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Abstract. We study a family of problems, called Maximum Solution, where the objective is to
maximise a linear goal function over the feasible integer assignments to a set of variables subject to
a set of constraints. When the domain is Boolean (i.e. restricted to {0, 1}), the maximum solution
problem is identical to the well-studied Max Ones problem, and the approximability is completely
understood for all restrictions on the underlying constraints [Khanna et al., SIAM J. Comput., 30
(2001), pp. 1863-1920]. We continue this line of research by considering domains containing more
than two elements. We present two main results: a complete classification for the approximability of
all maximal constraint languages over domains of cardinality at most 4, and a complete classification
of the approximability of the problem when the set of allowed constraints contains all permutation
constraints. Under the assumption that a conjecture due to Szczepara holds, we give a complete
classification for all maximal constraint languages. These classes of languages are well-studied in
universal algebra and computer science; they have, for instance, been considered in connection with
machine learning and constraint satisfaction. Our results are proved by using algebraic results
from clone theory and the results indicates that this approach is very powerful for classifying the
approximability of certain optimisation problems.
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1. Introduction. Our starting-point is the general combinatorial optimisation
problem Max Ones(Γ) where Γ (known as the constraint language) is a finite set of
finitary relations over {0, 1}. An instance of this problem consists of constraints from
Γ applied to a number of Boolean variables, and the goal is to find an assignment that
satisfies all constraints while maximising the number of variables set to 1. It is easy to
see that by choosing the constraint language appropriately, Max Ones(Γ) captures
a number of well-known problems, for instance, Max Independent Set (problem
GT23 in [2]), and certain variants of Max 0/1 Programming (problem MP2 in [2]).
Many other problems are equivalent to Max Ones under different reductions: for
instance, Max Set Packing (also known as Max Hypergraph Matching) and
Max Ones are equivalent under Ptas-reductions [3].

The approximability (and thus the computational complexity) is known for all
choices of Γ [37]. For any Boolean constraint language Γ, Max Ones(Γ) is either in
PO or is APX-complete or poly-APX-complete or finding a solution of non-zero
value is NP-hard or finding any solution is NP-hard. The exact borderlines between
the different cases are given in [37]. Actually, two different problems are studied in [37]:
the weighted problem (where each variable is assigned a non-negative weight and the
objective is to find a solution of maximum total weight), and the unweighted problem
(where each variable is assigned the weight 1). They prove that the approximability
for the weighted and unweighted versions of the problem coincides.
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Linköping, Sweden, email: freku@ida.liu.se, phone: +46 13 286607, fax: +46 13 284499
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2 GENERALISED MAX ONES

We will study a generalisation of Max Ones where variable domains are dif-
ferent from {0, 1}: this allows us to capture more problems than with Max Ones.
For instance, this enables the study of certain problems in integer linear program-
ming [28], problems in multiple-valued logic [36], and in equation solving over Abelian
groups [38]. For larger domains, it seems significantly harder to obtain an exact char-
acterisation of approximability than in the Boolean case. Such a characterisation
would, for instance, show whether the dichotomy conjecture for constraint satisfaction
problems is true or not – a famous open question which is believed to be difficult [25].
Hence, we exhibit restricted (but still fairly general) families of constraint languages
where the approximability can be determined.

Let us now formally define the problem that we will study: Let D ⊂ N (the
domain) be a finite set. The set of all n-tuples of elements from D is denoted by Dn.
Any subset of Dn is called an n-ary relation on D. The set of all finitary relations over
D is denoted by RD. A constraint language over a finite set, D, is a finite set Γ ⊆ RD.
Constraint languages are the way in which we specify restrictions on our problems.
The constraint satisfaction problem over the constraint language Γ, denoted Csp(Γ),
is defined to be the decision problem with instance (V, D, C), where

• V is a set of variables,
• D is a finite set of values (sometimes called a domain), and
• C is a set of constraints {C1, . . . , Cq}, in which each constraint Ci is a pair

(si, Ri) where si is a list of variables of length mi, called the constraint
scope, and Ri is an mi-ary relation over the set D, belonging to Γ, called
the constraint relation.

The question is whether there exists a solution to (V, D, C) or not, that is, a function
from V to D such that, for each constraint in C, the image of the constraint scope
is a member of the constraint relation. To exemplify this definition, let NAE be
the following ternary relation on {0, 1}: NAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. It is
easy to see that the well-known NP-complete problem Not-All-Equal Sat can be
expressed as Csp({NAE}).

The optimisation problem that we are going to study, Weighted Maximum
Solution(Γ) (which we abbreviate W-Max Sol(Γ)) is defined as follows:
Instance: Tuple (V, D, C, w), where D is a finite subset of N, (V, D, C) is a Csp(Γ)

instance, and w : V → N is a weight function.
Solution: An assignment f : V → D to the variables such that all constraints are

satisfied.
Measure:

∑

v∈V

w(v) · f(v)

Example 1.1. Consider the domain D = {0, 1} and the binary relation R =
{(0, 0), (1, 0), (0, 1)}. Then, W-Max Sol({R}) is exactly the weighted Maximum
Independent Set problem.

Although the W-Max Sol(Γ) problem is only defined for finite constraint lan-
guages, we will, in order to simplify the presentation, sometimes deal with sets of
relations which are infinite. For a (possible infinite) set of relations X we will say
that W-Max Sol(X) is tractable if W-Max Sol(Y ) is tractable for every finite
subset Y of X . Here “tractable” may be containment in one of PO, APX, or poly-

APX. Similarly, we say that W-Max Sol(X) is hard if there is a finite subset Y
of X such that W-Max Sol(Y ) is hard. Here “hard” will be one of APX-hard,
poly-APX-hard or that it is NP-hard to find feasible solutions.

Note that our choice of measure function in the definition of W-Max Sol(Γ) is
just one of several reasonable choices. Another reasonable alternative, used in [38],
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would be to let the domain D be any finite set and introduce an additional function
g : D → N mapping elements from the domain to natural numbers. The measure
could then be defined as

∑

v∈V w(v) · g(f(v)). This would result in a parameterised
problem W-Max Sol(Γ, g) where the goal is to classify the complexity of W-Max
Sol(Γ, g) for all combinations of constraint languages Γ and functions g. Note that
our definition of W-Max Sol(Γ) is equivalent to the definition of W-Max Sol(Γ, g)
if in addition g is required to be injective. One of our motivations for the choice of
measure function in the definition of W-Max Sol(Γ) is to stay closer to the definition
of integer programming.

Only considering finite constraint language is in many cases not very restrictive.
Consider for instance integer programming over the bounded domain {0, . . . , d − 1}.
Each row in the constraint matrix can be viewed as an inequality

a1x1 + a2x2 + . . . + akxk ≥ b.

Obviously, such an inequality is equivalent to the following three inequalities

a1x1 + a2x2 + . . . + a⌊k/2⌋x⌊k/2⌋ − z ≥ 0
−a1x1 − a2x2 − . . . − a⌊k/2⌋x⌊k/2⌋ + z ≥ 0

z + a⌊k/2⌋+1 + . . . + akxk ≥ b

where z denotes a fresh variable that is given the weight 0 in the objective function.
By repeating this process, one ends up with a set of inequalities where each inequality
contains at most three variables, and the optimal solution to this instance have the
same measure as the original instance. There are at most 2d + 2d2

+ 2d3

different
inequalities of length ≤ 3 since the domain contains d elements, that is, we have
reduced the problem to one with a finite constraint language. Finally, this reduction
is polynomial-time: each inequality of length k in the original instance give rise to at
most 3⌈log2 k⌉ = O(k2) inequalities and at most O(k2) new variables.

While the approximability of W-Max Sol is well-understood for the Boolean
domain, this is not the case for larger domains. For larger domains we are aware of
three results, the first one is a tight (in)approximability results for W-Max Sol(Γ)
when Γ is the set of relations that can be expressed as linear equations over Zp [38]
(see also §6.3.1 where we define the problem formally). The second result is due
to Hochbaum and Naor [28] and they study integer programming with monotone
constraints, i.e., every constraint is of the form ax−by ≤ c, where x and y are variables
and a, b ∈ N and c ∈ Z. In our setting, their result is a polynomial time algorithm
for certain constraint languages. The third result is a study of the approximability
of certain logically defined constraint languages [36]. The main goal of this article is
to gain a better understanding of non-Boolean W-Max Sol — for doing so, we will
adapt the algebraic approach for Csps [13, 32] for studying the approximability of
W-Max Sol.

