
Blowing Holes in Various Aspects of
Computational Problems, with Applications to

Constraint Satisfaction

Peter Jonsson, Victor Lagerkvist, and Gustav Nordh

Department of Computer and Information Science, Linköping University, Sweden
{peter.jonsson, victor.lagerkvist, gustav.nordh}@liu.se

Abstract. We consider methods for constructing NP-intermediate prob-
lems under the assumption that P 6= NP. We generalize Ladner’s origi-
nal method for obtaining NP-intermediate problems by using parameters
with various characteristics. In particular, this generalization allows us
to obtain new insights concerning the complexity of CSP problems. We
begin by fully characterizing the problems that admit NP-intermediate
subproblems for a broad and natural class of parameterizations, and
extend the result further such that structural CSP restrictions based
on parameters that are hard to compute (such as tree-width) are cov-
ered. Hereby we generalize a result by Grohe on width parameters and
NP-intermediate problems. For studying certain classes of problems, in-
cluding CSPs parameterized by constraint languages, we consider more
powerful parameterizations. First, we identify a new method for obtain-
ing constraint languages Γ such that CSP(Γ) are NP-intermediate. The
sets Γ can have very different properties compared to previous construc-
tions (by, for instance, Bodirsky & Grohe) and provides insights into
the algebraic approach for studying the complexity of infinite-domain
CSPs. Second, we prove that the propositional abduction problem pa-
rameterized by constraint languages admits NP-intermediate problems.
This settles an open question posed by Nordh & Zanuttini.

1 Introduction

Ladner [20] explicitly constructed NP-intermediate problems (under the assump-
tion P 6= NP) by removing strings of certain lengths from NP-complete languages
via a diagonalization technique that is colloquially known as blowing holes in
problems. The languages constructed via blowing are unfortunately famous for
being highly artificial: Arora and Barak [1] write the following.

We do not know of a natural decision problem that, assuming NP 6= P, is
proven to be in NP \ P but not NP-complete, and there are remarkably
few candidates for such languages

More natural examples are known under other complexity-theoretic assump-
tions. For instance, LogClique (the problem of deciding whether an n-vertex

graph contains a clique of size log n) is NP-intermediate under the exponential-
time hypothesis (ETH). The lack of natural NP-intermediate computational
problems makes it important to investigate new classes of NP-intermediate prob-
lems and, hopefully, increase our understanding of the borderline between P and
NP.

We begin (in Section 3) by presenting a diagonalization method for obtain-
ing NP-intermediate problems, based on parameterizing decision problems in
different ways. In our framework, a parameter, or a measure function, is simply
a function ρ from the instances of some decision problem X to the non-empty
subsets of N. We say that such a function is single-valued if ρ(I) is a singleton
set for every instance of X, and multi-valued otherwise. Depending on the pa-
rameter one obtains problems with different characteristics. Simple applications
of our method include the connection between the complexity class XP and NP-
intermediate problems observed by Chen et al. [9]. Even though our method
is still based on diagonalization we claim that the intermediate problems ob-
tained are qualitatively different from the ones obtained by Ladner’s original
method, and that they can be used for gaining new insights into the complexity
of computational problems. We demonstrate this on different CSP problems in
the following sections.

In Section 4, we analyze the applicability of the diagonalization method for
single-valued measure functions. Under mild additional assumptions, we obtain
a full understanding of when NP-intermediate problems arise when the measure
function is single-valued and polynomial-time computable. Unfortunately, CSPs
under structural restrictions (i.e. when considering instances with bounded width
parameters) are not captured by this result since width parameters are typically
not polynomial-time computable. To remedy this, we present a fairly general
method for obtaining NP-intermediate problems based on structurally restricted
CSPs in Section 4.2. This is a generalization of a result by Grohe [15] who has
shown that, under the assumption that FPT 6= W[1], NP-intermediate CSP
problems can be obtained by restricting the tree-width of their corresponding
primal graphs. Our result imply that this holds also under the weaker assump-
tion that P 6= NP and for many different width parameters. NP-intermediate
problems based on structural restrictions have also been identified by Bodirsky
& Grohe [4].

Multi-valued measure functions are apparently much harder to study and a
full understanding appears difficult to obtain. Despite this, multi-valued measure
functions have highly useful properties and we exploit them for studying con-
straint satisfaction problems parameterized by constraint languages. Our first
result is inspired by Bodirsky & Grohe [4] who have proved that there exists
an infinite constraint language Γ such that CSP(Γ) is NP-intermediate. We ex-
tend this and prove that whenever an infinite language Γ does not satisfy the
so called local-global property, i.e. when CSP(Γ) 6∈ P but CSP(Γ ′) ∈ P for all
finite Γ ′ ⊂ Γ , then there exists a language closely related to Γ such that the
resulting CSP problem is NP-intermediate. The only requirement is that Γ can
be extended by certain operators 〈·〉. We then provide two very different ex-

tension operators. The first operator 〈·〉pow works for languages over both finite
and infinite domains but gives relations of arbitrarily high arity. The second
operator 〈·〉+ is limited to idempotent languages over infinite domains but does
have the advantage that the arity of any relation is only increased by a small
constant factor. Together with the language Γ ◦ from Jonsson & Lööw [18] which
does not satisfy the local-global property we are thus able to identify a concrete
language 〈Γ ◦〉+ such that CSP(〈Γ ◦〉+) is NP-complete, CSP(Γ ′) ∈ P for any
finite Γ ′ ⊂ 〈Γ ◦〉+, and there exists a Γ ′′ ⊂ 〈Γ ◦〉+ such that CSP(Γ ′′) is NP-
intermediate. The so-called algebraic approach [3, 6] has been very successful in
studying the computational complexity of both finite- and infinite-domain CSPs.
However, this approach is, to a large extent, limited to constraint languages that
are finite. If one only considers tractable finite subsets of 〈Γ ◦〉+, we miss that
there are both NP-intermediate and NP-complete problems within CSP(〈Γ ◦〉+).
Hence the constraint language 〈Γ ◦〉+ clearly shows the algebraic approach in its
present shape is not able to give a full understanding of CSP(〈Γ ◦〉+) and its
subclasses.

