B such that CSP(S)-B is NP-complete.

The most interesting case is when B is the smallest
B such that SAT(S)-B is NP-complete. These values
are already known for 1-in-3-SAT: for B = 2 it can be
reduced to the problem of �nding a perfect matching
in a graph [14], but for B = 3 it is NP-complete even
for planar instances [21]. It might be expected that
the same holds for SAT({R 6=6= 6=

1/3 }) since it is as easy
as SAT({R1/3}). Contrary to intuition this is however
not the case: SAT({R 6= 6= 6=

1/3 })-B is NP-complete even for
B = 2. To prove this we �rst note that R 6= 6=6=

1/3 is not a
∆-matroid relation.

Definition 5.1. (∆-matroid relation) Let R be a
Boolean relation and x, y, x′ be Boolean tuples of the
same arity. Let d(x, y) be the binary di�erence function
between x and y. Then x′ is a step from x to y if
d(x, x′) = 1 and d(x, y) = d(x′, y) + d(x, x′). R is a
∆-matroid relation if it satis�es the following axiom:
∀x, y ∈ R ∀x′.(x′ is a step from x to y) → (x′ ∈
R ∨ ∃x′′ ∈ R which is a step from x′ to y).

Lemma 5.1. R 6= 6=6=
1/3 is not a ∆-matroid relation.

Proof. Let x = 001110 and y = 010101. These are both
elements in R 6= 6=6=

1/3 . Let x′ = 000110. Then d(x, x′) = 1
and d(x, y) = d(x, x′) + d(x′, y) = 1 + 3 = 4, so x′ is a
step from x to y. For R 6= 6= 6=

1/3 to be a ∆-matroid relation
either x′ ∈ R 6= 6= 6=

1/3 , or there exists a x′′ which is a step

1270 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

8

from x′ to y. Since neither of the disjuncts are true, it
follows that R 6= 6=6=

1/3 is not a ∆-matroid relation.

The hardness result then follows from Theorem 3
in Dalmau and Ford [8], which states that SAT(S)-2
is NP-complete if S contains a relation that is not ∆-
matroid.

Theorem 5.2. SAT({R 6= 6=6=
1/3 })-2 is NP-complete.

6 The exponential-time hypothesis

Even though SAT({R 6= 6= 6=
1/3 }) is the easiest NP-complete

SAT(·) problem, we cannot hope to prove or disprove
that SAT({R 6= 6= 6=

1/3 }) or SAT({R 6= 6= 6=
1/3 })-2 is solvable in

polynomial time since this would settle the P = NP
question. A more assailable question is if the problem
can be solved in sub-exponential time (see De�nition

6.1). If yes, then we are none the wiser about P
?
= NP;

but if no, then P 6= NP. As a tool for studying sub-
exponential problems, Impagliazzo et al. [13] proved a
sparsi�cation lemma for k-SAT. Intuitively, the process
of sparsi�cation means that a SAT(S) instance with a
large number of constraints can be expressed as a dis-
junction of instances with a comparably small number
of constraints. We prove that sparsi�cation is possible
not only for k-SAT, but between all �nite constraint lan-
guages S and S′ for which SAT(S) and SAT(S′) are NP-
complete, and use this to prove that SAT({R 6= 6= 6=

1/3 })-2 is
sub-exponential if and only if the exponential-time hy-
pothesis is false. Due to sparsi�cation we can also prove
that all such SAT(S) problems are sub-exponential if
and only if one of them is sub-exponential (and that
this holds also in the degree-bounded case), which is a
signi�cant re�nement of Impagliazzo et al.'s result when
restricted to �nite Boolean constraint languages S.

6.1 Sub-exponential problems There has been a
stride in constructing faster exponential algorithms for
NP-complete problems. A natural question to ask is
whether there exists a constant c such that a problem
is solvable in O(cn), but not for any c′ smaller than
c. Problems without such a sharp limit are said to be
sub-exponential.

Definition 6.1. A constraint language S is sub-
exponential if SAT(S) is solvable in O(2εn) for all ε > 0.

We now need a class of reductions that relates
constraint languages based on their sub-exponential
complexity. Reductions based on q.p.p. de�nitions are
too precise to fully encompass this since they preserve
exact complexity � a reduction should be able to
introduce new variables as long as the resulting instance
can be solved in sub-exponential time. We introduce

linear variable reductions, which should be compared to
the more complex but general class of SERF-reductions
by Impagliazzo et al. [13].

