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Abstract. The propositional planning problem is a notoriously diffi-
cult computational problem. Downey et al. (1999) initiated the param-
eterized analysis of planning (with plan length as the parameter) and
Bäckström et al. (2012) picked up this line of research and provided
an extensive parameterized analysis under various restrictions, leaving
open only one stubborn case. We continue this work and provide a full
classification. In particular, we show that the case when actions have no
preconditions and at most e postconditions is fixed-parameter tractable if
e ≤ 2 and W[1]-complete otherwise. We show fixed-parameter tractabil-
ity by a reduction to a variant of the Steiner Tree problem; this problem
has been shown fixed-parameter tractable by Guo et al. (2007). If a
problem is fixed-parameter tractable, then it admits a polynomial-time
self-reduction to instances whose input size is bounded by a function
of the parameter, called the kernel. For some problems, this function is
even polynomial which has desirable computational implications. Recent
research in parameterized complexity has focused on classifying fixed-
parameter tractable problems on whether they admit polynomial kernels
or not. We revisit all the previously obtained restrictions of planning
that are fixed-parameter tractable and show that none of them admits a
polynomial kernel unless the polynomial hierarchy collapses to its third
level.

1 Introduction

The propositional planning problem has been the subject of intensive study in
knowledge representation, artificial intelligence and control theory and is relevant
for a large number of industrial applications [13]. The problem involves deciding
whether an initial state—an n-vector over some set D–can be transformed into
a goal state via the application of operators each consisting of preconditions and
post-conditions (or effects) stating the conditions that need to hold before the
operator can be applied and which conditions will hold after the application of
the operator, respectively. It is known that deciding whether an instance has
a solution is Pspace-complete, and it remains at least NP-hard under various
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restrictions [6, 3]. In view of this intrinsic difficulty of the problem, it is natural
to study it within the framework of Parameterized Complexity which offers the
more relaxed notion of fixed-parameter tractability (FPT). A problem is fixed-
parameter tractable if it can be solved in time f(k)nO(1) where f is an arbitrary
function of the parameter and n is the input size. Indeed, already in a 1999
paper, Downey, Fellows and Stege [8] initiated the parameterized analysis of
propositional planning, taking the minimum number of steps from the initial
state to the goal state (i.e., the length of the solution plan) as the parameter;
this is also the parameter used throughout this paper. More recently, Bäckström
et al. [1] picked up this line of research and provided an extensive analysis of
planning under various syntactical restrictions, in particular the syntactical re-
strictions considered by Bylander [6] and by Bäckström and Nebel [3], leaving
open only one stubborn class of problems where operators have no preconditions
but may involve up to e postconditions (effects).

New Contributions

We provide a full parameterized complexity analysis of propositional planning
without preconditions. In particular, we show the following dichotomy:

(1) Propositional planning where operators have no preconditions but may have
up to e postconditions is fixed-parameter tractable for e ≤ 2 and W[1]-com-
plete for e > 2.

W[1] is a parameterized complexity class of problems that are believed to be not
fixed-parameter tractable. Indeed, the fixed-parameter tractability of a W[1]-
complete problem implies that the Exponential Time Hypothesis fails [7, 11]. We
establish the hardness part of the dichotomy (1) by a reduction from a variant
of the k-Clique problem. The case e = 2 is known to be NP-hard [6]. Its
difficulty comes from the fact that possibly one of the two postconditions might
set a variable to its desired value, but the other postcondition might change a
variable from a desired value to an undesired one. This can cause a chain of
operators so that finally all variables have their desired value. We show that
this behaviour can be modelled by means of a certain problem on Steiner trees
in directed graphs, which was recently shown to be fixed-parameter tractable
by Guo, Niedermeier and Suchy [15]. We would like to point out that this case
(0 preconditions, 2 postconditions) is the only fixed-parameter tractable case
among the NP-hard cases in Bylander’s system of restrictions (see Table 1).