When the algebraic approach is applicable to a certain problem, there is an equiv-
alence relation on the constraint languages such that two constraint languages which
are equivalent under this relation have the same complexity. More specifically, two
constraint languages are in the same equivalence class if they generate the same re-
lational clone. The relational clone generated by Γ, captures the expressive power of
Γ and is denoted by 〈Γ〉. Hence, instead of studying every possible finite set of rela-
tions it is enough to study the relational clones. Thus, given two constraint languages
Γ1 and Γ2 such that 〈Γ1〉 = 〈Γ2〉 then, W-Max Sol(Γ1) and W-Max Sol(Γ2) are
equivalent under polynomial-time reductions.



4 GENERALISED MAX ONES

The clone-theoretic approach for studying the complexity of Csps has been very
successful: it has, for instance, made it possible to design new efficient algorithms and
to clarify the borderline between tractability and intractability in many important
cases. In particular the complexity of the Csp problem over three element domains is
now completely understood [10]. In addition to the Csp problem it is possible to use
the tools from universal algebra to prove complexity results in many other Csp-like
problems. One example of such a problem is the quantified constraint satisfaction
problem (QCsp), where variables can not only be existentially quantified but also
universally quantified. The complexity of QCsp has successfully been attacked with
the clone-theoretic approach [7, 17]. Furthermore, the #Csp problem [11] (where the
number of solutions to a Csp is counted) have also benefitted from this approach.
However, it seems that this technique cannot be used for some other Csp-like prob-
lems: notable exceptions are Max Csp [34] and the problem of enumerating all solu-
tions to a Csp instance [46]. For some problems it is the case that the relational clones
are a useable tool in the boolean domain but not in larger domains. The enumeration
problem is one such case [46].

We begin by proving that the algebraic approach is applicable to W-Max Sol and
this result can be found in Theorem 3.3∗. In fact, we show that given two constraint
languages Γ1 and Γ2 such that 〈Γ1〉 = 〈Γ2〉, then W-Max Sol(Γ1) S-reduces to
W-Max Sol(Γ2), and vice-versa. An S-reduction is a certain strong approximation-
preserving reduction: if 〈Γ1〉 = 〈Γ2〉, then Γ1 and Γ2 are very similar with respect
to approximability. For instance, if W-Max Sol(Γ1) is NP-hard to approximate
within some constant c, then W-Max Sol(Γ2) is NP-hard to approximate within
c, too. The proof is accompanied by an example of how the approach can be used
“in practice” for proving approximability results. We note that the clone-theoretic
approach was not used in the original classification of Max Ones and, consequently,
the techniques we use differs substantially from those used in [37]. The results that
we prove with the aid of Theorem 3.3 are the following:

Result 1. Our first result concerns the complexity of W-Max Sol for maximal con-
straint languages. A constraint language Γ is maximal if, for any R 6∈ 〈Γ〉, Γ∪{R} has
the ability to express (in a sense to be formally defined later on) every relation in RD.
Such languages have attracted much attention lately: for instance, the complexity of
the corresponding Csp problems has been completely classified. In [14] the complex-
ity was classified for domains |D| ≤ 3 and necessary conditions for tractability was
proved for the general case. More recently, in [8], it was proved that those neces-
sary conditions also are sufficient for tractability. Maximal constraint languages have
also been studied in the context of machine learning [24] and quantified Csps [18],
and they attract a great deal of attention in universal algebra, cf. the survey by
Quackenbush [44].

Our results show that if Γ is maximal and |D| ≤ 4, then W-Max Sol(Γ) is
either tractable, APX-complete, poly-APX-complete, that finding any solution with
non-zero measure is NP-hard, or that Csp(Γ) is not tractable. Moreover, we prove
that under a conjecture by Szczepara [47] our classification of maximal constraint
languages extends to arbitrary finite domains. In the conference version [35] of this
article we claimed that we had characterised the complexity of Max Sol for all
maximal constraint languages. Unfortunately, there was a flaw in one of the proofs.

∗The proof is easy to adapt to other problems such as W-Min Sol (the minimisation version of
W-Max Sol) and AW-Max Sol (where both positive and negative weights are allowed).
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We have managed to repair some of it by proving the weaker results as stated above,
but the general case, when |D| > 4 and Szczepara’s conjecture is not assumed to hold,
remains open. We also note that the different cases can be efficiently recognised, i.e.
the approximability of a maximal constraint language Γ can be decided in polynomial
time (in the size of Γ).

When proving this result, we identified a new large tractable class of W-Max
Sol(Γ): generalised max-closed constraints. This class (which may be of independent
interest) significantly extend some of the tractable classes of Max Ones that were
identified by Khanna et al. [37]. It is also related to monotone constraints which have
been studied in mathematical programming and computer science [27, 28, 51]. In
fact, generalised max-closed constraints generalise monotone constraints over finite
domains. A certain kind of generalised max-closed constraints are relevant in con-
straint programming languages such as Chip [50] as is pointed out in [33]. It may
thus be possible to extend such languages with optimisation capabilities by using the
techniques presented in this article.

Result 2. We completely characterise the approximability of W-Max Sol(Γ) when
Γ contains all permutation constraints. Such languages are known as homogeneous
languages and Dalmau [23] has determined the complexity of Csp(Γ) for all such
languages while the complexity of the corresponding quantified Csps has been studied
by Börner et al. [6]. Szendrei [48] provides a compact presentation of algebraic results
on homogeneous algebras and languages.

We show that W-Max Sol(Γ) is either tractable, APX-complete, poly-APX-
complete, or that Csp(Γ) is not tractable. The four different cases can, just as in
Result 1, be efficiently recognised. The proof is based on the characterisation of
homogeneous algebras by Marczewski [40] and Marchenkov [39]. For each domain
D, there exists a set of relations QD such that every tractable homogeneous con-
straint language on D is a subset of QD. The relations in QD are invariant under
a certain operation t : D3 → D (known as the discriminator on D) and the algebra
(D; t) is an example of a quasi-primal algebra in the sense of Pixley [41]. We note
that the tractable homogeneous constraint languages have been considered earlier in
connection with soft constraints [21], i.e. constraints which allows different levels of
‘desirability’ to be associated with different value assignments [5]. In the terminology
of [21], these languages are invariant under a 〈Mjrty1, Mjrty2, Mnrty3〉 multimorphism.
We also note that the tractable homogeneous languages extend the width-2 affine class
of Max Ones that was identified by Khanna et al. [37].

We remark that we do not deal explicitly with the unweighted version of the
problem (denoted Max Sol(Γ)), where all variables have weight 1. The reason for
this is that the approximability classifications for Max Sol(Γ) can be deduced from
the classifications for W-Max Sol(Γ) (for all constraint languages Γ considered in
this paper). In fact, as we explain in Section 8, Max Sol(Γ) have the same approx-
imability as W-Max Sol(Γ) when Γ one of the constraint languages considered in
this article.

The article is structured as follows: We begin by presenting some basics on ap-
proximability in §2. The algebraic approach for studying W-Max Sol is presented in
§3, §4 identifies certain hard constraint languages, and §5 contains some tractability
results. We continue with §6 that contain Result 1 and §7 that contain Result 2.
Finally, §8 contains some final remarks.
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2. Approximability, Reductions, and Completeness. A combinatorial op-
timisation problem is defined over a set of instances (admissible input data); each
instance I has a finite set sol(I) of feasible solutions associated with it. Given an
instance I and a feasible solution s of I, m(I, s) denotes the positive integer measure
of s. The objective is, given an instance I, to find a feasible solution of optimum value
with respect to the measure m. The optimal value is the largest one for maximisation
problems and the smallest one for minimisation problems. A combinatorial optimi-
sation problem is said to be an NPO problem if its instances and solutions can be
recognised in polynomial time, the solutions are polynomially bounded in the input
size, and the objective function can be computed in polynomial time (see, e.g., [2]).

We say that a solution s ∈ sol(I) to an instance I of an NPO problem Π is
r-approximate if it is satisfying

max

{
m(I, s)

opt(I)
,
opt(I)

m(I, s)

}

≤ r,

where opt(I) is the optimal value for a solution to I. An approximation algorithm
for an NPO problem Π has performance ratio R(n) if, given any instance I of Π with
|I| = n, it outputs an R(n)-approximate solution.