Our second result (which is presented in Section 5.3) is the propositional
abduction problem Abd(Γ). This problem can be viewed as a non-monotonic
extension of propositional logic and it has numerous important applications rang-
ing from automated diagnosis, text interpretation to planning. The complexity of
propositional abduction has been intensively studied from a complexity-theoretic
point of view (cf. [13, 23]) and the computational complexity is known for ev-
ery finite Boolean constraint language Γ and many infinite languages [23]. In
Nordh & Zanuttini [23], the question of whether such a classification is possi-
ble to obtain for infinite languages was left open. Since the abduction problem
can loosely be described as a combination of the SAT and UNSAT problems, it
might be expected that it, like the parameterized SAT(·) problem, does not con-
tain any NP-intermediate problems. By exploiting our diagonalization method,
we present a constraint language Γ such that Abd(Γ) is NP-intermediate.

2 Preliminaries

Let Γ denote a (possibly infinite) set of finitary relations over some (possibly
infinite) set D. We call Γ a constraint language. Given a relation R ⊆ Dk, we
let ar(R) = k. The reader should note that we will sometimes express Boolean
relations as conjunctions of Boolean clauses. The constraint satisfaction problem
over Γ (abbreviated as CSP(Γ)) is defined as follows.

Instance: A set V of variables and a set C of constraint applicationsR(v1, . . . , vk)
where R ∈ Γ , k = ar(R), and v1, . . . , vk ∈ V .
Question: Is there a total function f : V → D such that (f(v1), . . . , f(vk)) ∈ R
for each constraint R(v1, . . . , vk) in C?

For an arbitrary decision problem X, we let I(X) denote its set of instances,
and ||I|| to denote the number of bits needed for representing I ∈ I(X). By a
polynomial-time reduction from problem X to problem X ′, we mean a Turing
reduction from X to X ′ that runs in time O(p(||I||)) for some polynomial p.

Definition 1. Let X be a decision problem. A total and computable function
ρ : I(X)→ 2N \ {∅} is said to be a measure function.

If ρ(I) is a singleton set for every I ∈ I(X), then we say that ρ is single-
valued, and otherwise that it is multi-valued. We abuse notation in the first case
and simply assume that ρ : I(X) → N. The measure function ρ combined with
a decision problem X yields a problem Xρ(S) parameterized by S ⊆ N.

Instance. Instance I of X such that ρ(I) ⊆ S.
Question. Is I a yes-instance?

For examples of both single- and multi-valued measure functions we refer the
reader to Section 3.2. Finally, we prove a simple lemma regarding single-valued
measure functions that will be important later on.

Lemma 2. Let ρ be a single-valued and polynomial-time computable measure
function. Let S ⊆ N and let T be a non-empty subset of S such that S \ T =
{s1, . . . , sk}. If Xρ({si}), 1 ≤ i ≤ k, is in P, then there is a polynomial-time
reduction from Xρ(S) to Xρ(T).

Proof. Let I be an arbitrary instance of Xρ(S). Compute (in polynomial time)
ρ(I). If ρ(I) ∈ {s1, . . . , sk}, then we can compute the correct answer in polyno-
mial time. Otherwise, I is an instance of Xρ(T) and the reduction is trivial. ut

3 Generation of NP-intermediate Problems

We will now extend Ladner’s method to parameterized problems. Section 3.1
contains the main result and Section 3.2 contains some examples.

3.1 Diagonalization Method

Theorem 3. Let Xρ(·) be a computational decision problem with a measure
function ρ. Assume that Xρ(·) and S ⊆ N satisfies the following properties:

P0: I(X) is recursively enumerable.
P1: Xρ(S) is NP-complete.
P2: Xρ(T) is in P whenever T is a finite subset of S.
P3: Xρ(S) is polynomial-time reducible to Xρ(T) whenever T ⊆ S and S \ T is
finite.

Then, if P 6= NP, there exists a set S′ ⊂ S such that Xρ(S
′) is in NP \ P and

Xρ(S) is not polynomial-time reducible to Xρ(S
′).

Before the proof, we make some observations that will be used without ex-
plicit references. If ρ is single-valued and polynomial-time computable, then P2
implies P3 by Lemma 2. In many examples, S = N which means that P1 can be
restated as NP-completeness of X. If P1 holds, then property P3 simply states
that Xρ(T) is NP-complete for every cofinite T ⊆ S. Finally, we remind the
reader that the polynomial-time bounds may depend on the choice of S in the
definitions of P2 and P3.

The proof is an adaption of Papadimitriou’s [24] proof where we use the
abstract properties P0 – P3 instead of focusing on the size of instances. Pa-
padimitriou’s proof is, in turn, based on Ladner’s original proof [20]. It may also
be illuminating to compare with Schöning [25] and Bodirsky & Grohe [4].

In the sequel, we let Xρ(·) be a computational decision problem that together
with S ⊆ N satisfies properties P0 – P3. Let AX be an algorithm for Xρ(S),
let M1,M2, . . . be an enumeration of all polynomial-time bounded deterministic
Turing machines, and let R1, R2, . . . be an enumeration of all polynomial-time
Turing reductions. Such enumerations are known to exist, cf. Papadimitriou [24].

We define a function f : N → N that is computed by a Turing machine F
and the input n is given to F in unary representation. We let f(0) = f(1) = 0.
The computation of f(n) starts with the computation of f(0), f(1), f(2), . . . ,
until the total number of steps F has used in computing this sequence exceeds
n. This is possible since F has access to its own description by Kleene’s fixed
point theorem. Let i be the largest value for which F was able to completely
compute f(i) (during these n steps) and let k = f(i).

In the final phase of the execution of the machine F we have two cases
depending on whether k is even or odd. In both cases, if this phase requires F to
run for more than n computation steps, F stops and returns k (i.e., f(n) = k).

The first case is when k is even: here, F enumerates all instances I of Xρ(S)
— this is possible by property P0. For each instance I, F simulates Mk/2 on the
encoding of I, determines whether AX(I) is accepted, and finally, F computes
f for all x ∈ ρ(I). If Mk/2 rejects and AX(I) was accepted, and f(x) is even for
all x ∈ ρ(I), then F returns k + 1 (i.e., f(n) = k + 1). F also returns k + 1 if
Mk/2 accepts and I is not accepted by AX and f(x) is even for all x ∈ ρ(I).