Our second set of results is concerned with bounds on problem kernels for
planning problems. It is known that a decidable problem is fixed-parameter
tractable if and only if it admits a polynomial-time self-reduction where the size
of the resulting instance is bounded by a function f of the parameter [10, 14, 12].
The function f is called the kernel size. By providing upper and lower bounds
on the kernel size, one can rigorously establish the potential of polynomial-time
preprocessing for the problem at hand. Some NP-hard combinatorial problems
such as k-Vertex Cover admit polynomially sized kernels, for others such as



e = 1 e = 2 fixed e > 2 arbitrary e

p = 0 in P in FPT∗ W[1]-C∗ W[2]-C
in P NP-C NP-C NP-C

p = 1 W[1]-C W[1]-C W[1]-C W[2]-C
NP-H NP-H NP-H Pspace-C

fixed p > 1 W[1]-C W[1]-C W[1]-C W[2]-C
NP-H Pspace-C Pspace-C Pspace-C

arbitrary p W[1]-C W[1]-C W[1]-C W[2]-C
Pspace-C Pspace-C Pspace-C Pspace-C

Table 1. Complexity of Bounded Planning, restricting the number of preconditions
(p) and effects (e). The problems in FPT do not admit polynomial kernels. Results
marked with * are obtained in this paper. All other parameterized results are from [1]
and all classical results are from [6].

k-Path an exponential kernel is the best one can hope for [4]. We examine all
planning problems that we have previously been shown to be fixed-parameter
tractable on whether they admit polynomial kernels. Our results are negative
throughout. In particular, it is unlikely that the FPT part in the above di-
chotomy (1) can be improved to a polynomial kernel:

(2) Propositional planning where operators have no preconditions but may have
up to 2 postconditions does not admit a polynomial kernel unless co-NP ⊆
NP/poly.

Recall that by Yap’s Theorem [17] co-NP ⊆ NP/poly implies the (unlikely)
collapse of the Polynomial Hierarchy to its third level. We establish the ker-
nel lower bound by means of the technique of OR-compositions [4]. We also
consider the “PUBS” fragments of planning as introduced by Bäckström and
Klein [2]. These fragments arise under combinations of syntactical properties
(postunique (P), unary (U), Boolean (B), and single-valued (S); definitions are
provided in Section 3).

(3) None of the fixed-parameter tractable but NP-hard PUBS restrictions of
propositional planning admits a polynomial kernel, unless co-NP ⊆ NP/poly.

According to the PUBS lattice (see Figure 1), only the two maximal restrictions
PUB and PBS need to be considered. Moreover, we observe from previous
results that a polynomial kernel for restriction PBS implies one for restriction
PUB. Hence this leaves restriction PUB as the only one for which we need to
show a super-polynomial kernel bound. We establish the latter, as above, by
using OR-compositions.

The full proofs of statements marked with ? are omitted due to space restric-
tions and can be found at http://arxiv.org/abs/1211.0479.
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Fig. 1. Complexity of Bounded Planning for the restrictions P, U, B and S illus-
trated as a lattice defined by all possible combinations of these restrictions [1]. As
shown in this paper, PUS and PUBS are the only restrictions that admit a polynomial
kernel, unless the Polynomial Hierarchy collapses.

2 Parameterized Complexity

We define the basic notions of Parameterized Complexity and refer to other
sources [9, 11] for an in-depth treatment. A parameterized problem is a set of
pairs 〈I, k〉, the instances, where I is the main part and k the parameter. The
parameter is usually a non-negative integer. A parameterized problem is fixed-
parameter tractable (FPT) if there exists an algorithm that solves any instance
〈I, k〉 of size n in time f(k)nc where f is an arbitrary computable function and c
is a constant independent of both n and k. FPT is the class of all fixed-parameter
tractable decision problems.

Parameterized complexity offers a completeness theory, similar to the theory
of NP-completeness, that allows the accumulation of strong theoretical evidence
that some parameterized problems are not fixed-parameter tractable. This the-
ory is based on a hierarchy of complexity classes FPT ⊆ W[1] ⊆ W[2] ⊆ · · ·
where all inclusions are believed to be strict. An fpt-reduction from a parame-
terized problem P to a parameterized problem Q if is a mapping R from instances
of P to instances of Q such that (i) 〈I, k〉 is a Yes-instance of P if and only if
〈I′, k′〉 = R(I, k) is a Yes-instance of Q, (ii) there is a computable function g
such that k′ ≤ g(k), and (iii) there is a computable function f and a constant c
such that R can be computed in time O(f(k) · nc), where n denotes the size of
〈I, k〉.