We define PO to be the class of NPO problems that can be solved (to opti-
mality) in polynomial time. An NPO problem Π is in the class APX if there is a
polynomial-time approximation algorithm for Π whose performance ratio is bounded
by a constant. Similarly, Π is in the class poly-APX if there is a polynomial-time
approximation algorithm for Π whose performance ratio is bounded by a polynomial
in the size of the input. Completeness in APX and poly-APX is defined using
appropriate reductions, called AP -reductions and A-reductions respectively [22, 37].
AP -reductions are more sensitive than A-reductions and every AP -reduction is also an
A-reduction [37]. In this paper we will not need the added flexibility of A-reductions
for proving our poly-APX-completeness results. Hence, we only need the definition
of AP -reductions.

Definition 2.1. An NPO problem Π1 is said to be AP -reducible to an NPO

problem Π2 if two polynomial-time computable functions F and G and a constant α
exist such that

(a) for any instance I of Π1, F (I) is an instance of Π2;
(b) for any instance I of Π1, and any feasible solution s′ of F (I), G(I, s′) is a

feasible solution of I;
(c) for any instance I of Π1, and any r ≥ 1, if s′ is an r-approximate solution of

F (I) then G(I, s′) is an (1+(r−1)α+ o(1))-approximate solution of I where
the o-notation is with respect to |I|.

An NPO problem Π is APX-hard (poly-APX-hard) if every problem in APX

(poly-APX) is AP -reducible (A-reducible) to it. If, in addition, Π is in APX

(poly-APX), then Π is called APX-complete (poly-APX-complete). It is a well-
known fact (see, e.g., §8.2.1 in [2]) that AP -reductions compose. In some proofs we
will use another kind of reduction, S-reductions. They are defined as follows:

Definition 2.2. An NPO problem Π1 is said to be S-reducible to an NPO

problem Π2 if two polynomial-time computable functions F and G exist such that
(a) given any instance I of Π1, algorithm F produces an instance I ′ = F (I) of

Π2, such that the measure of an optimal solution for I ′, opt(I ′), is exactly
opt(I).

(b) given I ′ = F (I), and any solution s′ to I ′, algorithm G produces a solution s
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to I such that m1(I, G(s′)) = m2(I
′, s′), where m1 is the measure for Π1 and

m2 is the measure for Π2.
Obviously, the existence of an S-reduction from Π1 to Π2 imply the existence of

an AP -reduction from Π1 to Π2. The reason why we need S-reductions is that AP -
reductions do not (generally) preserve membership in PO [37]. We also note that S-
reduction preserve approximation thresholds exactly for problems in APX: let Π1, Π2

be problems in APX, assume that it is NP-hard to approximate Π1 within c, and
that there exists an S-reduction from Π1 to Π2. Then, it is NP-hard to approximate
Π2 within c, too.

In some of our hardness proofs, it will be convenient for us to use a type of
approximation-preserving reduction called L-reduction [2].

Definition 2.3. An NPO maximisation problem Π1 is said to be L-reducible
to an NPO maximisation problem Π2 if two polynomial-time computable functions
F and G and positive constants β and γ exist such that

(a) given any instance I of Π1, algorithm F produces an instance I ′ = F (I) of
Π2, such that the measure of an optimal solution for I ′, opt(I ′), is at most
β · opt(I);

(b) given I ′ = F (I), and any solution s′ to I ′, algorithm G produces a solution
s to I such that |m1(I, s) − opt(I)| ≤ γ · |m2(I

′, s′) − opt(I ′)|, where m1 is
the measure for Π1 and m2 is the measure for Π2.

It is well-known (see, e.g., Lemma 8.2 in [2]) that, if Π1 is L-reducible to Π2 and
Π1 ∈ APX then there is an AP -reduction from Π1 to Π2.

3. Algebraic Approach. We sometimes need to define relations in terms of
other relations, using certain logical formulas. In these definitions we use the standard
correspondence between constraints and relations: a relation consists of all tuples
of values satisfying the corresponding constraint. Although, we sometimes use the
same symbol for a constraint and its corresponding relation, the meaning will always
be clear from the context. More specifically, for a relation R with arity a we will
sometimes write R(x1, . . . , xa) with the meaning (x1, . . . , xa) ∈ R and the constraint
((x1, . . . , xa), R) will sometimes be written as R(x1, . . . , xa).

An operation on a finite set D (the domain) is an arbitrary function f : Dk → D.
Any operation on D can be extended in a standard way to an operation on tuples over
D as follows: Let f be a k-ary operation on D and let R be an n-ary relation over D.
For any collection of k tuples, t1, t2, . . . , tk ∈ R, the n-tuple f(t1, t2, . . . , tk) is defined
as follows: f(t1, t2, . . . , tk) = (f(t1[1], t2[1], . . . , tk[1]), f(t1[2], t2[2], . . . , tk[2]), . . . ,
f(t1[n], t2[n], . . . , tk[n])), where tj [i] is the i-th component in tuple tj . A technique
that has shown to be useful in determining the computational complexity of Csp(Γ)
is that of investigating whether the constraint language Γ is invariant under certain
families of operations [32].

Now, let Ri ∈ Γ. If f is an operation such that for all t1, t2, . . . , tk ∈ Ri

f(t1, t2, . . . , tk) ∈ Ri, then Ri is invariant (or, in other words, closed) under f .
If all constraint relations in Γ are invariant under f , then Γ is invariant under f . An
operation f such that Γ is invariant under f is called a polymorphism of Γ. The set
of all polymorphisms of Γ is denoted Pol(Γ). Given a set of operations F , the set
of all relations that are invariant under all the operations in F is denoted Inv(F ).
Whenever there is only one operation under consideration, we write Inv(f) instead
of Inv({f}).

We will need a number of operations in the sequel: an operation f over D is said
to be
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• a constant operation if f is unary and f(a) = c for all a ∈ D and some c ∈ D;
• a majority operation if f is ternary and f(a, a, b) = f(a, b, a) = f(b, a, a) = a

for all a, b ∈ D;
• a binary commutative idempotent operation if f is binary, f(a, a) = a for all

a ∈ D, and f(a, b) = f(b, a) for all a, b ∈ D;
• an affine operation if f is ternary and f(a, b, c) = a − b + c for all a, b, c ∈ D

where + and − are the binary operations of an Abelian group (D, +,−).
Example 3.1. Let D = {0, 1, 2} and let f be the majority operation on D where

f(a, b, c) = a if a, b and c are all distinct. Furthermore, let

R = {(0, 0, 1), (1, 0, 0), (2, 1, 1), (2, 0, 1), (1, 0, 1)}.

It is then easy to verify that for every triple of tuples, x, y, z ∈ R, we have f(x, y, z) ∈
R. For example, if x = (0, 0, 1), y = (2, 1, 1) and z = (1, 0, 1) then

f(x, y, z) =

(

f(x[1], y[1], z[1]), f(x[2], y[2], z[2]), f(x[3], y[3], z[3])

)

=

(
f(0, 2, 1), f(0, 1, 0), f(1, 1, 1)

)
= (0, 0, 1) ∈ R.

We can conclude that R is invariant under f or, equivalently, that f is a polymorphism
of R.

We continue by defining a closure operation 〈·〉 on sets of relations: for any set
Γ ⊆ RD the set 〈Γ〉 consists of all relations that can be expressed using relations from
Γ ∪ {=D} (=D is the equality relation on D), conjunction, and existential quantifi-
cation. Intuitively, constraints using relations from 〈Γ〉 are exactly those which can
be simulated by constraints using relations from Γ. The sets of relations of the form
〈Γ〉 are referred to as relational clones. An alternative characterisation of relational
clones is given in the following theorem.

Theorem 3.2 ([43]). For every set Γ ⊆ RD, 〈Γ〉 = Inv(Pol(Γ)).
The following theorem states that when we are studying the approximability of

W-Max Sol(Γ), it is sufficient to consider constraint languages that are relational
clones.

Theorem 3.3. Let Γ be a constraint language and Γ′ ⊆ 〈Γ〉 finite. Then W-Max
Sol(Γ′) is S-reducible to W-Max Sol(Γ).

Proof. Consider an instance I = (V, D, C, w) of W-Max Sol(Γ′). We transform
I into an instance F (I) = (V ′, D, C′, w′) of W-Max Sol(Γ).