The second case is when k is odd. Again, F enumerates all instances I of
Xρ(S). Let E = ∅. Now, for each instance I, F begins simulating Rbk/2c on
the encoding of I with an oracle for AX . Whenever the simulation notices that
Rbk/2c enters an oracle state, we calculate ρ(I ′) = E′ (where I ′ is the Xρ(S)
instance corresponding to the input of the oracle tape), and add the members of
E′ to E. When the simulation is finished we first calculate f(x) for every x ∈ E.
If the result of any f(x) operation is odd we return k + 1. We then compare
the result of the reduction with AX(I). If the results do not match, i.e. if one is
accepted or rejected while the other is not, we return k + 1. This completes the
definition of f . Note that f can be computed in polynomial time (regardless of
the time complexity of computing ρ and AX) since the input is given in unary.

We now show that f is increasing, i.e. for all n ≥ 0, f(n) ≤ f(n + 1) and
{f(n) | n ∈ N} is an unbounded set, unless P = NP. To see this, we first
prove by induction that f(n) ≤ f(n+ 1) for all n ≥ 0. This obviously holds for
n = 0 and n = 1. Assume that this holds for an arbitrary number i > 1. By
definition f(i + 1) cannot return a smaller number than f(i) in the first phase
of the computation, since the Turing machine F simulates f(i′) for all i′ < i,
and returns the largest k for which f(i′) was successfully computed within the
allotted time. In the second phase, the argument to f is used to determine the

total amount of computation steps, and since f will either return the k from the
first phase, or k + 1, there is no possibility that f(i) > f(i+ 1).

Let Se = {x | x ∈ S and f(x) is even}. We continue by showing that there
is no n0 such that f(n) = k0 for all n > n0 unless P = NP. If there is such a
n0, then there is also a n1 such that for all n > n1 the value k computed in the
phase where F computes f(1), f(2), . . . (in n steps) is k0. If k0 is even, then on
all inputs n > n1 the machine Mk0/2 correctly decides Xρ(Se) and thus Xρ(Se)
is in P. But since f(n) = k0 for all n > n1, we have that S \ Se is finite, and
thus Xρ(S) is polynomial-time reducible to Xρ(Se) by Property P3, which is a
contradiction since Xρ(S) is NP-complete by Property P1. Similarly if k0 is odd,
then on all inputs n > n1 the function Rbk0/2c is a valid reduction from Xρ(S)
to Xρ(Se) and thus Xρ(Se) 6∈ P. But since f(n) = k0 for all n > n1, we have
that Se is finite, and we conclude that Xρ(Se) is in P by Property P2, which is
a contradiction since Xρ(S) is NP-complete by Property P1.

We conclude the proof by showing that Xρ(Se) is neither in P, nor is Xρ(S)
polynomial-time reducible to Xρ(Se), unless P = NP. By Property P1, Xρ(Se)
is in NP since Se ⊆ S. Assume now that Xρ(Se) is in P. Then there is an i such
that Mi solves Xρ(Se). Thus, by the definition of f , there is an n1 such that for
all n > n1 we have f(n) = 2i; this contradicts that f is increasing. Similarly,
assume that Xρ(S) is polynomial-time reducible to Xρ(Se). Then, there is an i
such that Ri is a polynomial-time reduction from Xρ(S) to Xρ(Se). It follows
from the definition of f that there is an n1 such that f(n) = 2i−1 for all n > n1,
and this contradicts that f is increasing. ut
If the measure function is polynomially bounded (e.g. ρ(I) ≤ p(||I||) for some
polynomial p), then checking whether an integer x written in binary is in Se or
not can be decided in polynomial time. This follows from the fact that x written
in binary can be converted to x written in unary in polynomial time. Another
useful observation is the following: it follows from the proof that property P1 (i.e.
the NP-hardness of the original problem) can be replaced by hardness for other
complexity classes within NP. By noting that Xρ(Se) is recursively enumerable,
this implies that we can construct infinite chains of problems Xρ(T1), Xρ(T2), . . .
such that Se = T1 ⊃ T2 ⊃ . . ., there does not exist any polynomial-time reduc-
tions from Xρ(Ti) to Xρ(Ti+1), and Xρ(Ti) is not in P for any i ≥ 1.

3.2 Examples

Ladner’s result is now a straightforward consequence of Theorem 3. Let X be
an arbitrary NP-complete problem such that I(X) is recursively enumerable.
For an arbitrary instance I ∈ I(X), we let the single-valued measure function
ρ be defined such that ρ(I) = ||I||. We verify that Xρ(N) satisfies properties
P0 – P3 and conclude that there exists a set T ⊆ N such that Xρ(T) is NP-
intermediate. Properties P0 and P1 hold by assumption and property P2 holds
since Xρ(U) can be solved in constant time whenever U is finite. If U ⊆ N and
N \U = {x1, . . . , xk}, then Xρ({xi}), 1 ≤ i ≤ k, is solvable in constant time and
we can apply Lemma 2(2). Thus, property P3 holds, too.

Another straightforward application of single-valued measure functions is
the following: Chen et al. [9] have discovered a striking connection between NP-
intermediate problems and the parameterized complexity class XP (XP denotes
the class of decision problems X that are solvable in time O(||I||f(k)) for some
polynomial-time computable parameter k and some computable function f).

Proposition 4. Let X be a decision problem and ρ a polynomial-time com-
putable single-valued measure function such that Xρ(·) satisfies conditions P0
and P1, and Xρ ∈ XP. Then there exists a T ⊆ N such that Xρ(T) is NP-
intermediate.

Proof. We note that Xρ(S) is in P whenever S is a finite subset of N. Hence, Xρ

satisfies P2 and consequently P3. The result follows from Theorem 3. ut

To illustrate multi-valued measure functions, we turn our attention to the
Subset-Sum problem [19].

Instance: A finite set Y ⊆ N and a number k ∈ N.
Question: Is there a Y ′ ⊆ Y such that

∑
Y ′ = k?