Definition 6.2. Let S and S′ be two �nite constraint
languages and φ a SAT(S) instance with n variables. A
total function f from SAT(S) to SAT(S′) is a many-one
linear variable reduction, or an LV-reduction, if:

1. φ is satis�able if and only if f(φ) is satis�able,

2. the number of variables in f(φ), n′, is only in-
creased by a linear amount, i.e. there exists a uni-
versal constant C such that n′ ≤ Cn, and

3. f(φ) can be computed in O(poly(n)) time.

The point of the de�nition is that an LV-
reduction between two constraint languages preserves
sub-exponentiality. Hence, if SAT(S) is sub-exponential
and we know that SAT(S′) is LV-reducible to SAT(S),
then SAT(S′) is sub-exponential as well.

Lemma 6.1. Let S and S′ be two �nite constraint
languages such that SAT(S) is sub-exponential. If there
exists an LV-reduction from SAT(S′) to SAT(S), then
SAT(S′) is sub-exponential.

Proof. Assume that SAT(S′) can be solved in time
O(cn) but not in O(cnε) for any 0 < ε < 1. Since
SAT(S) is sub-exponential it can be solved in time
O(cεn) for all ε > 0. Assume that the LV-reduction from
SAT(S′) to SAT(S) implies that the resulting instance
contains at most C · n variables where C is a constant.
This will make SAT(S′) solvable in time O(c(C·n)ε) for
all ε > 0 which contradicts the assumption. �

Let S and S′ be two �nite constraint languages such
that S ⊆ 〈S′〉. We can then reduce SAT(S) to SAT(S′)
by replacing each constraint from S by its equivalent
implementation in S′. Such a reduction would need
C · m new variables, where C is a constant that only
depends on S′, and m the number of constraints in
the instance. If m is large compared to the number
of variables, n, this would however require more than a
linear amount of new variables. We can therefore only
prove that LV-reductions exist for classes of problems
wherem is linearly bounded by the number of variables.

Lemma 6.2. Let S and S′ be two �nite constraint
languages. If S′ ⊆ 〈S〉, then SAT(S′)-B is LV-reducible
to SAT(S).

Proof. Let φ be a SAT(S′)-B-instance with n variables.
Since each variable can occur in at most B constraints
there cannot be more than n · B constraints in total.

1271 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

9

Each such constraint is of the form R(x1, . . . , xk) where
R ∈ S′. By assumption R can then be expressed as
a conjunction of constraints over S ∪ {=} with a set
of existentially quanti�ed variables: ∃y1, . . . , yl.

∧
ψ(Y),

where each ψ ∈ S ∪ {=} and Y ⊆ {x1, . . . , xk} ∪
{y1, . . . , yl}.

Hence the number of extra variables for each con-
straint depends on the relations from S′. Let t denote
the largest amount of variables that is required for im-
plementing a constraint. In the worst case the total
amount of new variables in the reduction is then (n·B)t,
which is linear with respect to n since B and t are �xed
values.

Since the reduction only increases the amount of
variables with a linear factor it is indeed an LV-
reduction, which concludes the lemma. �

This does not imply that there exists LV-reductions
between SAT(S) and SAT(S′) for all constraint lan-
guages S and S′, since these problems are not degree-
bounded, but it is a useful tool in the sparsi�cation pro-
cess.

Definition 6.3. Let S and S′ be two �nite constraint
languages. We say that S is sparsi�able into S′ if, for all
ε > 0 and for all SAT(S) instances φ (with n variables),
φ can be expressed by a disjunctive formula

∨t
i=1 φi,

where:

1. φ is satis�able if and only if at least one φi is
satis�able,

2. B is a constant that only depends on ε, S and S′,

3. φi is a SAT(S′)-B instance,

4. t ≤ 2εn, and

5.
∨t
i=1 φi can be computed in O(poly(n) · 2εn) time.

Note that nothing in the de�nition says that S and
S′ cannot be the same constraint language. If so, we
simply say that S is sparsi�able. Impagliazzo et al. [13]
prove the following for k-SAT.

Lemma 6.3. (sparsi�cation lemma for k-SAT) k-
SAT is sparsi�able.

6.2 General sparsi�cation Recall from Section 2
that we use Γk

SAT and Γk
NAE to denote the constraint

languages of k-SAT and NAE-k-SAT respectively. In
order to prove the general sparsi�cation result, we
�rst prove that Γk

NAE is sparsi�able, and then that all
constraint languages S in BR and IN2 for which SAT(S)
is NP-complete can be sparsi�ed by reducing them to
either Γk

SAT or Γk
NAE.