For every constraint C = ((v1, . . . , vm), R) in I, R can be represented as

∃vm+1
, . . . ,∃vn

R1(v11, . . . , v1n1
) ∧ · · · ∧ Rk(vk1, . . . , vknk

)

where R1, . . . , Rk ∈ Γ ∪ {=D}, vm+1, . . . , vn are fresh variables, and v11, . . . , v1n1
,

v21, . . . , vknk
∈ {v1, . . . , vn}. Replace the constraint C with the constraints

((v11 . . . , v1n1
), R1), . . . , ((vk1, . . . , vknk

), Rk),

add vm+1, . . . , vn to V , and extend w so that vm+1, . . . vn are given weight 0. If we
repeat the same reduction for every constraint in C, then it results in an equivalent
instance of W-Max Sol(Γ1 ∪ {=D}).

For each equality constraint ((vi, vj), =D), we do the following:
• replace all occurrences of vj with vi, update w′ so that the weight of vj is

added to the weight of vi, remove vj from V , and remove the weight corre-
sponding to vj from w′; and
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• remove ((vi, vj), =D) from C.
The resulting instance F (I) = (V ′, D, C′, w′) of W-Max Sol(Γ) has the same opti-
mum as I (i.e., opt(I) = opt(F (I))) and has been obtained in polynomial time.

Now, given a feasible solution S′ for F (I), let G(I, S′) be the feasible solution for
I where:

• The variables in I assigned by S′ inherit their value from S′.
• The variables in I which are still unassigned all occur in equality constraints

and their values can be found by simply propagating the values of the variables
which have already been assigned.

It should be clear that m(I, G(I, S′)) = m(F (I), S′) for any feasible solution S′

for F (I). Hence, the functions F and G, as described above, is an S-reduction from
W-Max Sol(Γ′) to W-Max Sol(Γ).

To exemplify the use of the results in this section, we prove the following tight
approximability result:

Lemma 3.4. Let Γ be a finite constraint language over the domain {0, 1}. If
Max Ones(Γ) is in APX and not in PO, then there is a polynomial time approxi-
mation algorithm for Max Ones(Γ) with performance ratio 2, and it is NP-hard to
approximate Max Ones(Γ) within 2 − ǫ, for any ǫ > 0.

Proof. [Sketch] It follows from the classification results in [37] that if Max
Ones(Γ) is in APX and not in PO, then Γ is closed under the affine function
f(x, y, z) = x − y + z (mod 2). It also follows from [37, Lemma 6.6] that Max
Ones(Γ) is approximable within 2.

In the Boolean domain, the structure of all relational clones is known. This
classification was made by Emil Post in [42] and is often referred to as Post’s lattice.
A gentle introduction to boolean relations and Post’s lattice can be found in [15, 16].

By Theorem 3.3, it is enough to study the relational clones. By studying Post’s
lattice and the results for Max Ones in [37], one can conclude that there are three
relational clones which are interesting in our case (i.e., there are three relational clones
such that Max Ones(Γ) is in APX but not in PO). Those relational clones are called
IL0, IL2 and IL3 and can be defined as follows [16]:

IL0 = {x1 + · · · + xk = 0 (mod 2) | k ∈ N}

IL2 = {x1 + · · · + xk = c (mod 2) | k ∈ N, c ∈ {0, 1}}

IL3 = {x1 + · · · + xk = c (mod 2) | k even, c ∈ {0, 1}}

We get the following inclusions from Post’s lattice: IL0 ⊂ IL2 and IL3 ⊂ IL2.
It is proved in [38] that for a certain finite subset Γ of IL3, Max Ones(Γ) is

NP-hard to approximate within 2 − ǫ for all ǫ > 0. As IL3 ⊂ IL2 we get that Max
Ones(Γ) is NP-hard to approximate within 2 − ǫ for all ǫ > 0 if 〈Γ〉 = IL2.

What remains to be done is to prove NP-hardness for approximating Max
Ones(Γ) within 2 − ǫ if 〈Γ〉 = IL0. We do this with a reduction from Max-E3-
Lin-2 which is the following problem: given a set of equations over Z2 with exactly
three variables per equation, satisfy as many equations as possible. It is proved in [29]
that it is NP-hard to approximate Max-E3-Lin-2 within 2 − ǫ for any ǫ > 0.

Let I be an instance of Max-E3-Lin-2. We will construct an instance I ′ of Max
Ones(Γ) for a subset Γ of IL0. Given an equation x1 + x2 + x3 = 1 (mod 2) in I (we
can assume that all equations have 1 on the right hand side [29]), we add the equation
x1 + x2 + x3 = z (where z is a fresh variable that only occurs in one equation) to I ′.
Furthermore, we assign the weight zero to x1, x2 and x3 and the weight one to z. It
is not hard to see that a solution with measure m to I can easily be transformed into
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a solution with measure m for I ′. It is also the case that a solution of measure m for
I ′ can be seen as a solution with measure m for I.

4. Hardness and Membership Results. In this section, we first prove some
general APX and poly-APX membership results for W-Max Sol(Γ). We also prove
APX-completeness and poly-APX-completeness for some particular constraint lan-
guages. Most of our hardness results in subsequent sections are based on these results.

We begin by making the following easy but interesting observation: we know
from the classification of W-Max Sol(Γ) over the Boolean domain {0, 1} that there
exist many constraint languages Γ for which W-Max Sol(Γ) is poly-APX-complete.
However, if 0 is not in the domain, then there are no constraint languages Γ such that
W-Max Sol(Γ) is poly-APX-complete.

Proposition 4.1. If Csp(Γ) is in P and 0 /∈ D, then W-Max Sol(Γ) is in
APX.

Proof. It is proved in [19] that if Csp(Γ) is in P, then we can also find a solution

in polynomial time. It should be clear that this solution is a max(D)
min(D) -approximate

solution. Hence, we have a trivial approximation algorithm with performance ratio
max(D)
min(D) .

Next, we present a general membership result for W-Max Sol(Γ). The proof is
similar to the proof of the corresponding result for the Boolean domain in [37, Lemma
6.2] so we omit the proof.

Lemma 4.2. Let Γc = {Γ ∪ {{(d1)}, . . . , {(dn)}}, where D = {d1, . . . , dn} (i.e.,
Γc is the constraint language corresponding to Γ where we can force variables to take
any given value in the domain). If Csp(Γc) is in P, then W-Max Sol(Γ) is in
poly-APX.

We continue by proving the APX-completeness of some constraint languages.
Lemma 4.3. Let R = {(a, a), (a, b), (b, a)} and a, b ∈ D such that 0 < a < b.

Then, W-Max Sol({R}) is APX-complete.
Proof. Containment in APX follows from Proposition 4.1. To prove the hardness

result we give an L-reduction (with parameters β = 4b and γ = 1
b−a ) from the

APX-complete problem Independent Set restricted to degree 3 graphs [1] to Max
Sol({R}). Given an instance I = (V, E) of Independent Set (restricted to graphs
of degree at most 3 and containing no isolated vertices), let F (I) = (V, D, C) be the
instance of Max Sol({R}) where, for each edge (vi, vj) ∈ E, we add the constraint
R(xi, xj) to C. For any feasible solution S′ for F (I), let G(I, S′) be the solution for
I where all vertices corresponding to variables assigned b in S′ form the independent
set. We have |V |/4 ≤ opt(I) and opt(F (I)) ≤ b|V | so opt(F (I)) ≤ 4bopt(I). Thus,
β = 4b is an appropriate parameter.

Let K be the number of variables being set to b in an arbitrary solution S′ for
F (I). Then,

|opt(I) − m(I, G(I, S′))| = opt(I) − K and

|opt(F (I)) − m(F (I), S′)| = (b − a)(opt(I) − K).

Hence,

|opt(I) − m(I, G(I, S′)| =
1

b − a
|opt(F (I)) − m(F (I), S′)|

and γ = 1
b−a is an appropriate parameter.
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The generic poly-APX-complete constraint languages are presented in the fol-
lowing lemma.

Lemma 4.4. Let R = {(0, 0), (0, b), (b, 0)} and b ∈ D such that 0 < b. Then,
W-Max Sol({R}) is poly-APX-complete.

Proof. It is proved in [37, Lemma 6.15] that for Q = {(0, 0), (0, 1), (1, 0)}, it is
the case that W-Max Sol({Q}) is poly-APX-complete. To prove the poly-APX-
hardness we give an AP -reduction from W-Max Sol({Q}) to W-Max Sol({R}).
Given an instance I of W-Max Sol({Q}), let F (I) be the instance of W-Max
Sol({R}) where all occurrences of Q has been replaced by R. For any feasible solution
S′ for F (I), let G(I, S′) be the solution for I where all variables assigned b in S′ are
instead assigned 1. It should be clear that this is an AP -reduction, since if S′ is an
α-approximate solution to F (I), then G(I, S′) is an α-approximate solution for I.