We define a multi-valued measure function by letting ρ((Y, k)) = Y . Once again,
properties P0 and P1 hold by assumption so it is sufficient to prove that Subset-
Sumρ(N) satisfies P2 and P3. Property P2: instances of Subset-Sum can be
solved in time O(poly(||I||) · c(I)), where c(I) denotes the difference between
the largest and smallest number in Y [14]. This difference is finite whenever
we consider instances of Subset-Sumρ(S) where S ⊆ N is finite. Property P3:
arbitrarily choose S ⊆ N such that that N\S is finite. We present a polynomial-
time Turing reduction from Subset-Sumρ(N) to Subset-Sumρ(S). Let I =
(Y, k) be an instance of Subset-Sumρ(N). Let T = Y \ S, i.e. the elements of
the instance which are not members of the smaller set S. Since N \S is finite, T
is a finite set, too. Let Z = Y ∩ S. For every subset T ′i = {x1, . . . , xim} of T , we
let I ′i = (Z, k′i), where k′i = k − (x1 + . . . + xim). Then, it is easy to see that I
is a yes-instance if and only if at least one I ′i is a yes-instance. Finally, we note
that the reduction runs in time O(poly(||I||) · 2c), where c = |N \ S|, and this is
consequently a polynomial-time reduction for every fixed S.

4 Single-Valued Measure Functions

This section is divided into two parts: Section 4.1 is concerned with polynomial-
time computable single-valued measure functions and Section 4.2 is concerned
with structurally restricted CSPs.

4.1 Polynomial-Time Computable Measure Functions

By Theorem 3, we know that properties P0 – P3 are sufficient to assure the
existence of NP-intermediate problems. A related question is to what degree the
properties are also necessary. Here, we investigate the scenario when P2 and P3
do not necessarily hold.

Theorem 5. Assume X is a decision problem and ρ is a single-valued measure
function such that Xρ(N) satisfies P0 and P1. Let SP = {s ∈ N | Xρ({s}) ∈
P} and assume membership in SP is a decidable problem. Then, at least one
of the following holds: (1) there exists a set T ⊆ SP such that Xρ(T) is NP-
intermediate, (2) there exists a t ∈ N such that Xρ({t}) is NP-intermediate, or
(3) Xρ admits no NP-intermediate subproblems.

Proof. If Xρ({s}) is NP-complete for every s ∈ N, then we are in case (3) so
we assume this is not the case. If there exists s ∈ N such that Xρ({s}) is NP-
intermediate, then we are in case (2) so we assume this does not hold either.
Thus, we may henceforth assume that there exists s ∈ N such that Xρ({s}) ∈ P
and that Xρ({u}) is NP-complete whenever u ∈ N \ SP . This implies that SP
is non-empty. Once again, we single out two straightforward cases: if Xρ(SP) is
NP-intermediate, then we are in case (1), and if Xρ(SP) is in P, then we are
in case (3) (since Xρ({u}) is NP-complete whenever u 6∈ SP). Hence, we may
assume that Xρ(SP) is NP-complete (note that Xρ(SP) ∈ NP since Xρ(N) ∈ NP
by P1), i.e. Xρ(SP) satisfies P1. Furthermore, Xρ(SP) satisfies P0 since SP is
a decidable set and the instances of X are recursively enumerable. To generate
the instances of Xρ(SP), we generate the instances of X one after another and
output instance I if and only if ρ(I) is in SP .

We finally show that Xρ(SP) satisfies P2 and P3. It is sufficient to prove
that Xρ(SP) satisfies P2 since ρ is single-valued. Assume there exists a finite
set K ⊆ SP such that Xρ(K) 6∈ P. Let ∅ ⊂ K ′ ⊆ K be a subset such that
Xρ(K

′) is a member of P; such a set exists since K ⊆ SP . For every k′ ∈ K ′, we
know that Xρ({k′}) ∈ P. Hence, we can apply Lemma 2 and deduce that there
exists a polynomial-time reduction from Xρ(K) to Xρ(K

′). This contradicts the
fact that Xρ(K) is not a polynomial-time solvable problem. We can now apply
Theorem 3 and conclude that there exists a set T ⊆ SP such that Xρ(T) is
NP-intermediate, i.e. we are in case (1). ut

Problems parameterized by multi-valued measure functions are apparently
very different from those parameterized by single-valued functions. For instance,
Lemma 2 breaks down which indicates that the proof strategy used in Theorem 5
is far from sufficient to attack the multi-valued case.

4.2 Structurally Restricted CSPs

When identifying tractable (i.e. polynomial-time solvable) fragments of con-
straint satisfaction problems and similar problems, two main types of results
have been considered in the literature. The first one is to identify constraint lan-
guages Γ such that CSP(Γ) ∈ P, and the second one is to restrict the structure
induced by the constraints on the variables. The second case is often concerned
with associating some structure with each instance and then identifying sets
of structures that yield tractable problems. The classical example of this ap-
proach is to study the primal graph or hypergraph of CSP instances. Given a
CSP instance I with variable set V , we define its primal graph G = (V,E) such

that (vi, vj) ∈ E if and only if variables vi, vj occur simultaneously in some
constraint, and we define the hypergraph H = (V, E) such that the hyperedge
{vi1 , ..., vik} ∈ E if and only if there is a constraint R(vi1 , . . . , vik) in I.

When it comes to defining structurally restricted problems that are tractable,
one is typically interested in certain parameters of these (hyper)graphs such
as tree-width, fractional hypertree width [16], or submodular width [22]. It is,
for instance, known that any finite-domain CSP instance I with primal graph
G = (V,E) can be solved in ||I||O(tw(G)) time [11] where tw(G) denotes the tree-
width of G, and it can be solved in ||I||O(fhw(H)) time [16] where fhw(H) denotes
the fractional hypertree width ofH. Since these results rely on the domains being
finite, we restrict ourselves to finite-domain CSPs throughout this section. Now
note that if given a finite constraint language Γ , then the instances of CSP(Γ)
are recursively enumerable and CSP(Γ) is in NP. If Γ is infinite, then this is
not so evident and it may, in fact, depend on the representation of relations.
We adopt a simplistic approach and represent a relation by listing its tuples.
Under this assumption, the instances of CSP(Γ) are recursively enumerable and
CSP(Γ) is in NP.

By restricting the CSP problem to instances with tree-width or fractional hy-
pertree width ≤ k (for some constant k), it is known that the resulting problem is
solvable in polynomial time. This immediately implies that problems like CSPtw

and CSPfhw
1 have property P2. If the width parameter under consideration is

polynomial-time computable, then we have property P3 (via Lemma 2), too, and
conclude that NP-intermediate fragments exist. Unfortunately, this is typically
not the case. It is for instance NP-complete to determine whether a given graph
G has treewidth at most k or not [2] if k is part of the input. This is a common
feature that holds for, or is suspected to hold for, many different width param-
eters. Hence, width parameters are a natural source of single-valued measure
functions that are not polynomial-time computable. Such measure functions are
problematic since we cannot prove the existence of NP-intermediate subproblems
by using simplifying results like Proposition 4 or Theorem 5. By a few additional
assumptions we can however still prove the applicability of Theorem 3. Note that
if k is fixed, and thus not part of the input, then the graphs with tree-width ≤ k
can be recognized in linear time [5]. This is not uncommon when studying width
parameters — determining the width exactly is computationally hard but it can
be computed or estimated in polynomial time under additional assumptions. We
arrive at the following result.