A kernelization [11] for a parameterized problem P is an algorithm that takes
an instance 〈I, k〉 of P and maps it in time polynomial in |I|+ k to an instance
〈I′, k′〉 of P such that 〈I, k〉 is a Yes-instance if and only if 〈I′, k′〉 is a Yes-
instance and |I′| is bounded by some function f of k. The output I′ is called
a kernel. We say P has a polynomial kernel if f is a polynomial. Every fixed-



parameter tractable problem admits a kernel, but not necessarily a polynomial
kernel.

An OR-composition algorithm for a parameterized problem P maps t in-
stances 〈I1, k〉, . . . , 〈It, k〉 of P to one instance 〈I′, k′〉 of P such that the algo-
rithm runs in time polynomial in

∑
1≤i≤t |Ii| + k, the parameter k′ is bounded

by a polynomial in the parameter k, and 〈I′, k′〉 is a Yes-instance if and only if
there is an 1 ≤ i ≤ t such that 〈Ii, k〉 is a Yes-instance.

Proposition 1 (Bodlaender, et al. [4]) If a parameterized problem P has an
OR-composition algorithm, then it has no polynomial kernel unless co-NP ⊆
NP/poly.

A polynomial parameter reduction from a parameterized problem P to a param-
eterized problem Q is an fpt-reduction R from P to Q such that (i) R can be
computed in polynomial time (polynomial in |I|+ k), and (ii) there is a polyno-
mial p such that k′ ≤ p(k) for every instance 〈I, k〉 of P with 〈I′, k′〉 = R(〈I, k〉).
The unparameterized version P̃ of a parameterized problem P has the same
YES and NO-instances as P , except that the parameter k is given in unary 1k.

Proposition 2 (Bodlaender, Thomasse, and Yeo [5]) Let P and Q be two
parameterized problems such that there is a polynomial parameter reduction from
P to Q, and assume that P̃ is NP-complete and Q̃ is in NP. Then, if Q has a
polynomial kernel also P has a polynomial kernel.

3 Planning Framework

We will now introduce the SAS+ formalism for specifying propositional planning
problems [3]. We note that the propositional Strips language can be treated as
the special case of SAS+ satisfying restriction B (which will be defined below).
More precisely, this corresponds to the variant of Strips that allows negative
preconditions; this formalism is often referred to as Psn.

Let V = {v1, . . . , vn} be a finite set of variables over a finite domain D.
Implicitly define D+ = D∪{u}, where u is a special value (the undefined value)
not present in D. Then Dn is the set of total states and (D+)n is the set of
partial states over V and D, where Dn ⊆ (D+)n. The value of a variable v in a
state s ∈ (D+)n is denoted s[v]. A SAS+ instance is a tuple P = 〈V,D,A, I,G〉
where V is a set of variables, D is a domain, A is a set of actions, I ∈ Dn is the
initial state and G ∈ (D+)n is the goal. Each action a ∈ A has a precondition
pre(a) ∈ (D+)n and an effect eff(a) ∈ (D+)n. We will frequently use the
convention that a variable has value u in a precondition/effect unless a value is
explicitly specified. Let a ∈ A and let s ∈ Dn. Then a is valid in s if for all
v ∈ V , either pre(a)[v] = s[v] or pre(a)[v] = u. Furthermore, the result of a in s
is a state t ∈ Dn defined such that for all v ∈ V , t[v] = eff(a)[v] if eff(a)[v] 6= u
and t[v] = s[v] otherwise.

Let s0, s` ∈ Dn and let ω = 〈a1, . . . , a`〉 be a sequence of actions. Then ω
is a plan from s0 to s` if either (i) ω = 〈〉 and ` = 0 or (ii) there are states



s1, . . . , s`−1 ∈ Dn such that for all i, where 1 ≤ i ≤ `, ai is valid in si−1 and si
is the result of ai in si−1. A state s ∈ Dn is a goal state if for all v ∈ V , either
G[v] = s[v] or G[v] = u. An action sequence ω is a plan for P if it is a plan
from I to some goal state s ∈ Dn. We will study the following problem:

Bounded Planning
Instance: A tuple 〈P, k〉 where P is a SAS+ instance and k is a positive
integer.
Parameter: The integer k.
Question: Does P have a plan of length at most k?

We will consider the following four syntactical restrictions, originally defined by
Bäckström and Klein [2].

P (postunique): For each v ∈ V and each x ∈ D there is at most one
a ∈ A such that eff(a)[v] = x.