To see that W-Max Sol({R}) is in poly-APX, let D = {d1, . . . , dn} and note
that Γc = {R, {(d1)}, . . . , {(dn)}} is invariant under the min function. As the min
function is associative, commutative and idempotent, Csp(Γc) is solvable in poly-
nomial time [32]. Hence, W-Max Sol({R}) is in poly-APX due to Lemma 4.2

5. Tractable Constraint Languages. In this section, we present tractability
results for two classes of constraint languages: injective constraint languages and
generalised max-closed constraint languages. The tractability of injective constraints
follows from Cohen et al. [21, Sec. 4.4] but we present a simple proof for increased
readability. The tractability result for generalised max-closed constraints is new and
its proof constitutes the main part of this section.

These two classes can be seen as substantial and nontrivial generalisations of the
tractable classes known for the corresponding (Weighted) Max Ones problem over
the Boolean domain. There are only three tractable classes of constraint languages
over the Boolean domain, namely width-2 affine, 1-valid, and weakly positive [37].
Width-2 affine constraint languages are examples of injective constraint languages
and the classes of 1-valid and weakly positive constraint languages are examples of
generalised max-closed constraint languages. The monotone constraints which are,
for instance, studied by Hochbaum et al. [27, 28] (in relation with integer program-
ming) and Woeginger [51] (in relation with constraint satisfaction) are also related
to generalised max-closed constraints. Hochbaum & Naor [28] show that monotone
constraints can be characterised as those constraints that are simultaneously invariant
under the max and min operators. Hence, monotone constraints are also generalised
max-closed constraints as long as the underlying domain is finite.

5.1. Injective relations. We begin by formally defining injective relations.
Definition 5.1. A relation, R ∈ RD, is called injective if there exists a subset

D′ ⊆ D and an injective function π : D′ → D such that

R = {(x, π(x)) | x ∈ D′}.

It is important to note that the function π is not assumed to be total on D. Let ID

denote the set of all injective relations on the domain D and let ΓD
I = 〈ID〉.

Example 5.2. Let D = {0, 1} and let R = {(x, y) | x, y ∈ D, x+y ≡ 1 (mod 2)}.
The relation R is injective because the function f : D → D defined as f(0) = 1 and
f(1) = 0 is injective. More generally, let G = (D′, +,−) be an arbitrary Abelian
group and let c ∈ D′ be an arbitrary group element. It is easy to see that the relation
{(x, y) | x, y ∈ D′, x + y = c} is injective.
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R is an example of a relation which is invariant under an affine operation. Such
relations have previously been studied in relation with the Max Ones problem in [37,
38]. We will give some additional results for such constraints in §6.3. With the
terminology used in [37, 38], R is said to be width-2 affine. The relations which can
be expressed as the set of solutions to an equation with two variables over an Abelian
group are exactly the width-2 affine relations, so the injective relations are a superset
of the width-2 affine relations.

To see that W-Max Sol(Γ) is in PO for every finite constraint language Γ ⊆
〈ID〉, it is sufficient to prove that W-Max Sol(ID) is in PO by Theorem 3.3. Given
an instance of W-Max Sol(ID), consider the graph having the variables as ver-
tices and edges between the vertices/variables occurring together in the same con-
straint. Each connected component of this graph represents an independent sub-
problem that can be solved separately. If a value is assigned to a variable/vertex, all
variables/vertices in the same component will be forced to take a value by propagating
this assignment. Hence, each connected component has at most |D| different solutions
(that can be easily enumerated) and an optimal one can be found in polynomial time.

5.2. Generalised Max-Closed Relations. We begin by giving the basic def-
inition:

Definition 5.3. A constraint language Γ over a domain D ⊂ N is generalised
max-closed if and only if there exists a binary operation f ∈ Pol(Γ) such that for all
a, b ∈ D,

1. if a 6= b and f(a, b) ≤ min(a, b), then f(b, a) > max(a, b); and
2. f(a, a) ≥ a.

In the conference version of this article [35], the definition of generalised max-
closed constraint languages was slightly more restrictive. The following two examples
will clarify the definition above.

Example 5.4. Assume that the domain D is {0, 1, 2, 3}. As an example of a
generalised max-closed relation consider

R = {(0, 0), (1, 0), (0, 2), (1, 2)}.

R is invariant under max and is therefore generalised max-closed since max satisfies
the properties of Definition 5.3. Now, consider the relation Q defined as

Q = {(0, 1), (1, 0), (2, 1), (2, 2), (2, 3)}.

Q is not invariant under max because

max((0, 1), (1, 0)) = (max(0, 1), max(1, 0)) = (1, 1) /∈ Q.

Let the operation ◦ : D2 → D be defined by the following Cayley table:†

◦ 0 1 2 3
0 0 2 2 3
1 2 1 2 2
2 2 2 2 3
3 3 2 3 3

Now, it is easy to verify that Inv(◦) is a set of generalised max-closed relations and
that Q ∈ Inv(◦).

†Note that we write x ◦ y instead of ◦(x, y).



P. JONSSON, F. KUIVINEN, AND G. NORDH 13

Example 5.5. Consider the relations R1 and R2 defined as,

R1 = {(1, 1, 1), (1, 0, 0), (0, 0, 1), (1, 0, 1)}

and R2 = R1 \ {(1, 1, 1)}. The relation R1 is 1-valid because the all-1 tuple is in R1,
i.e., (1, 1, 1) ∈ R1. R2, on the other hand, is not 1-valid but is weakly positive‡ because
it is invariant under max. Note that both R1 and R2 are generalised max-closed since
R1 is invariant under f(x, y) = 1 and R2 is invariant under f(x, y) = max(x, y). It
is in fact the case that every weakly positive relation is invariant under max (more is
true in the Boolean domain: a relation is weakly positive if and only if it is invariant
under max), so the 1-valid and weakly positive relations are subsets of the generalised
max-closed relations.

The tractability of generalised max-closed constraint languages crucially depends
on the following lemma.

Lemma 5.6. If Γ is generalised max-closed, then all relations

R = {(d11, d12, . . . , d1m), . . . , (dt1, dt2, . . . , dtm)}

in Γ have the property that the tuple

tmax = (max{d11, . . . , dt1}, . . . , max{d1m, . . . , dtm})

is in R, too.
Proof. Assume that there is a relation R in Γ such that the tuple

tmax = (max{d11, . . . , dt1}, . . . , max{d1m, . . . , dtm})

is not in R. Define the distance between two tuples to be the number of coordinates
where they disagree (i.e. the Hamming distance). Let a be a tuple in R with minimal
distance from tmax and let I denote the set of coordinates where a agrees with tmax.
By the assumption that tmax is not in R, we know that the distance between a and
tmax is at least 1. Hence, without loss of generality, assume that a[1] 6= tmax[1] and
that a[1] is maximal for all tuples in R agreeing with tmax on the coordinates in I.
Let b be a tuple in R such that b[1] = tmax[1].

Since Γ is generalised max-closed, there exists an operation f ∈ Pol(Γ) such that
for all a, b ∈ D (a 6= b), it holds that f(a, b) > max(a, b) whenever f(b, a) ≤ min(a, b).
Furthermore, for all a ∈ D it holds that f(a, a) ≥ a. Now consider the tuple xn

(n = |D|) defined as follows: x1 = f(a, b) and

xi+1 =

{
f(xi, a) if f(xi[1], a[1]) > a[1],
f(a, xi) otherwise.

We begin by proving that xn agrees with a on all coordinates in I. Let z be an
arbitrary tuple in R. Note that for each i ∈ I such that z[i] 6= a[i], it is the case
that f(a[i], z[i]) ≤ min(a[i], z[i]) implies that f(z[i], a[i]) > max(a[i], z[i]). Hence,
as a[i] = tmax[i], we cannot have that f(a[i], z[i]) ≤ min(a[i], z[i]). So, for each
z ∈ R and i ∈ I, we must have f(a[i], z[i]) > min(a[i], z[i]) whenever a[i] 6= z[i].
By an analogous argument, it follows that for each z ∈ R and i ∈ I we must have
f(z[i], a[i]) > min(a[i], z[i]) whenever a[i] 6= z[i].

‡A relation is weakly positive if it can be expressed as a CNF formula having at most one negated
variable in each clause.
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This together with the fact that f(d, d) ≥ d, for all d ∈ D, and that a agrees with
tmax on I implies that f(a, xn) agrees with a on I.