Proposition 6. Assume that X is a decision problem and ρ is a single-valued
measure function such that Xρ(·) satisfies conditions P0 and P1. Furthermore
suppose that for each set {0, . . . , k} there exists a promise algorithm Ak for
Xρ({0, . . . , k}) with the following properties:

– if ρ(I) ≤ k, then Ak returns the correct answer in pk(||I||) steps where pk is
a polynomial only depending on k, and

1 We slightly abuse notation since tw and fhw are not directly defined on problem
instances.

– if ρ(I) > k, then Ak either return a correct answer or do not answer at all.

Then there exists a set S ⊂ N such that Xρ(S) is NP-intermediate.

Proof. Let Xk denote the computational problem X restricted to instances I ∈
I(X) such that ρ(I) ≥ k. Assume there exists a k such that Xk ∈ P and let B
be an algorithm for this problem running in time q(||I||) for some polynomial
q. For Xρ({0, . . . , k − 1}), we have algorithm Ak−1 described above. Given an
arbitrary instance I of X, we may not be able to compute ρ(I) and choose which
algorithm to run. Do as follows: run algorithm Ak−1 for pk−1(||I||) steps on input
I. If Ak−1 produces an answer, then this is correct. If Ak−1 does not produce an
answer, then we know that ρ(I) > k−1 and we can apply algorithm B. All in all,
this takes O(pk−1(||I||) + q(||I||)) time so X ∈ P which leads to a contradiction.

If Xk is in NPI for some k, then we simply let S = {k, k + 1, . . .}. We can
henceforth assume that Xk is NP-complete for all k. Obviously, Xρ(N) satisfies
property P2 since algorithm Ak, k ≥ 0, runs in polynomial time. We show that it
satisfies property P3, too. Let T ⊆ N be a finite set and let m = maxT . We know
that Xm+1 is NP-complete. Hence, there exists a polynomial-time reduction
from the NP-complete problem Xρ(N) to Xm+1 which, in turn, admits a trivial
polynomial-time reduction to Xρ(N \ T) since {m + 1,m + 2, . . .} ⊆ N \ T . We
can now apply Theorem 3 and obtain the set S. ut

We apply this result to CSPtw and CSPfhw, respectively. Clearly, both these
problems satisfy properties P0 and P1 due to the assumptions that we have
made. For CSPtw, we let Ak work as follows: given a CSP instance I, check
whether I has treewidth ≤ k using Bodlaender’s [5] algorithm. If the algorithm
answers “no”, then go into an infinite loop. Otherwise, decide whether I has a
solution or not in ||I||O(k) time. Proposition 6 implies that there exists a set
T ⊆ N such that CSPtw(T) is NP-intermediate. We observe that Grohe [15] has
shown a similar result under the assumption that FPT 6= W[1] instead of P 6= NP.
Many other width parameters can also be used for obtaining NP-intermediate
problems. One example is CSPfhw for which the proof is very similar but is
instead based on Theorem 4.1 in Marx [21].

5 Multi-Valued Measure Functions

In this section we turn our attention to multi-valued measure functions and apply
them to constraint problems. Throughout this section we assume that P 6= NP.
Here, we want to associate the complexity of CSPs with constraint languages
and multi-valued measure functions are convenient for this purpose. Given a
constraint satisfaction problem parameterized with a constraint language Γ , let
ρ denote the single-valued measure function defined to return the highest arity
of any constraint in a given instance: ρ((V,C)) = max{k | R(v1, . . . , vk) ∈ C}.
Let CSP∗ρ(X) denote the CSP(Γ) problem restricted to instances I such that
ρ(I) ∈ X, and assume there exists a set X ⊂ N such that CSP∗ρ(X) is NP-
intermediate. Can we from this conclude that there exists a constraint language

Γ ′ ⊂ Γ such that CSP(Γ ′) is NP-intermediate? In general, the answer is no since
the set of valid instances of CSP∗ρ(X) are not in a one-to-one correspondence with
any constraint language restriction. Note that CSP∗ρ(X) is not the same problem
as CSP({R ∈ Γ | ar(R) ∈ X}). If we on the other hand define the multi-valued
measure function σ((V,C)) = {k | R(v1, . . . , vk) ∈ C}, then for every X ⊂ N the
problem CSP∗σ(X) is equivalent to CSP({R ∈ Γ | ar(R) ∈ X}).

5.1 Constraint Satisfaction Problems and the Local-Global
Conjecture

A constraint language Γ is said to have the local-global property [4] if CSP(Γ ′) ∈
P for every finite set Γ ′ ⊂ Γ implies CSP(Γ) ∈ P. The non-existence of languages
not having the local-global property is known as the local-global conjecture. In
Bodirsky & Grohe [4] it is proven that if Γ is a constraint language over a finite
domain D that does not exhibit the local-global property, then there exists a
constraint language Γ ′ over D such that CSP(Γ ′) is NP-intermediate. In this
section we prove a more general result not restricted to finite domains based
on the notion of extension operators. If R is a k-ary relation and Γ a constraint
language over a domain D we say that R has a primitive positive (p.p.) definition
in Γ if R(x1, . . . , xk) ≡ ∃y1, . . . , yl . R1(x1)∧ . . . Ri(xi), where each Rj ∈ Γ ∪{=}
and each xi is a vector over x1, . . . , xk, y1, . . . , yl.

Definition 7. Let Γ be a recursively enumerable constraint language (with a
suitable representation of relations in Γ). We say that 〈·〉 is an extension oper-
ator if (1) 〈Γ 〉 is a recursively enumerable set of p.p. definable relations over Γ
and (2) whenever ∆ ⊂ 〈Γ 〉 and 〈Γ 〉 \∆ is finite, then every R ∈ 〈Γ 〉 \∆ is p.p.
definable in ∆.