Lemma 6.4. (sparsi�cation lemma for NAE-k-
SAT) Γk

NAE is sparsi�able.

Proof. Let φ be a SAT(Γk
NAE) instance with n variables.

If γk
NAE(x1, . . . , xk) is a constraint from φ, then it be ver-

i�ed that it is satis�able if and only if γk
SAT(x1, . . . , xk)∧

γk
SAT(¬x1, . . . ,¬xk) is satis�able. We can therefore form
an equivalent SAT(Γk

SAT) instance ψ by adding the com-
plement of every γk

NAE-constraint. By the sparsi�cation
lemma for k-SAT, it then follows that ψ can be sparsi-
�ed into the disjunctive formula

∨t
i=1 ψi. We must now

prove that each SAT(Γk
SAT)-B instance ψi is reducible to

an equivalent SAT(Γk
NAE)-B

′ instance for some constant
B′.

For simplicity, we shall �rst reduce each disjunct to
SAT(Γk+1

NAE). For each constraint γk
SAT(x1, . . . , xk) ∈ ψi

we let γk+1
NAE(x1, . . . , xk, X) be the corresponding γk+1

NAE-
constraint, where X is a fresh variable common to all
constraints. Let ψ′i be the resulting SAT(Γ

k+1
NAE) instance.

Then ψi is satis�able if and only if ψ′i is satis�able:
if ψi is satis�able, then ψ′i is satis�able with X = 0;
if ψ′i is satis�able we may assume that X = 0 since
the complement of each valid assignment is also a valid
assignment. But then each constraint has at least one
literal that is not 0, by which it follows that ψi must be
satis�able.

Since ψ was sparsi�ed, the degree of the variables in
ψi is bounded by the constant B. HenceX cannot occur
in more than B · n constraints. We now prove that the
degree of X can be reduced to a constant value. Since
〈Γk+1

NAE〉 = IN2 we can implement an equality relation
that has the form Eq(x, y) ≡ ∃z1, . . . , zT .θ, where θ is a
conjunction of constraints over Γk+1

NAE. Let V denote the
highest degree of any variable in θ. We may without
loss of generality assume that 2V < B since we can
otherwise adjust the ε-parameter in the sparsi�cation
process.

To decrease the degree of X we introduce the fresh
variables X ′1, . . . , X

′
W in place of X and the following

chain of equality constraints:

Eq(X,X ′1) ∧ Eq(X ′1, X ′2) ∧ . . . ∧ Eq(X ′W−1, X
′
W).

Let the resulting formula be ψ′′i . Then ψ
′
i is satis�able

if and only if ψ′′i is satis�able since f(X) = f(X ′1) =
. . . = f(X ′W) for all satisfying assignments f . Then
W = B·n

B−2V new variables are needed since each X ′i
can occur in B − 2V additional constraints. Since
each equality constraint requires T variables the whole
equality chain requires B·n·T

B−2V variables which is linear
with respect to n since T , B and V are constants.

But since 〈Γk+1
NAE〉 = 〈Γk

NAE〉 = IN2 and no variable
occurs more than B times we can use Lemma 6.2 and
LV-reduce ψ′′i to an equivalent SAT(Γk

NAE) instance φi.

1272 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

10

Since all variables in ψ′′i are degree bounded by B
there exists a constant B′ determined by B and Γk

NAE

such that no variable in φi occurs in more than B′

constraints, i.e. φi is an instance of SAT(Γk
NAE)-B

′. It
now follows that φ is satis�able if and only if at least
one of the disjuncts φi is satis�able. Hence Γk

NAE is
sparsi�able. �

The following auxiliary lemma establishes that for
any constraint language S such that S ⊂ BR or S ⊂ IN2

it holds that SAT(S) is LV-reducible to either k-SAT or
NAE-k-SAT.

Lemma 6.5. Let S be a �nite constraint language such
that S ⊂ IN2 and let S′ be a �nite constraint language
such that S′ ⊂ BR. Then, SAT(S) is LV-reducible to
SAT(Γk

NAE), for some k dependent on S, and SAT(S′)
is LV-reducible to SAT(Γk′

SAT), for some k′ dependent on
S′.