U (unary): For each a ∈ A, eff(a)[v] 6= u for exactly one v ∈ V .
B (Boolean): |D| = 2.
S (single-valued): For all a, b ∈ A and all v ∈ V , if pre(a)[v] 6= u,

pre(b)[v] 6= u and eff(a)[v] = eff(b)[v] = u, then pre(a)[v] = pre(b)[v].

For any set R of such restrictions we write R-Bounded Planning to de-
note the restriction of Bounded Planning to only instances satisfying the
restrictions in R. Additionally we will consider restrictions on the number of
preconditions and effects as previously considered in [6]. For two non-negative
integers p and e we write (p, e)-Bounded Planning to denote the restriction
of Bounded Planning to only instances where every action has at most p pre-
conditions and at most e effects. Table 1 and Figure 1 summarize results from
[6, 3, 1] combined with the results presented in this paper.

4 Parameterized Complexity of (0, e)-Bounded Planning

In this section we completely characterize the parameterized complexity of
Bounded Planning for planning instances without preconditions. It is
known [1] that Bounded Planning without preconditions is contained in the
parameterized complexity class W[1]. Here we show that (0, e)-Bounded Plan-
ning is also W[1]-hard for every e > 2 but it becomes fixed-parameter tractable
if e ≤ 2. Because (0, 1)-Bounded Planning is trivially solvable in polynomial
time this completely characterized the parameterized complexity of Bounded
Planning without preconditions.

4.1 Hardness Results

Theorem 1 (0, 3)-Bounded Planning is W[1]-hard.

Proof. We devise a parameterized reduction from the following problem, which
is W[1]-complete [16].



Multicolored Clique
Instance: A k-partite graph G = (V,E) with partition V1, . . . , Vk such
that |Vi| = |Vj | = n for 1 ≤ i < j ≤ k.
Parameter: The integer k.
Question: Are there vertices v1, . . . , vk such that vi ∈ Vi for 1 ≤
i ≤ k and {vi, vj} ∈ E for 1 ≤ i < j ≤ k? (The graph K =
({v1, . . . , vk}, { {vi, vj} : 1 ≤ i < j ≤ k }) is a k-clique of G.)

Let I = (G, k) be an instance of this problem with partition V1, . . . , Vk, |V1| =
· · · = |Vk| = n and parameter k. We construct a (0, 3)-Bounded Planning
instance I′ = (P′, k′) with P′ = 〈V ′, D′, A′, I ′, G′〉 such that I is a Yes-instance
if and only if so is I′.

We set V ′ = V (G) ∪ { pi,j : 1 ≤ i < j ≤ k }, D′ = {0, 1}, I ′ = 〈0, . . . , 0〉,
G′[pi,j ] = 1 for every 1 ≤ i < j ≤ k and G′[v] = 0 for every v ∈ V (G).
Furthermore, the set A′ contains the following actions:

– For every v ∈ V (G) one action av with eff(av)[v] = 0;
– For every e = {vi, vj} ∈ E(G) with vi ∈ Vi and vj ∈ Vj one action ae with

eff(ae)[vi] = 1, eff(ae)[vj ] = 1, and eff(ae)[pi,j ] = 1.

Clearly, every action in A′ has no precondition and at most 3 effects.
The theorem will follow after we have shown the that G contains a k-clique

if and only if P has a plan of length at most k′ =
(
k
2

)
+ k. Suppose that

G contains a k-clique with vertices v1, . . . , vk and edges e1, . . . , ek′′ , k′′ =
(
k
2

)
.

Then ω′ = 〈ae1 , . . . , aek′′ , av1 , . . . , avk〉 is a plan of length k′ for P′. For the
reverse direction suppose that ω′ is a plan of length at most k′ for P′. Because
I ′[pi,j ] = 0 6= G′[pi,j ] = 1 the plan ω′ has to contain at least one action ae where
e is an edge between a vertex in Vi and a vertex in Vj for every 1 ≤ i < j ≤ k.
Because eff(ae={vi,vj})[vi] = 1 6= G[vi] = 0 and eff(ae={vi,vj})[vj ] = 1 6= G[vj ] =
0 for every such edge e it follows that ω′ has to contain at least one action
av with v ∈ Vi for every 1 ≤ i ≤ k. Because k′ =

(
k
2

)
+ k it follows that ω′

contains exactly
(
k
2

)
actions of the form ae for some edge e ∈ E(G) and exactly

k actions of the form av for some vertex v ∈ V (G). It follows that the graph
K = ({ v : av ∈ ω }, { e : ae ∈ ω }) is a k-clique of G. ut