Another way of viewing this is that the expressive power of 〈Γ 〉 does not
change when removing finitely many relations. Since Γ and 〈Γ 〉 are recursively
enumerable we can enumerate relations in Γ or 〈Γ 〉 as R1, R2, . . ., and it is not
hard to see that this implies that instances of CSP(Γ) and CSP(〈Γ 〉) are also
recursively enumerable. Given an instance I of CSP(Γ) containing the relations
Ri1 , . . . , Rik , we let ρ(I) = {i1, . . . , ik}. Let CSP∗ρ(S) denote the CSP(Γ) problem
over instances I such that ρ(I) ⊆ S. Define the measure function ρ′ analogous to
ρ but for instances over CSP(〈Γ 〉), and let CSP×ρ′(S) be the CSP(〈Γ 〉) problem
restricted to instances I such that ρ′(I) ⊆ S.

Theorem 8. Assume Γ is a constraint language such that CSP∗ρ(N) satisfies

property P0 – P2. Let 〈·〉 be an extension operator such that CSP×ρ′(〈Γ 〉) satisfies
property P0 – P1. Then there exists a Γ ′ ⊂ 〈Γ 〉 such that CSP(Γ ′) is NP-
intermediate.

Proof. We prove that CSP×ρ′(N) satisfies property P0 – P3. The first two prop-
erties are trivial by assumption. For property P2 let T = {i1, . . . , ik} be an
arbitrary finite subset of N and let Θ = {Ri1 , . . . , Rik}. Note that Θ might con-
tain relations which are not included in Γ . For every such relation R ∈ Θ we can

however replace it by its p.p. definition in Γ . Let the resulting set of relations be
Θ′ and let S = {i | Ri ∈ Θ′}. Then CSP×ρ′(T) and CSP∗ρ(S) are polynomial-time
equivalent since T is a finite set. Since CSP∗ρ(S) is solvable in polynomial time

by assumption, CSP×ρ′(T) is polynomial-time solvable too.
For property P3 let T ⊂ N such that N \ T = {t1, . . . , tk}. To see that there

exists a polynomial-time reduction from CSP×ρ′(N) to CSP×ρ′(T), we let I be an ar-

bitrary instance of CSP×ρ′(N). Assume I contains the constraint Ri(x1, . . . , xm),
i ∈ N \ T . Since 〈·〉 is an extension operator the relation Ri is p.p. definable in
〈Γ 〉 \∆ where ∆ = {Ri | i ∈ N \ T}. Thus, we can replace Ri(x1, . . . , xm) with
its p.p. definition in 〈Γ 〉 \∆, and by doing this for all constraints that are not
allowed by T , we end up with an instance I ′ of CSP×ρ′(T) that is satisfiable if
and only if I is satisfiable. This is a polynomial-time reduction since N \ T is a
finite set.

By applying Theorem 3, we can now identify a set S ⊂ N such that CSP×ρ′(S)
is NP-intermediate. This implies that CSP(Γ ′) is NP-intermediate when Γ ′ =
{Ri ∈ 〈Γ 〉 | i ∈ S}. ut

Our first extension operator is based on the idea of extending a relation
into a relation with higher arity. For any relation R ⊆ Dn, we define the
kth power of R to be the relation Rk(x0, . . . , xk·n−1) ≡ R(x0, . . . , xn−1) ∧
R(xn, . . . , xn+n−1) ∧ R(x2n, . . . , x2n+n−1) ∧ . . . ∧ R(x(k−1)n, . . . , x(k−1)n+n−1).

Given a constraint language Γ , let 〈Γ 〉pow = {Rk | R ∈ Γ and k ∈ N}.
We represent each relation in 〈Γ 〉pow as a pair (R, k). It is easy to see that
CSP(〈Γ 〉pow) ∈ NP if CSP(Γ) ∈ NP from which it follows that CSP(〈Γ 〉pow)
is NP-complete. Now assume that ∆ ⊂ 〈Γ 〉pow and that 〈Γ 〉pow \ ∆ is finite.
First, for every Rk ∈ 〈Γ 〉pow \∆ we can p.p. define Rk in ∆ as R(x1, . . . , xn) ≡
∃xn+1, . . . , xk′·n+n−1.R

k′+1(x1, . . . , xn, xn+1, . . . , xk′·n+n−1), where k′ > k. Such
a k′ must exist since we have only removed finitely many relations from 〈Γ 〉pow.
Hence 〈·〉pow is an extension operator. Extension operators are not uncommon
in the literature. Well studied examples (provided relations can be suitably rep-
resented) include closure under p.p. definitions (known as co-clones) and closure
under p.p. definitions without existential quantification (known as partial co-
clones). These are indeed extension operators since 〈Γ 〉pow is always a subset
of the partial co-clone of Γ and hence also of the co-clone of Γ . For a general
introduction to the field of clone theory we refer the reader to Lau [26].

Let Ra,b,c,U = {(x, y) ∈ Z2 | ax − by ≤ c, 0 ≤ x, y ≤ U} for arbitrary
a, b, U ∈ N and c ∈ Z. Furthermore let Γ ′U = {Ra,b,c,U | a, b ∈ N, c ∈ Z} for
any U ∈ N and the language Γ ◦ be defined as Γ ◦ =

⋃∞
i=0 Γ

′
i . Note that we can

represent each relation in Γ ◦ compactly by four integers written in binary. Due
to Jonsson & Lööw [18] it is known that Γ ◦ does not satisfy the local-global
property. By combining the language Γ ◦ and the extension operator 〈·〉pow with
Theorem 8 we thus obtain the following result.

Theorem 9. There exists a Γ ′ ⊂ 〈Γ ◦〉pow such that CSP(Γ ′) is NP-intermediate.

Due to the work of Bodirsky & Grohe [4] we already know that the CSP
problem over infinite domains is non-dichotomizable. Their result is however

based on reducing an already known NP-intermediate problem to a CSP problem
while our language Γ ′ ⊂ 〈Γ ◦〉pow is an explicit example of a locally tractable
language obtained via blowing holes.