Proof. Let φ be an instance of SAT(S) with n variables,
and let R ∈ S be a relation with arity k. By de�nition,
R = {0, 1}k r E, where E is a set of k-ary tuples
over {0, 1} that describes the excluded tuples in the
relation. Since all relations in S must be closed under
complement we can partition E into E1 and E2 where
each tuple in E2 is the complement of a tuple in E1.

Let |E1| = |E2| = N and e1, . . . , eN be an enumer-
ation of the elements in E1. Let ei = (bi,1, . . . , bi,k),
bi,j ∈ {0, 1}.

If R(x1, . . . , xk) is a constraint in φ, then it can
be expressed by the SAT(Γk

NAE) formula ψ1 ∧ . . . ∧ ψN ,
where each ψi = γk

NAE(y1, . . . , yk), and yj = xj if bi,j
is 0, and yj = ¬xj if bi,j is 1. Each such constraint
represents one of the excluded tuples in E1 and one
of the excluded tuples in E2, and as such the formula
as a whole is satis�able if and only if R(x1, . . . , xk)
is satis�able. The same procedure can be repeated
for all the other relations in S. Moreover, since no
extra variables are introduced and the number of new
constraints is linear in the size of φ (because S is �xed
and �nite), the reduction is an LV-reduction.

Let R ∈ S′ be a relation with arity k and φ an
instance of SAT(S′) with n variables. By de�nition,
R = {0, 1}k r E, where E is a set of k-ary tuples over
{0, 1} that describes the excluded tuples in the relation.

Let |E| = N and e1, . . . , eN ∈ E be an enumeration
of its elements. Let ei = (bi,1, . . . , bi,k), bi,j ∈ {0, 1}.

If R(x1, . . . , xk) is a constraint in φ, then it can be
expressed by the SAT(Γk

SAT) formula φ1∧. . .∧φN , where
each φi = γk

SAT(y1, . . . , yk), and yj = xj if bi,j is 0, and
yj = ¬xj if bi,j is 1. Each constraint represents exactly
one of the excluded tuples in R, and as such the formula

as a whole is satis�able if and only if R(x1, . . . , xk)
is satis�able. The same procedure can be repeated
for all the other relations in S. Moreover, since no
extra variables are introduced and the number of new
constraints is is linear in the size of φ (because S is �xed
and �nite), the reduction is an LV-reduction. �

Since SAT(S) is NP-complete if and only if 〈S〉 =
BR or 〈S〉 = IN2 , we can now prove that sparsi�cation
is possible between all �nite constraint languages for
which SAT(·) is NP-complete.

Theorem 6.1. (general sparsi�cation) Let S and
S′ be two �nite constraint languages such that SAT(S)
and SAT(S′) are NP-complete. Then, SAT(S) is spar-
si�able into SAT(S′).

Proof. There are a few di�erent cases depending on
which co-clones that are generated by S and S′:

1. 〈S〉 = 〈S′〉 = IN2 ,

2. 〈S〉 = 〈S′〉 = BR,

3. 〈S〉 = IN2 , 〈S′〉 = BR

4. 〈S〉 = BR, 〈S′〉 = IN2 .

For case (1), assume that 〈S〉 = 〈S′〉 = IN2 . Let
k denote the highest arity of a relation in S. If φ is
a SAT(S) instance with n variables it can be reduced
to a SAT(Γk

NAE) instance φ′ with the same number
of variables by Lemma 6.5. Then, according to the
sparsi�cation lemma for NAE-k-SAT, there exists a
disjunction of SAT(Γk

NAE)-B formulas such that φ′ =∨t
i=1 φi. Since 〈S′〉 = IN2 , each φi can be implemented

as a conjunction of constraints over S′ with a linear
amount of extra constraints and variables. Let φ′i denote
each such implementation. Then φ′i is an instance of
SAT(S′)-B′, for some B′ determined by B and S′.
Hence SAT(S) is sparsi�able into SAT(S′).

Case (2) is analogous to case (1) but with Γk
SAT

instead of Γk
NAE. Case (3) follows from case (2) since

all �nite constraint languages are sparsi�able into Γk
SAT

by Lemmas 6.3 and 6.5.
For case (4), assume that 〈S〉 = BR and 〈S′〉 = IN2 .

Let k denote the relation with the highest arity in S.
If φ is a SAT(S) instance with n variables it can be
LV-reduced to a SAT(Γk

SAT) instance φ
′ by lemma 6.5.