We now show that xn[1] > a[1]. This follows from essentially the same argument
as above. First note that f(a[1], b[1]) = x1[1] > a[1]. If f(a[1], b[1]) ≤ min(a[1], b[1]),
then f(b[1], a[1]) > b[1] which is not possible since b[1] = tmax[1]. Hence, we must
have f(a[1], b[1]) = x1[1] > min(a[1], b[1]). Now, by the definition of xi+1, it follows
that if xi[1] > a[1], then xi+1[1] > min(xi[1], a[1]) = a[1] (just note that at least
one of f(xi[1], a[1]) and f(a[1], xi[1]) is strictly larger than min(xi[1], a[1]) = a[1]).
Hence, it follows by induction that xn[1] > a[1].

Thus, we have a contradiction with the fact that a[1] is maximal for all tuples in
R agreeing with tmax on the coordinates in I. Hence, our assumption was wrong and
tmax is in R.

The algorithm for solving W-Max Sol(Γ) when Γ is generalised max-closed
is a simple consistency-based algorithm. The algorithm, which is based on pair-
wise consistency, closely follows the algorithm for Csps over max-closed constraint
languages from [33].

We first need to introduce some terminology.

Definition 5.7. Given a constraint Ci = (si, Ri) and a (ordered) subset s′i of
the variables in si where (i1, i2, . . . , ik) are the indices in si of the elements in s′i.
The projection of Ci onto the variables in s′i is denoted by πs′

i
Ci and defined as:

πs′

i
Ci = C′

i = (s′i, R
′
i) where R′

i is the relation {(a[i1], a[i2], . . . , a[ik]) | a ∈ Ri}.

Definition 5.8. For any pair of constraints Ci = (si, Ri), Cj = (sj , Rj), the
join of Ci and Cj, denoted Ci 1 Cj, is the constraint on si ∪ sj containing all tuples
t such that πsi

{t} ∈ Ri and πsj
{t} ∈ Rj.

Definition 5.9 ([30]). An instance of a constraint satisfaction problem I =
(V, D, C) is pair-wise consistent if and only if for any pair of constraints Ci = (si, Ri),
Cj = (sj , Rj) in C, it holds that the constraint resulting from projecting Ci onto the
variables in si∩sj equals the constraint resulting from projecting Cj onto the variables
in si ∩ sj, i.e., πsi∩sj

Ci = πsi∩sj
Cj.

We are now ready to prove the tractability of generalised max-closed constraint
languages.

Theorem 5.10. If Γ is generalised max-closed, then W-Max Sol(Γ) is in PO.

Proof. Since Inv(f) is a relational clone, constraints built over Inv(f) are invari-
ant under taking joins and projections [31, Lemma 2.8] (i.e., the underlying relations
are still invariant under f). It is proved in [30] that any set of constraints can be
reduced to an equivalent set of pair-wise consistent constrains in polynomial time.
Since the set of pair-wise consistent constraints can be obtained by repeated appli-
cation of the join and projection operations, the underlying relations in the resulting
constraints are still in Inv(f).

Hence, given an instance I = (V, D, C, w) of W-Max Sol(Inv(f)), we can as-
sume that the constraints in C are pair-wise consistent. We prove that for pair-wise
consistent C, either C has a constraint with a constraint relation that do not contain
any tuples (i.e., no assignment satisfies the constraint and there is no solution) or we
can find the optimal solution in polynomial time.

Assume that C has no empty constraints. For each variable xi, let di be the
maximum value allowed for that variable by some constraint Cj (where xi is in the
constraint scope of Cj). We will prove that (d1, . . . , dn) is an optimal solution to I.
Obviously, if (d1, . . . , dn) is a solution to I, then it is the optimal solution. Hence, it
is sufficient to prove that (d1, . . . , dn) is a solution to I.
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Assume, with the aim of reaching a contradiction, that (d1, . . . , dn) is not a solu-
tion to I. Then, there exists a constraint Cj in C not satisfied by (d1, . . . , dn). Since
the constraint relation corresponding to Cj is generalised max-closed, there exists a
variable xi in the constraint scope of Cj such that Cj has no solution where di is
assigned to xi. Note that it is essential that Cj is generalised max-closed to rule out
the possibility that there exist two variables xi and xj in the constraint scope of Cj

such that Cj has two solutions t, u where t(xi) = di and u(xj) = dj , but Cj has no
solution s where s(xi) = di and s(xj) = dj . We know that there exists a constraint Ci

in C having xi in its constraint scope and di an allowed value for xi. This contradicts
the fact that C is pair-wise consistent. Thus, (d1, . . . , dn) is a solution to I.

6. Maximal Constraint Languages. A maximal constraint language Γ is a
constraint language such that 〈Γ〉 ⊂ RD, and if R /∈ 〈Γ〉, then 〈Γ∪ {R}〉 = RD. That
is, the maximal constraint languages are the largest constraint languages that are not
able to express all finitary relations over D. This implies, among other things, that
there exists an operation f such that 〈Γ〉 = Inv(f) whenever Γ is a maximal constraint
language [45]. Relational clones 〈Γ〉 such that Γ is a maximal constraint language
are called maximal relational clones. The complexity of the Csp(Γ) problem for all
maximal constraint languages on domains |D| ≤ 3 was determined in [14]. Moreover,
it was shown in [14] that the only case that remained to be classified in order to
extend the classification to all maximal constraint languages over a finite domain was
the case where 〈Γ〉 = Inv(f) for binary commutative idempotent operations f . These
constraint languages were finally classified by Bulatov in [8].

Theorem 6.1 ([8, 14]). Let Γ be a maximal constraint language on an arbitrary
finite domain D. Then, Csp(Γ) is in P if 〈Γ〉 = Inv(f) where f is a constant
operation, a majority operation, a binary commutative idempotent operation, or an
affine operation. Otherwise, Csp(Γ) is NP-complete.

In this section, we classify the approximability of W-Max Sol(Γ) for all max-
imal constraint languages Γ over |D| ≤ 4. Moreover, we prove that the only cases
that remain to be classified, in order to extend the classification to all maximal con-
straint languages over finite domains, are constraint languages Γ such that 〈Γ〉 is
invariant under a binary commutative idempotent operation. We also prove that if a
certain conjecture regarding minimal clones generated by binary operations, due to
Szczepara [47], holds, then our classification can be extended to capture also these
last cases.

Theorem 6.2. Let Γ be maximal constraint language on a finite domain D, with
|D| ≤ 4, and 〈Γ〉 = Inv(f).

1. If Γ is generalised max-closed or an injective constraint language, then W-
Max Sol(Γ) is in PO;

2. else if f is an affine operation, a constant operation different from the con-
stant 0 operation, or a binary commutative idempotent operation satisfying
f(0, b) > 0 for all b ∈ D \ {0} (assuming 0 ∈ D); or if 0 /∈ D and f is a
binary commutative idempotent operation or a majority operation, then W-
Max Sol(Γ) is APX-complete;

3. else if f is a binary commutative idempotent operation or a majority opera-
tion, then W-Max Sol(Γ) is poly-APX-complete;

4. else if f is the constant 0 operation, then finding a solution with non-zero
measure is NP-hard;

5. otherwise, finding a feasible solution is NP-hard.

Moreover, if Conjecture 131 from [47] holds, then the results above hold for arbitrary



16 GENERALISED MAX ONES

finite domains D.

The proof of the preceding theorem consists of a careful analysis of the ap-
proximability of W-Max Sol(Γ) for all maximal constraint languages Γ such that
〈Γ〉 = Inv(f), where f is one of the types of operations in Theorem 6.1. These results
are presented below.

6.1. Constant Operation. We begin by considering maximal constraint lan-
guages that are invariant under constant operations. Given an instance I = (V, D, C)
of a Csp problem, we define the constraint graph of I to be G = (V, E) where
{v, v′} ∈ E if there is at least one constraint c ∈ C which have both v and v′ in
its constraint scope.

Lemma 6.3. Let d∗ = max(D) and let Cd be a constraint language such that
〈Cd〉 = Inv(fd) where fd : D → D satisfies fd(x) = d for all x ∈ D. Then, W-Max
Sol(Cd∗) is in PO, W-Max Sol(Cd) is APX-complete if d ∈ D\{d∗, 0}, and it is
NP-hard to find a solution with non-zero measure for W-Max Sol(C0).