5.2 Locally Tractable Languages with Bounded Arity

The downside of the 〈·〉pow operator is that the construction creates relations of
arbitrary high arity even if the language only contain relations of bounded arity.
In this section we show that simpler extensions are sometimes applicable for
constraint languages over infinite domains. For any k-ary relation R we define
the (k+1)-ary relation Ra as Ra(x1, . . . , xn, y) ≡ R(x1, . . . , xn)∧ (y = a), where
a ∈ D and (y = a) is the constraint application of the relation {(a)}. Let 〈Γ 〉+ =
{Ra | R ∈ Γ, a ∈ D}. If we represent each relation in 〈Γ 〉+ as a tuple (R, a) then
obviously 〈Γ 〉+ is recursively enumerable if Γ is recursively enumerable. Now
assume that Γ is an infinite constraint language and that 〈Γ 〉+ \ ∆ is finite.
For any relation Ra ∈ 〈Γ 〉+ \ ∆ we first determine a b such that Rb ∈ ∆. By
construction there exists such a b since 〈Γ 〉+\∆ is finite. Then, since Γ is infinite,
there exists an m-ary relation R′ ∈ Γ such that R′a ∈ ∆. Hence we can implement
Ra as Ra(x1, . . . , xn, y) ≡ ∃y′, x′1, . . . , x′m.Rb(x1, . . . , xn, y′) ∧ R′a(x′1, . . . , x

′
m, y),

by which it follows that 〈·〉+ is an extension operator.
Say that a language Γ is idempotent if for all a ∈ D it holds that {(a)} is

p.p. definable in Γ . We assume that we can find the p.p. definition of {(a)}) in
Γ in polynomial time.

Theorem 10. Let Γ be an idempotent language over an infinite domain such
that Γ does not satisfy the local-global property. Then there exists a constraint
language Γ ′ such that (1) CSP(Γ ′) is NP-intermediate and (2) Γ ′ contains only
relations of arity k + 1, where k is the highest arity of a relation in Γ .

Proof. Let R1, R2, . . . be an enumeration of Γ and define the measure function ρ
over an instance I containing the relations Ri1 , . . . , Rik as ρ(I) = {i1, . . . , ik}. We
note that Γ must be infinite since it does not satisfy the local-global property. Let
CSP∗ρ(S) denote the CSP(Γ) problem over instances I such that ρ(I) ⊆ S. Then
CSP∗ρ(N) obviously satisfies property P0–P2, and since 〈·〉+ is an extension oper-
ator, we only need to prove that CSP(〈Γ 〉+) is NP-complete. NP-hardness is easy
since CSP(Γ) is trivially polynomial-time reducible to CSP(〈Γ 〉+). For member-
ship in NP we give a polynomial-time reduction from CSP(〈Γ 〉+) to CSP(Γ). Let
I be an arbitrary instance of CSP(〈Γ 〉+). For any constraint Ra(x1, . . . , xn, y)
we replace it by R(x1, . . . , xn)∧φ(x′1, . . . , x

′
m, y), where ∃x′1, . . . , x′m.φ is the p.p.

definition of y = a, which is computable in polynomial time by assumption. If
we repeat the procedure for all Ra in I we get an instance I ′ of CSP(Γ) which is
satisfiable if and only if I is satisfiable. Hence there exists a Γ ′ ⊂ 〈Γ 〉+ such that
CSP(Γ ′) is NP-intermediate by Theorem 8. Let k denote the highest arity of a
relation in Γ . By definition every relation in 〈Γ 〉+ then has its arity bounded by
k + 1, which trivially also holds for Γ ′. ut

It is not hard to see that for the constraint language Γ ◦ defined in the previous
section any constant relation is p.p. definable in polynomial time. For any a ∈ N
we simply let (y = a) ≡ ∃x.R0,1,a,a(x, y), i.e. the relation 0 · x− 1 · y ≤ a ∧ 0 ≤
x, y ≤ a. By Theorem 10 and the fact that Γ ◦ only contains relations of arity 2
we therefore obtain the following.

Theorem 11. There exists a Γ ′ ⊂ 〈Γ ◦〉+ such that (1) CSP(Γ ′) is NP-intermediate
and (2) Γ ′ contains only relations of arity 3.

5.3 Propositional Abduction

Abduction is a fundamental form of nonmonotonic reasoning whose computa-
tional complexity has been thoroughly investigated [10, 13, 23]. It is known that
the abduction problem parameterized with a finite constraint language is always
in P, NP-complete, coNP-complete or ΣP

2 -complete. For infinite languages the
situation differs and the question of whether it is possible to obtain a similar
classification was left open in [23]. We will show that there exists an infinite con-
straint language such that the resulting abduction problem is NP-intermediate.

Let Γ denote a constraint language and define the propositional abduction
problem Abd(Γ) as follows.

Instance. An instance I of Abd(Γ) consists of a tuple (V,H,M,KB), where
V is a set of Boolean variables, H is a set of literals over V (known as the set
of hypotheses), M is a literal over V (known as the the manifestation), and KB
is a set of constraint applications C1(x1) ∧ ... ∧ Ck(xk) where Ci denotes an
application of some relation in Γ and xi, 1 ≤ i ≤ k, is a vector of variables in V
(KB is known as the knowledge base).
Question. Does there exist an explanation for I, i.e., a set E ⊆ H such that
KB∧

∧
E is satisfiable and KB∧

∧
E |= M , i.e. KB∧

∧
E∧¬M is not satisfiable.

Let ΓIHSB− be the infinite constraint language consisting of the relations
expressed by the clauses (x), (¬x ∨ y) and all negative clauses, i.e., {(¬x1 ∨
· · · ∨ ¬xn) | n ≥ 1}. We may represent each relation is ΓIHSB− with a nat-
ural number in the obvious way. Let the finite constraint language ΓIHSB−/k
be the subset of ΓIHSB− that contains all clauses C such that ar(C) = k.
In light of this we define the multi-valued measure function ρ(I) = {ar(C) |
C is a negative clause of KB in I}. With the chosen representation of relations,
ρ is obviously polynomial-time computable. We define the corresponding param-
eterized abduction problem Abd∗ρ(Γ) such that I(Abd∗) is the set of abduction
instances over ΓIHSB−. We now verify that Abd∗ρ(N) fulfills property P0 – P3.