Since Γk
SAT is sparsi�able there exists a disjunction such

that φ′ =
∨t
i=1 φi. By recapitulating the steps from

Lemma 6.4 we can then reduce each φi to a SAT(Γk+1
NAE)-

B instance φ′i. Then, since 〈S′〉 = IN2 , each φ′i can be
implemented as a conjunction of constraints over S′ such
that no variable occurs in more than B′ constraints,
where B′ is determined by B and S′. �

1273 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

11

Santhanam and Srinivasan [26] have shown that the
unrestricted SAT problem (which corresponds to an in-
�nite constraint language) does not admit sparsi�cation
to arbitrary �nite constraint languages such that SAT(·)
is NP-complete. Consequently, it is a necessary condi-
tion that the constraint languages in Theorem 6.1 are
indeed �nite.

6.3 SAT and the exponential-time hypothesis
The exponential-time hypothesis states that k-SAT is
not sub-exponential [12] for k ≥ 3. If one assumes
that P 6= NP, then this statement is plausible since it
enforces a limit on the time complexity of exponential
algorithms. Impagliazzo et al. prove that many NP-
complete problems such as k-colorability, clique and
vertex cover are as hard as k-SAT with respect to
sub-exponential complexity. In this section we prove
that both SAT({R 6= 6= 6=

1/3 }) and SAT({R 6= 6= 6=
1/3 })-2 are sub-

exponential if and only if k-SAT is sub-exponential, and,
as a consequence, that this is true for all �nite constraint
languages S for which SAT(S) is NP-complete, even for
degree-bounded instances.

Theorem 6.2. The following statements are equiva-
lent:

1. The exponential-time hypothesis is false.

2. SAT({R 6= 6= 6=
1/3 })-2 is sub-exponential.

3. SAT({R 6= 6= 6=
1/3 }) is sub-exponential.

4. For every �nite constraint language S such
that SAT(S) is NP-complete, SAT(S) is sub-
exponential.

5. For every �nite constraint language S such
that SAT(S) is NP-complete, SAT(S)-B is sub-
exponential for every B.

6. There exists a �nite constraint language S such that
SAT(S) is NP-complete and sub-exponential.

7. There exists a �nite constraint language S such
that SAT(S) is NP-complete and SAT(S)-B is sub-
exponential for all B.

Proof. We will prove that 1 =⇒ . . . =⇒ 7 =⇒ 1
and hence that all statements are equivalent.

1 =⇒ 2: If the exponential-time hypothesis is
false then k-SAT is sub-exponential. But then R 6= 6= 6=

1/3

must also be sub-exponential since it is as easy as k-
SAT, which immediately implies that SAT({R 6=6= 6=

1/3 })-2
is sub-exponential.

2 =⇒ 3: We must prove that SAT({R 6= 6= 6=
1/3 }) is sub-

exponential if SAT({R 6= 6= 6=
1/3 })-2 is sub-exponential. Let

φ be a SAT({R 6= 6= 6=
1/3 }) instance with n variables. Due to

Theorem 6.1 there exists a disjunction of SAT({R 6= 6=6=
1/3 })-

B instances such that φ =
∨t
i=1 φi, where B is a

constant that does not depend on n. Next assume that x
is a variable in φi that occurs in 2 < B′ ≤ B constraints.
Since this is not a valid SAT({R 6= 6= 6=

1/3 })-2 instance the
degree of x must be lowered to 2.

Call two variables in an R 6= 6=6=
1/3 -constraint comple-

mentary if one occurs in position i = 1, 2 or 3, and the
other in position i + 3. It is easily veri�ed that vari-
ables ful�lling this constraint are indeed each other's
complement. Let C1, . . . , CB′ be an enumeration of the
constraints that contains x. Without loss of generality
we may assume that x always occur in position 1 and
that it has a single complementary variable x′ which
occurs in position 4 in the constraints C1, . . . , CB′ . For
each three constraints:

Ci−1 = R 6= 6= 6=
1/3 (x, yi−1, zi−1, x

′, y′i−1, z
′
i−1),

Ci = R 6=6= 6=
1/3 (x, yi, zi, x

′, y′i, z
′
i),

Ci+1 = R 6= 6=6=
1/3 (x, yi+1, zi+1, x

′, y′i+1, z
′
i+1),

we can then lower the degree of x and x′ by introducing
the constraints C ′i−1, C

′
i, and C

′
i+1, which we de�ne such

that

C ′i−1 = R 6= 6= 6=
1/3 (x, yi−1, zi−1, x

′, y′i−1, z
′
i−1),

C ′i = R 6= 6= 6=
1/3 (x, yi, zi, x

′′, y′i, z
′
i),

C ′i+1 = R 6= 6=6=
1/3 (x′′′, yi+1, zi+1, x

′′, y′i+1, z
′
i+1).