4.2 Fixed-Parameter Tractability

Before we show that (0, 2)-Bounded Planning is fixed-parameter tractable
we need to introduce some notions and prove some simple properties of (0, 2)-
Bounded Planning. Let P = 〈V,D,A, I,G〉 be an instance of Bounded
Planning. We say an action a ∈ A has an effect on some variable v ∈ V if
eff(a)[v] 6= u, we call this effect good if furthermore eff(a)[v] = G[v] or G[v] = u
and we call the effect bad otherwise. We say an action a ∈ A is good if it has only
good effects, bad if it has only bad effects, and mixed if it has at least one good
and at least one bad effect. Note that if a valid plan contains a bad action then
this action can always be removed without changing the validity of the plan.



Consequently, we only need to consider good and mixed actions. Furthermore,
we denote by B(V ) the set of variables v ∈ V with G[v] 6= u and I[v] 6= G[v].

The next lemma shows that we do not need to consider good actions with
more than 1 effect for (0, 2)-Bounded Planning.

Lemma 1 (?) Let I = 〈P, k〉 be an instance of (0, 2)-Bounded Planning.
Then I can be fpt-reduced to an instance I′ = 〈P′, k′〉 of (0, 2)-Bounded Plan-
ning where k′ = k(k + 3) + 1 and no good action of I′ effects more than one
variable.

Theorem 2 (0, 2)-Bounded Planning is fixed-parameter tractable.

Proof. We show fixed-parameter tractability of (0, 2)-Bounded Planning by
reducing it to the following fixed-parameter tractable problem [15].

Directed Steiner Tree
Instance: A set of nodes N , a weight function w : N×N → (N∪{∞}),
a root node s ∈ N , a set T ⊆ N of terminals , and a weight bound p.
Parameter: pM = p

min{w(u,v) : u,v∈N } .

Question: Is there a set of arcs E ⊆ N ×N of weight w(E) ≤ p (where
w(E) =

∑
e∈E w(e)) such that in the digraph D = (N,E) for every

t ∈ T there is a directed path from s to t? We will call the digraph D a
directed Steiner Tree (DST) of weight w(E).

Let I = 〈P, k〉 where P = 〈V,D,A, I,G〉 be an instance of (0, 2)-Bounded
Planning. Because of Lemma 1 we can assume that A contains no good actions
with two effects. We construct an instance I′ = 〈N,w, s, T, p〉 of Directed
Steiner Tree where pM = k such that I is a Yes-instance if and only if I′ is
a Yes-instance. Because pM = k this shows that (0, 2)-Bounded Planning is
fixed-parameter tractable.

We are now ready to define the instance I′. The node set N consists of the
root vertex s and one node for every variable in V . The weight function w is ∞
for all but the following arcs: (i) For every good action a ∈ A the arc from s
to the unique variable v ∈ V that is effected by a gets weight 1. (ii) For every
mixed action a ∈ A with some good effect on some variable vg ∈ V and some
bad effect on some variable vb ∈ V , the arc from vb to vg gets weight 1.

We identify the root s from the instance I with the node s, we let T be the
set B(V ), and pM = p = k.

Claim 1 (?) P has a plan of length at most k if and only if I′ has a DST of
weight at most pM = p = k.

The theorem follows. ut

5 Kernel Lower Bounds

Since (0, 2)-Bounded Planning is fixed-parameter tractable by Theorem 2 it
admits a kernel. Next we provide strong theoretical evidence that the problem



does not admit a polynomial kernel. The proof of Theorem 3 is based on an
OR-composition algorithm and Proposition 1.

Theorem 3 (?) (0, 2)-Bounded Planning has no polynomial kernel unless
co-NP ⊆ NP/poly.

In previous work [1] we have classified the parameterized complexity of the
“PUBS” fragments of Bounded Planning. It turned out that the problems fall
into four categories (see Figure 1): (i) polynomial-time solvable, (ii) NP-hard
but fixed-parameter tractable, (iii) W[1]-complete, and (iv) W[2]-complete.
The aim of this section is to further refine this classification with respect to
kernelization. The problems in category (i) trivially admit a kernel of constant
size, whereas the problems in categories (iii) and (iv) do not admit a kernel at all
(polynomial or not), unless W[1] = FPT or W[2] = FPT, respectively. Hence it
remains to consider the six problems in category (ii), each of them could either
admit a polynomial kernel or not. We show that none of them does.