Proof. The tractability of W-Max Sol(Cd∗) is trivial, since the optimum solution
is obtained by assigning d∗ to all variables.

For the APX-hardness of W-Max Sol(Cd) (d ∈ D\{d∗, 0}), it is sufficient to
note that {(d, d), (d, d∗), (d∗, d)} is in 〈Cd〉, and since 0 < d < d∗ it follows from
Lemma 4.3 that W-Max Sol(Cd) is APX-hard. It is easy to realise that W-Max
Sol(Cd) is in APX, since we can obtain a d∗

d -approximate solution by assigning the
value d to all variables.

The fact that it is NP-hard to find a solution with non-zero measure for W-Max
Sol(C0) over the Boolean domain {0, 1} is proved in [37, Lemma 6.23]. To prove that
it is NP-hard to find a solution with non-zero measure for W-Max Sol(C0) over a
domain D of size ≥ 3, we give a reduction from the well-known NP-complete problem
Positive-1-in-3-Sat [26], i.e., Csp({R}) with R = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. It is
easy to see that Positive-1-in-3-Sat restricted to instances where the constraint
graph is connected is still NP-complete.

Now, let R′ = {(b, a, a), (a, b, a), (a, a, b), (0, 0, 0)}, where 0 < a < b and a, b, 0 ∈
D. For an instance I = (V, D, C) of Csp({R}) where the constraint graph of I is
connected, create an instance I ′ of W-Max Sol({R′}) by replacing all occurrences
of R by R′ and giving all variables weight 1. Since the constraint graph is connected,
I has a solution if and only if I ′ has a solution with non-zero measure, and since
R′ ∈ C0, it follows that it is NP-hard to find a solution with non-zero measure for
W-Max Sol(C0).

6.2. Majority Operation. Maximal constraint languages based on majority
operations are fairly easy to analyse due to the results in §4.

Lemma 6.4. Let m be an arbitrary majority operation on D. Then, W-Max
Sol(Inv(m)) is APX-complete if 0 /∈ D and poly-APX-complete if 0 ∈ D.

Proof. Arbitrarily choose elements a, b ∈ D such that a < b. Then, it is easy
to see that {(a, a), (a, b), (b, a)} is in Inv(m). Thus, by Proposition 4.1 and Lem-
mas 4.3 and 4.4, it follows that W-Max Sol(Inv(m)) is APX-complete or poly-

APX-complete depending on whether 0 is in D or not.

6.3. Affine Operation. We split the proof of this result into two parts. The
first part, §6.3.1, contains the hardness result: for every affine operation a : D3 → D,
W-Max Sol(Inv(a)) is APX-hard. The proof is based on a reduction from Max-
p-Cut which is a well-known APX-complete problem [2]. Membership in APX is
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proved in §6.3.2 by presenting an approximation algorithm with constant performance
ratio.

We will denote the affine operation on the group G by aG, i.e., if G = (D, +G,−G)
then aG(x, y, z) = x −G y +G z.

6.3.1. APX-hardness. In this section we will prove Theorem 6.11, which states
that relations invariant under an affine operation give rise to APX-hard W-Max Sol-
problems. We need a number of lemmas before we can prove this result. We begin
by giving an L-reduction from Max-p-Cut to W-Max Sol Eqn(Zp, g) where p is
prime. Max-p-Cut and W-Max Sol Eqn are defined as follows:

Definition 6.5 ([2]). Max-p-Cut is an optimisation problem with
Instance: A graph G = (V, E).
Solution: A partition of V into p disjoint sets C1, C2, . . . , Cp.
Measure: The number of edges between the disjoint sets, i.e.,

p−1
∑

i=1

p
∑

j=i+1

|{{v, v′} ∈ E | v ∈ Ci and v′ ∈ Cj}|.

Definition 6.6 ([38]). Let G = (D, +G,−G) be a group and g : D → N a
function. W-Max Sol Eqn(G, g) is an optimisation problem with
Instance: A triple (V, E, w) where, V = {v1, v2, . . . , vn} is a set of variables, E is a

set of equations of the form u1 +G . . . +G uk = 0G, where each ui is either a
variable (e.g., “v4”), an inverted variable (e.g., “−Gv7”) or a group constant,
and w is a weight function w : V → N.

Solution: An assignment f : V → D to the variables such that all equations are
satisfied.

Measure:
∑

v∈V

w(v)g(f(v))

We do not require the group G to be Abelian in the definition of W-Max Sol
Eqn but this will always be the case in this article. Note that the function g and
the group G are not parts of the input so W-Max Sol Eqn(G, g) is a problem
parameterised by G and g. We refer the reader to [38] for more information on the
problem W-Max Sol Eqn(Zp, g),

The following lemma follows from the proof of Proposition 2.3 in [20].
Lemma 6.7. For any instance I = (V, E) of Max-p-Cut, we have opt(I) ≥

|E|(1 − 1/p).
We can now prove the APX-hardness of W-Max Sol Eqn.
Lemma 6.8. For every prime p and every non-constant function g : Zp → N,

W-Max Sol Eqn(Zp, g) is APX-hard.
Proof. Given an instance I = (V, E) of Max-p-Cut, we construct an instance

F (I) of W-Max Sol Eqn(Zp, g) where, for every vertex vi ∈ V , we create a variable

xi and give it weight 0, and for every edge {vi, vj} ∈ E, we create p variables z
(k)
ij

for k = 0, . . . , p − 1 and give them weight 1. Let gmin denote an element in Zp that
minimises g, i.e.,

min
x∈Zp

g(x) = g(gmin)

and let gs denote the sum

p−1
∑

k=0

g(k).
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For every edge {vi, vj} ∈ E, we introduce the equations

k(xi − xj) + gmin = z
(k)
ij

for k = 0, . . . , p − 1. If xi = xj , then the p equations for the edge {vi, vj} will
contribute pg(gmin) to the measure of the solution. On the other hand, if xi 6= xj

then the p equations will contribute gs to the measure.
Given a solution s′ to F (I), we can construct a solution s to I in the following

way: let s(vi) = s′(xi), i.e. for every vertex vi, place this vertex in partition s′(xi).
The measures of the solutions s and s′ are related to each other by the equality

m′(F (I), s′) = |E| · p · g(gmin) + (gs − p · g(gmin)) · m(I, s). (6.1)

From (6.1), we get

opt(F (I)) = |E| · p · g(gmin) + (gs − p · g(gmin)) · opt(I) (6.2)

and from Lemma 6.7, we have that opt(I) ≥ |E| · (1 − 1/p) which implies opt(I) ≥
|E|/p. By combining this with (6.2), we can conclude that

opt(F (I)) = opt(I)

(
|E| · p · g(gmin)

opt(I)
+ gs − p · g(gmin)

)

≤ opt(I)
(

p2 · g(gmin) + gs − p · g(gmin)
)

.

Hence, β = p(p − 1) · g(gmin) + gs is an appropriate parameter for the L-reduction.
We will now deduce an appropriate γ-parameter for the L-reduction: from (6.1)

and (6.2) we get

|opt(F (I)) − m′(F (I), s′)| = (gs − p · g(gmin)) · |opt(I) − m(I, s)|

so, γ = 1/(gs − p · g(gmin)) is sufficient (γ is well-defined because a non-constant g
implies gs > p · gmin).

We need two lemmas before we can prove the APX-hardness of affine relations.
Let v1, v2, . . . , vk be a collection of variables, G = (D, +G,−G) an Abelian group, and
E an equation of the form x1 +G x2 +G . . . +G xn = c, where each xi is a (possibly
inverted) variable and c ∈ D. Note that each variable may occur several times in E.
The set of all solutions to E may be seen as a k-ary relation RE on Dk. The following
two lemmas are well-known [32].

Lemma 6.9. The relation RE is invariant under aG.
Lemma 6.10. If P is a coset of G, then P is invariant under aG.
We now have all results needed to prove the main theorem of this section.
Theorem 6.11. W-Max Sol(Inv(aG)) is APX-hard for every affine operation

aG.
Proof. We show that there exists a prime p and a non-constant function h : Zp →

N such that W-Max Sol Eqn(Zp, h) can be S-reduced to W-Max Sol(Inv(aG)).
The result will then follow from Lemma 6.8.