Here, x′′ and x′′′ are fresh variables. Since the new
variables occur in the same complementary positions
it follows that f(x) = f(x′′′) = ¬f(x′) = ¬f(x′′) for
all satisfying assignments f , and that Ci−1, Ci, Ci+1 are
satis�able if and only if C ′i−1, C

′
i, C
′
i+1 are satis�able. If

the procedure is repeated iteratively for all C1, . . . , CB′

the degree of x or any newly introduced variable in
C ′1, . . . , C

′
B′ is at most 2. Let φ′i denote the formula

obtained when the procedure is repeated for all variables
occurring B′ times, 2 < B′ ≤ B. The total number
of variables needed is then bounded by the linear
expression B · n.

Since no variable in φ′i occurs in more than two con-
straints, we can then use a sub-exponential algorithm
for SAT({R 6= 6= 6=

1/3 })-2, and answer yes if and only if at
least one φ′i is satis�able. Hence SAT({R 6=6= 6=

1/3 }) is sub-
exponential if SAT({R 6= 6= 6=

1/3 })-2 is sub-exponential.
3 =⇒ 4: Assume that R 6= 6= 6=

1/3 is sub-exponential.
Let S be an arbitrary �nite constraint language and φ be
an instance of SAT(S). According to the general spar-
si�cation result (Theorem 6.1), φ can be sparsi�ed into∨t
i=1 φi, where each φi is an instance of SAT({R 6= 6= 6=

1/3 })-
B. But then we can simply use a sub-exponential algo-

1274 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

12

rithm for SAT({R 6= 6= 6=
1/3 }) and answer yes if and only if at

least one of the disjuncts is satis�able.
4 =⇒ 5: Trivial.
5 =⇒ 6: Assume that SAT(S) is NP-complete

and that SAT(S)-B is sub-exponential for every B.
Let φ be a SAT(S) instance. Then according to
Theorem 6.1, there exists a disjunction

∨t
i=1 φi of

SAT(S)-B′ formulas, for some constant B′. Since
SAT(S)-B is sub-exponential for every B we can use
a sub-exponential algorithm for SAT(S)-B′ and answer
yes if and only if at least one of the disjuncts is
satis�able.

6 =⇒ 7: Trivial.
7 =⇒ 1: Assume that SAT(S) is NP-complete

and that SAT(S)-B is sub-exponential for all B. Ac-
cording to Theorem 6.1), any instance of SAT(Γk

SAT)
can be expressed as a disjunction of SAT(S)-B′ in-
stances for some constant B′. But since SAT(S)-B
is sub-exponential for all B we can simply use a sub-
exponential algorithm for SAT(S)-B′ and answer yes if
and only if at least one of the disjuncts is satis�able. �

7 Research directions and open questions

We will now discuss some research directions and
pose some open questions. After having shown that
SAT({R 6= 6= 6=

1/3 }) is the easiest NP-complete SAT(S) prob-
lem, it is tempting to try to determine bounds on its
time complexity. We are currently working on a branch-
and-bound algorithm for this problem and preliminary
results show that this algorithm runs in O(αn) time
where α ≈ 1.05. We are fairly convinced that the time
complexity can be signi�cantly lowered by a more care-
ful analysis of the algorithm.

Since our de�nition of `easier' means `not harder
than' we have not excluded the possibility that there
exists other constraint languages which are as easy as
R 6=6= 6=

1/3 . A possible starting point would be to investi-
gate whether the partial relational clones just above
〈{R 6= 6= 6=

1/3 }〉@ results in strictly harder SAT problems or
whether they all are reducible to each other.