According to our classification [1], the problems in category (ii) are exactly
the problems R-Bounded Planning, for R ⊆ {P,U,B, S}, such that P ∈ R
and {P,U, S} 6⊆ R.

Theorem 4 None of the problems R-Bounded Planning for R ⊆ {P,U,B, S}
such that P ∈ R and {P,U, S} 6⊆ R (i.e., the problems in category (ii)) admits
a polynomial kernel unless co-NP ⊆ NP/poly.

The remainder of this section is devoted to establish Theorem 4. The re-
lationship between the problems as indicated in Figure 1 greatly simplifies the
proof. Instead of considering all six problems separately, we can focus on the
two most restricted problems {P,U,B}-Bounded Planning and {P,B, S}-
Bounded Planning. If any other problem in category (ii) would have a poly-
nomial kernel, then at least one of these two problems would have one. This
follows by Proposition 2 and the following facts:

1. The unparameterized versions of all the problems in category (ii) are NP-
complete. This holds since the corresponding classical problems are strongly
NP-hard, hence the problems remain NP-hard when k is encoded in unary
(as shown by Bäckström and Nebel [3]);

2. If R1 ⊆ R2 then the identity function gives a polynomial parameter reduction
from R2-Bounded Planning to R1-Bounded Planning.

Furthermore, the following result of Bäckström and Nebel [3, Theorem 4.16] even
provides a polynomial parameter reduction from {P,U,B}-Bounded Planning
to {P,B, S}-Bounded Planning. Consequently, {P,U,B}-Bounded Plan-
ning remains the only problem for which we need to establish a superpolynomial
kernel lower bound.

Proposition 3 (Bäckström and Nebel [3]) Let I = 〈P, k〉 be an instance of
{P,U,B}-Bounded Planning. Then I can be transformed in polynomial time
into an equivalent instance I′ = 〈P′, k′〉 of {P,B, S}-Bounded Planning such
that k = k′.



Hence, in order to complete the proof of Theorem 4 it only remains to establish
the next lemma.

Lemma 2 {P,U,B}-Bounded Planning has no polynomial kernel unless
co-NP ⊆ NP/poly.

Proof. Because of Proposition 1, it suffices to devise an OR-composition algo-
rithm for {P,U,B}-Bounded Planning. Suppose we are given t instances
I1 = 〈P1, k〉, . . . , It = 〈Pt, k〉 of {P,U,B}-Bounded Planning where Pi =
〈Vi, Di, Ai, Ii, Gi〉 for every 1 ≤ i ≤ t. It has been shown in [1, Theorem 5]
that {P,U,B}-Bounded Planning can be solved in time O∗(S(k)) (where

S(k) = 2 · 2(k+2)2 · (k + 2)(k+1)2 and the O∗ notation suppresses polynomial
factors). It follows that {P,U,B}-Bounded Planning can be solved in poly-
nomial time with respect to

∑
1≤i≤t |Ii|+ k if t > S(k). Hence, if t > S(k) this

gives us an OR-composition algorithm as follows. We first run the algorithm
for {P,U,B}-Bounded Planning on each of the t instances. If one of these t
instances is a Yes-instance then we output this instance. If not then we output
any of the t instances. This shows that {P,U,B}-Bounded Planning has an
OR-composition algorithm for the case that t > S(k). Hence, in the following
we can assume that t ≤ S(k).

Given I1, . . . , It we will construct an instance I = 〈P, k′〉 of {P,U,B}-
Bounded Planning as follows. For the construction of I we need the following
auxiliary gadget, which will be used to calculate the logical “OR” of two binary
variables. The construction of the gadget uses ideas from [3, Theorem 4.15].
Assume that v1 and v2 are two binary variables. The gadget OR2(v1, v2, o) con-
sists of the five binary variables o1, o2, o, i1, and i2. Furthermore, OR2(v1, v2, o)
contains the following actions:

– the action ao with pre(ao)[o1] = pre(ao)[o2] = 1 and eff(ao)[o] = 1;
– the action ao1 with pre(ao1)[i1] = 1, pre(ao1)[i2] = 0 and eff(ao1)[o1] = 1;
– the action ao2 with pre(ao2)[i1] = 0, pre(ao2)[i2] = 1 and eff(ao2)[o2] = 1;
– the action ai1 with eff(ai1)[i1] = 1;
– the action ai2 with eff(ai2)[i2] = 1;
– the action av1 with pre(av1)[v1] = 1 and eff(av1)[i1] = 0;
– the action av2 with pre(av2)[v2] = 1 and eff(av2)[i2] = 0;

We now show that OR2(v1, v2, o) can indeed be used to compute the logical
“OR” of the variables v1 and v2. We need the following claim.