Property P0 holds trivially while property P1 follows from [23]. For property
P2, we note that if T is an arbitrary finite subset of N, then there exists a k ∈ T
such that the clauses of every Abd∗ρ(T) instance is bounded by k. By [23], we
know that Abd(ΓIHSB−/k) is in P for every k, and hence that Abd∗ρ(T) is in P
for every finite subset of S. To show property P3, we present a polynomial-time
reduction from Abd∗ρ(N) to Abd∗ρ(T) when N \ T is finite. Let k = max(N \ T).
Arbitrarily choose an instance I = (V,H,M,KB) of Abd∗ρ(N). Then, for every

clause C = (¬x1∨ . . .∨¬xl) ∈ KB such that l ∈ S \T , replace C by the logically
equivalent clause C ′ = (¬x1 ∨ . . .∨¬xl−1 ∨¬xl ∨ ¬xl . . . ∨ ¬xl︸ ︷︷ ︸

k + 1− l ¬xl’s

) of length k+ 1.

If we let the resulting knowledge base be KB ′ then I ′ = (V,H,M,KB ′) is an
instance of Abd∗ρ(T) which has a solution if and only if I has a solution.

From this and Theorem 3 it follows that that there exists a S′ ⊂ N such that
Abd∗ρ(S

′) is NP-intermediate. Hence we conclude the following.

Theorem 12. There exists a constraint language Γ ′IHSB− ⊂ ΓIHSB− such that
Abd(Γ ′IHSB−) is NP-intermediate.

6 Future Work

One way of obtaining genuinely new NP-intermediate problems is to consider
other complexity-theoretic assumptions than P 6= NP. We have pointed out that
the LogClique problem is NP-intermediate under the ETH, and that the main
difficulty is to provide a lower bound, i.e. proving that LogClique 6∈ P. One may
suspect that providing lower bounds is the main difficulty also when considering
other problems. We have seen that CSP problems constitute a rich source of NP-
intermediate problems via different kinds of parameterization, Hence, it appears
feasible that methods for studying the complexity of parameterized problems
will become highly relevant. In particular, linear fpt-reductions [7, 8] have been
used for proving particularly strong lower bounds which may be used for linking
together NP-intermediate problems, parameterized problems, and lower bound
assumptions. Another way is to adapt and use recent methods for studying the
time complexity of Boolean CSP problems [17]. These methods aim at obtaining
reductions that provide a fine-grained picture of time complexity and this may
be useful when studying NP-intermediate problems. Additionally, recent results
by Dell and van Melkebeek [12] can be used for proving the non-existence of
such reductions.

We have shown that the propositional abduction problem has NP-intermediate
fragments. One may view abduction as a problem that is closely related to
Boolean CSPs. However, there is an important difference: the CSP(Γ) problem
is either a member of P or NP-complete for all choices of Boolean Γ . Hence,
it would be interesting to determine which finite-domain CSP-related problems
can be used for obtaining NP-intermediate problems and which of them have
the local-global property. Inspired by our result on the abduction problem, we
view other forms of non-monotonic reasoning such as circumscription and de-
fault logic as potential candidates. Unfortunately, many problems of this type
are polynomial-time solvable only in very restricted cases, which makes it hard
to find a candidate language resulting in a problem not having the local-global
property. Thus, more powerful methods than blowing may be needed for identi-
fying NP-intermediate problems in this and similar cases.

References

1. S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2009.

2. S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in
a k-tree. SIAM Journal on Matrix Analysis and Applications, 8(2):277–284, 1987.

3. M. Bodirsky. Complexity Classification in Infinite-Domain Constraint Satisfaction.
Habilitation thesis. Univ. Paris 7, 2012.

4. M. Bodirsky and M. Grohe. Non-dichotomies in constraint satisfaction complexity.
In Proc. 35th International Colloquium on Automata, Languages and Programming
(ICALP-2008), pages 184–196, 2008.

5. H. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

6. A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the computational complexity
of constraints using finite algebras. SIAM Journal on Computing, 34(3):720–742,
2005.

7. J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. Kanj, and G. Xia. Tight lower
bounds for certain parameterized np-hard problems. In Proc. IEEE Conference on
Computational Complexity (CCC-2004), pages 150–160, 2004.

8. J. Chen, X. Huang, I. Kanj, and G. Xia. Linear fpt reductions and computational
lower bounds. In Proc. 36th ACM Symposium on Theory of Computing (STOC-
2004), pages 212–221, 2004.

9. Y. Chen, M. Thurley, and M. Weyer. Understanding the complexity of induced
subgraph isomorphisms. In Proc. 35th International Colloquium on Automata,
Languages and Programming (ICALP-2008), pages 587–596, 2008.

10. N. Creignou, J. Schmidt, and M. Thomas. Complexity of propositional abduction
for restricted sets of boolean functions. In Proc. 12th International Conference on
the Principles of Knowledge Representation and Reasoning (KR-2010), 2010.

11. R. Dechter. Constraint Processing. Elsevier Morgan Kaufmann, 2003.
12. H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification

unless the polynomial-time hierarchy collapses. In Proc. 42nd ACM Symposium
on Theory of Computing (STOC-2010), pages 251–260, 2010.

13. T. Eiter and G. Gottlob. The complexity of logic-based abduction. Journal of the
ACM, 42(1):3–42, 1995.

14. M. Garey and D. Johnson. ”Strong” NP-completeness results: motivation, exam-
ples and implications. Journal of the ACM, 25(3):499–508, 1978.

15. M. Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM, 54(1), article 1, 2007.

16. M. Grohe and D. Marx. Constraint solving via fractional edge covers. In Proc.
17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-2006), pages
289–298, 2006.

17. P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Complexity of SAT prob-
lems, clone theory and the exponential time hypothesis. In Proc. the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013).

18. P. Jonsson and T. Lööw. Computational complexity of linear constraints over the
integers. Artificial Intelligence, 195:44–62, 2013.

19. R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

20. R. Ladner. On the structure of polynomial time reducibility. Journal of the ACM,
22:155–171, 1975.

21. D. Marx. Approximating fractional hypertree width. ACM Transactions on Algo-
rithms, 6(2), 2010.

22. D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunc-
tive queries. In Proc. 42nd ACM Symposium on Theory of Computing (STOC-
2010), pages 735-744, 2010.

23. G. Nordh and B. Zanuttini. What makes propositional abduction tractable. Arti-
ficial Intelligence, 172:1245–1284, 2008.

24. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
25. U. Schöning. A uniform approach to obtain diagonal sets in complexity classes.

Theoretical Computer Science, 18:95–103, 1982.
26. D. Lau. Function Algebras on Finite Sets: Basic Course on Many-Valued Logic

and Clone Theory (Springer Monographs in Mathematics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