We have proved that SAT(S) is sub-exponential if
and only if SAT(S)-B is sub-exponential for all B. This
result is inconclusive since it does not rule out the possi-
bility that a SAT(S)-B problem is sub-exponential and
NP-complete for some B, but that the sub-exponential
property is lost for larger values. Hence, it would be in-
teresting to (dis)prove that SAT(S) is sub-exponential
if and only if there exists some B such that SAT(S)-
B is NP-complete and sub-exponential. This holds for
SAT({R 6= 6= 6=

1/3 }) so it does not seem impossible that the
result holds for all constraint languages. We also re-
mark that bounding the degree of variables is not the
only possible structural restriction: many attempts at

establishing structurally based complexity results are
based on the tree-width (or other width parameters) of
some graph representation of the constraints, cf. [7, 10].
A particularly interesting example is Marx's [20] result
that connects ETH with structural restrictions: if ETH
holds, then solving the CSP problem for instances whose
primal graph has treewidth k requires nΩ(k/ log k) time.

A natural continuation of this research is to gener-
alize the methods in Section 3 to other problems. Gen-
eralizing them to constraint satisfaction problems over
�nite domains appears to be e�ortless, and such a gen-
eralization would give us a tool for studying problems
such as k-colorability and its many variations. Lifting
the results to in�nite-domain constraints appears to be
more di�cult, but it may be worthwhile: Bodirsky and
Grohe [1] have shown that every computational deci-
sion problem is polynomial-time equivalent to such a
constraint problem. Hence, this may lead to general
methods for studying the time complexity of compu-
tational problems. Another interesting generalization
is to study problems that are not satis�ability prob-
lems, e.g. enumeration problems, counting problems,
and non-monotonic problems such as abduction and cir-
cumscription.

As we have already mentioned, a drawback of The-
orem 3.3 is that the structure of the Boolean partial
clone lattice is far from well-understood (and even less
well-understood when generalized to larger domains).
Hence, it would be interesting to look for lattices that
have a granularity somewhere in between the clone lat-
tice and the partial clone lattice. One plausible can-
didate is the lattice of frozen partial clones that were
introduced in Nordh and Zanuttini [23]. A frozen imple-
mentation is a primitive positive implementation where
we are only allowed to existentially quantify over vari-
ables that are frozen to a constant (i.e., variables that
are constant over all solutions). For more details about
frozen partial clones (e.g., the Galois connection be-
tween frozen partial clones and frozen partial relational
clones), we refer the reader to Nordh and Zanuttini [23].
We remark that the complexity of SAT(S) is determined
by the frozen partial clones and that the lattice of frozen
partial clones is indeed coarser than the lattice of par-
tial clones, as there are examples of in�nite chains of
partial clones that collapse to a single frozen partial
clone [11, 23].

Acknowledgments

We thank Magnus Wahlström for helpful discussions on
the topic of this paper.

1275 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

13

References

[1] M. Bodirsky and M. Grohe. Non-dichotomies in
constraint satisfaction complexity. In Proceedings
of the 35th International Colloquium on Automata,
Languages and Programming (ICALP-2008), pp.
184�196, 2008.

[2] V. Bodnarchuk, L. Kaluzhnin, V. Kotov, and
B. Romov. Galois theory for post algebras. I.
Cybernetics and Systems Analysis, 5(3):1�10, 1969.

[3] V. Bodnarchuk, L. Kaluzhnin, V. Kotov, and
B. Romov. Galois theory for post algebras. II..
Cybernetics and Systems Analysis, 5(5):1�9, 1969.

[4] E. Böhler, N. Creignou, S. Reith, and H. Vollmer.
Playing with boolean blocks, part I: Post's lattice
with applications to complexity theory. ACM
SIGACT-Newsletter, 34, 2003.

[5] A. Bulatov, P. Jeavons, and A. Krokhin. Classify-
ing the complexity of constraints using �nite alge-
bras. SIAM Journal on Computing, 34(3):720�742,
2005.

[6] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J.
Nederlof, Y. Okamoto, R. Paturi, S. Saurabh,
and M. Wahlström. On problems as hard as
CNFSAT. In Proceedings of the 27th Annual IEEE
Conference on Computational Complexity (CCC-
2012).

[7] V. Dalmau, Ph. Kolaitis, and M. Vardi. Constraint
satisfaction, bounded treewidth, and �nite-variable
logics. In Proceedings of the 8th International Con-
ference on Principles and Practice of Constraint
Programming (CP-2002), pp. 310�326, 2002.

[8] V. Dalmau and D. Ford. Generalized satis�ability
with limited occurrences per variable: A study
through delta-matroid parity. In Proceedings of the
28th International Symposium on Mathematical
Foundations of Computer Science (MFCS-2003),
pp. 358�367, 2003.