Claim 2 (?) Let P(OR2(v1, v2, o)) be a {P,U,B}-Bounded Planning in-
stance that consists of the two binary variables v1 and v2, and the variables
and actions of the gadget OR2(v1, v2, o). Furthermore, let the initial state
of P(OR2(v1, v2, o)) be any initial state that sets all variables of the gadget
OR2(v1, v2, o) to 0 but assigns the variables v1 and v2 arbitrarily, and let the
goal state of P(OR2(v1, v2, o)) be defined by G[o] = 1. Then P(OR2(v1, v2, o))
has a plan if and only if its initial state sets at least one of the variables v1 or
v2 to 1. Furthermore, if there is such a plan then its length is 6.



We continue by showing how we can use the gadget OR2(v1, v2, o) to con-
struct a gadget OR(v1, . . . , vr, o) such that there is a sequence of actions of
OR(v1, . . . , vr, o) that sets the variable o to 1 if and only if at least one of the
external variables v1, . . . , vr are initially set to 1. Furthermore, if there is such a
sequence of actions then its length is at most 6dlog re. Let T be a rooted binary
tree with root s that has r leaves l1, . . . , lr and is of smallest possible height.
For every node t ∈ V (T ) we make a copy of our binary OR-gadget such that the
copy of a leave node li is the gadget OR2(v2i−1, v2i, oli) and the copy of an inner
node t ∈ V (T ) with children t1 and t2 is the gadget OR2(ot1 , ot2 , ot) (clearly
this needs to be adapted if r is odd or an inner node has only one child). For
the root node with children t1 and t2 the gadget becomes OR2(ot1 , ot2 , o). This
completes the construction of the gadget OR(v1, . . . , vr, o). Using Claim 2 it is
easy to verify that the gadget OR(v1, . . . , vr, o) can indeed be used to compute
the logical “OR” or the variables v1, . . . , vr.

We are now ready to construct the instance I. I contains all the variables
and actions from every instance I1, . . . , It and of the gadget OR(v1, . . . , vt, o).
Additionally, I contains the binary variables v1, . . . , vt and the actions a1, . . . , at
with pre(ai) = Gi and eff(ai)[vi] = 1. Furthermore, the initial state I of I is
defined as I[v] = Ii[v] if v is a variable of Ii and I[v] = 0, otherwise. The goal
state of I is defined by G[o] = 1 and we set k′ = k + 6dlog te. Clearly, I can be
constructed from I1, . . . , It in polynomial time and I is a Yes-instance if and only
if at least one of the instances I1, . . . , It is a Yes-instance. Furthermore, because
k′ = k + 6dlog te ≤ k + 6dlogS(k)e = k + 6d1 + (k + 2)2 + (k + 1)2 · log(k + 2)e,
the parameter k′ is polynomial bounded by the parameter k. This concludes the
proof of the lemma. ut

6 Conclusion

We have studied the parameterized complexity of Bounded Planning with
respect to the parameter plan length. In particular, we have shown that (0, e)-
Bounded Planning is fixed-parameter tractable for e ≤ 2 and W[1]-complete
for e > 2. Together with our previous results [1] this completes the full classifica-
tion of planning in Bylander’s system of restrictions (see Table 1). Interestingly,
(0, 2)-Bounded Planning turns out to be the only nontrivial fixed-parameter
tractable case (where the unparameterized version is NP-hard).

We have also provided a full classification of kernel sizes for (0, 2)-Bounded
Planning and all the fixed-parameter tractable fragments of Bounded Plan-
ning in the “PUBS” framework. It turns out that none of the nontrivial prob-
lems (where the unparameterized version is NP-hard) admits a polynomial ker-
nel unless the Polynomial Hierarchy collapses. This implies an interesting di-
chotomy concerning the kernel size: we only have constant-size and superpoly-
nomial kernels—polynomially bounded kernels that are not of constant size are
absent.
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