[9] D. Geiger. Closed systems of functions and pred-
icates. Paci�c Journal of Mathematics, pp. 228�
250, 1968.

[10] M. Grohe. The complexity of homomorphism
and constraint satisfaction problems seen from the
other side. Journal of the ACM, 54(1), 2007.

[11] L. Haddad. In�nite chains of partial clones
containing all selfdual monotonic partial func-
tions. Multiple-valued Logic and Soft Computing,
18(2):139�152, 2012.

[12] R. Impagliazzo and R. Paturi. On the complexity
of k-SAT. Journal of Computer and System Sci-
ences, 62(2):367�375, 2001.

[13] R. Impagliazzo, R. Paturi, and F. Zane. Which
problems have strongly exponential complex-

ity? Journal of Computer and System Sciences,
63(4):512�530, 2001.

[14] G. Istrate. Looking for a version of Schaefer's
dichotomy theorem when each variable occurs at
most twice. Technical report 652, Computer Sci-
ence Department, The University of Rochester,
1997.

[15] P. Jeavons. On the algebraic structure of combi-
natorial problems. Theoretical Computer Science,
200:185�204, 1998.

[16] P. Jonsson, A. Krokhin, and F. Kuivinen. Hard
constraint satisfaction problems have hard gaps at
location 1. Theoretical Computer Science, 410(38-
40):3856�3874, 2009.

[17] R. Ladner. On the structure of polynomial time
reducibility. Journal of the ACM, 22(1):155�171,
1975.

[18] D. Lau. Function Algebras on Finite Sets.
Springer, Berlin, 2006.

[19] D. Lokshtanov, D. Marx, and S. Saurabh. Lower
bounds based on the exponential time hypothesis.
Bulletin of the EATCS, 105:41�72, 2011.

[20] D. Marx. Can you beat treewidth? Theory of
Computing, 6(1):85�112, 2010.

[21] C. Moore and J. Robson. Hard tiling problems
with simple tiles. Discrete & Computational Ge-
ometry, 26(4):573�590, 2001.

[22] R. Moser and D. Scheder. A full derandomization
of Schoening's k-SAT algorithm. In Proceedings of
the 43rd ACM Symposium on Theory of Computing
(STOC-2011), pp. 245�252, 2011.

[23] G. Nordh and B. Zanuttini. Frozen Boolean par-
tial co-clones. In Proceedings of the 39th In-
ternational Symposium on Multiple-Valued Logic
(ISMVL-2009), pp. 120�125, 2009.

[24] E. Post. The two-valued iterative systems of math-
ematical logic. Annals of Mathematical Studies,
5:1�122, 1941.

[25] B. Romov. The algebras of partial functions
and their invariants. Cybernetics and Systems
Analysis, 17(2):157�167, 1981.

[26] R. Santhanam and S. Srinivasan. On the
limits of sparsi�cation. In Proceedings of
the 39th International Colloquium on Au-
tomata, Languages and Programming (ICALP-
2012). To appear. Preprint available from
http://eccc.hpi-web.de/report/2011/131/

[27] Th. Schaefer. The complexity of satis�abil-
ity problems. In Proceedings of the 10th An-
nual ACM Symposium on Theory of Computing
(STOC-1978), pp. 216�226, 1978.

[28] H. Schnoor and I. Schnoor. New algebraic tools
for constraint satisfaction. In N. Creignou, Ph.

1276 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

14

Kolaitis, and H. Vollmer, editors, Complexity of
Constraints, Schloss Dagstuhl, Germany.

[29] U. Schöning. A low and a high hierarchy within
NP. Journal of Computer and System Sciences,
27(1):14�28, 1983.

[30] Á. Szendrei. Clones in Universal Algebra, volume
99 of Seminaires de Mathématiques Supérieures.
University of Montreal, 1986.

[31] J. van Rooij, M. van Kooten Niekerk, and H.
Bodlaender. Partition into triangles on bounded
degree graphs. In Proceedings of SOFSEM 2011:
Theory and Practice of Computer Science, pp. 558�
569, 2011.

[32] M. Wahlström. Algorithms, Measures and Upper
Bounds for Satis�ability and Related Problems.
PhD thesis, Linköping University, 2007.

[33] G. Woeginger. Exact algorithms for NP-hard prob-
lems: A survey. In Combinatorial Optimization -
Eureka, You Shrink!, volume 2570 of Lecture Notes
in Computer Science, pages 185�208, 2003.

1277 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