Let p be a prime such that Zp is isomorphic to a subgroup H of G. We know
that such a p always exists by the fundamental theorem of finitely generated Abelian
groups. Let α be the isomorphism which maps elements of Zp to elements of H and
let h = α. (Note that H ⊂ N since the domain is a subset of N. Consequently, h may
be viewed as a function from Zp to N.)
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Let I = (V, E, w) be an instance of W-Max Sol Eqn(Zp, h) with variables
V = {v1, . . . , vn} and equations E = {e1, . . . , em}. We will construct an instance
I ′ = (V, D, C, w) of W-Max Sol(Inv(aG)).

Let U be the unary relation for which x ∈ U ⇐⇒ x ∈ H ; this relation is in
Inv(aG) by Lemma 6.10. For every equation Ei ∈ E, there is a corresponding pair
(si, Ri) where si is a list of variables and Ri is a relation in Inv(aG) such that the set
of solutions to Ei are exactly the tuples which satisfies (si, Ri) by Lemma 6.9. We
can now construct C:

C = {(vi, U) | 1 ≤ i ≤ n} ∪ {(si, Ri) | 1 ≤ i ≤ m}.

It is easy to see that I and I ′ are essentially the same in the sense that every feasible
solution to I is also a feasible solution to I ′, and they have the same measure. The
converse is also true: every feasible solution to I ′ is also a feasible solution to I. Hence,
we have given a S-reduction from W-Max Sol Eqn(Zp, h) to W-Max Sol(Inv(aG)).
As h is not constant (it is in fact injective), it follows from Lemma 6.8 that W-Max
Sol Eqn(Zp, h) is APX-hard. This S-reduction implies that W-Max Sol(Inv(aG))
is APX-hard.

6.3.2. Membership in APX. We will now prove that relations that are in-
variant under an affine operation give rise to problems which are in APX. It has
been proved that a relation which is invariant under an affine operation is a coset of
a subgroup of some Abelian group [32]. We will give an approximation algorithm for
the more general problem when the relations are cosets of subgroups of a finite group.

Our algorithm is based on an algorithm by Bulatov and Dalmau [12] for deciding
the satisfiability of Mal’tsev constraints. A Mal’tsev operation is a ternary operation
m such that m(x, y, y) = m(y, y, x) = x for all x, y ∈ D. If a constraint language
Γ is invariant under a Mal’tsev operation, then Bulatov and Dalmau have proved
that Csp(Γ) is solvable in polynomial time. We note that every affine operation is a
Mal’tsev operation since x −G y +G y = x and y −G y +G x = x.

Let Gk denote the direct product of k copies of G. We are now ready to prove
containment in APX.

Theorem 6.12. Let G = (D; +G,−G) be a finite group and let Γ be a constraint
language such that for each R ∈ Γ there is an integer k such that R is a coset of some
subgroup of Gk. Then W-Max Sol(Γ) is in APX.

Proof. Let I = (V, D, C, w) be an arbitrary instance of W-Max Sol(Γ) where
V = {v1, . . . , vn}. Feasible solutions to our optimisation problem can be viewed as
certain elements in H = Gn. Each constraint Ci ∈ C defines a coset ai +G Ji of H
with representative ai ∈ H , for some subgroup Ji of H . The set of solutions to the

problem is the intersection of all those cosets. Thus, S =
⋂|C|

i=1 ai +G Ji denotes the
set of all solutions.

Since Γ is invariant under the affine operation aG(x, y, z) = x −G y +G z and aG

is a Mal’tsev operation, we can decide if there are any solutions to I in polynomial-
time [12]. Clearly, S is empty if and only if there are no solutions. It is well-known
that an intersection of a set of cosets is either empty or a coset so if S 6= ∅, then S is
a coset.

We will represent the elements of Gn by vectors x = (x1, . . . , xn) where each xi

is an element of G. For any instance I, we define R(I) to be the random variable
which is uniformly distributed over the set of solutions to I. Let Vi denote the random
variable which corresponds to the value which will be assigned to vi by R(I). We
claim that Vi is uniformly distributed over some subset of G. As S is a coset there
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is a subgroup S′ of Gn and an element s ∈ S such that S = s +G S′. Assume, for
the sake of contradiction, that Vi is not uniformly distributed. Then, there are group
elements a, b ∈ G such that the sets

Xa = {x ∈ S′ | xi = a} and Xb = {x ∈ S′ | xi = b}

have different cardinality. Assume that |Xa| > |Xb|. Arbitrarily pick y ∈ Xa, z ∈ Xb

and construct the set Z = {x −G y +G z | x ∈ Xa}. From the definition of Z and
the fact that S′ is invariant under aG, it follows that Z ⊆ S′. For each x ∈ Z we
have x1 = b, hence Z ⊆ Xb. However, we also have |Z| = |Xa|, which contradicts the
assumption that |Xa| > |Xb|. We conclude that this cannot hold and Vi is uniformly
distributed. Hence, for each 1 ≤ i ≤ n, Vi is uniformly distributed.

Now, let A denote the set of indices such that for every i ∈ A, Pr [Vi = ci] = 1 for
some ci ∈ G. That is, A contains the indices of the variables Vi which are constant
in every feasible solution. Let B contain the indices for the variables which are not
constant in every solution, i.e., B = [n] \ A.

Let S∗ =
∑

i∈B w(vi)max(D) +
∑

i∈A w(vi)ci and note that S∗ ≥ opt. Further-
more, let

Emin = min
X⊆G,|X|>1

1

|X |
·
∑

x∈X

x

and note that max(D) > Emin > 0.
The expected value of the measure of R(I) can now be estimated as

E

[
n∑

i=1

w(vi)Vi

]

=
∑

i∈A

w(vi)E [Vi] +
∑

i∈B

w(vi)E [Vi] (6.3)

≥
∑

i∈A

w(vi)ci + Emin

∑

i∈B

w(vi) ≥
Emin

max(D)
S∗ ≥

Emin

max(D)
opt.

Since Emin/ max(D) > 0, it follows that the measure of R(I) has, in expectation, a
constant performance ratio. We will denote Emin

max(D) · opt by E.

To get a deterministic polynomial-time algorithm, note that for any instance I
we can use the algorithm by Bulatov and Dalmau [12] to compute the two sums
in (6.3) in polynomial-time. Hence, we can compute the expected measure of R(I) in
polynomial-time. Our algorithm is presented in Figure 6.1.

We claim that the following loop invariant holds in the algorithm: before line 4
is executed it is always the case that the expected measure of R(Ii) is at least E.

We first prove the correctness of the algorithm assuming that the loop invariant
holds. From the loop invariant it follows that the expected measure of R(I|V |+1) is at
least E. In I|V |+1 there is, for each variable vi ∈ V , a constraint of the form vi = xi,
therefore there is only one solution to I|V |+1. This solution will be returned by the
algorithm.

We now prove that the loop invariant holds. The first time line 4 is reached the
expected performance ratio of R(I1) is at least E, per the calculations above. Now
assume that the loop invariant holds in iteration i = k ≤ |V |; we will prove that it
also holds in iteration i = k + 1. Since the performance ratio of R(Ik) is at least E,
there must be some value x ∈ D such that when vi is fixed to x, the performance
ratio of R(Ik+1) is at least E. This element will be found by the algorithm as it
maximises the expected performance ratio R(Ik+1). Hence, the loop invariant holds
for i = k + 1.
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Input: An instance I = (V, D, C, w) of W-Max Sol(Γ)
Output: A solution with performance ratio at least Emin/ max(D), or “no solution”
if there are no solutions.

1. Return “no solution” if there are no solutions (use Bulatov and Dalmau’s
algorithm to check this)

2. Let I1 = I.
3. For each i from 1 to |V |:
4. For each x ∈ D:
5. Let Ii = I and add the constraint vi = x to Ii

6. If there is no solution to Ii, then go to 8.
7. Compute the expected measure of R(Ii)
8. Remove the constraint vi = x from Ii

9. Let xi ∈ D be the value which maximises the expected measure of
R(Ii) in the computations in 4–8. Create a new instance, Ii+1, which
is identical to Ii except for the addition of the constraint vi = xi.

10. Return the unique solution to I|V |+1.

Fig. 6.1. The algorithm in Theorem 6.12

6.4. Binary Commutative Idempotent Operation. We now investigate the
complexity of W-Max Sol(Γ) for maximal constraint languages Γ satisfying 〈Γ〉 =
Inv(f) where f is a binary commutative idempotent operation.

Let (F ; +F ,−F , ·F , 1F ) be a finite field of prime order p, where +F ,−F , ·F , and 1F

denotes addition, subtraction, multiplication and multiplicative identity, respectively
(we refrain from defining a notation for multiplicative inverses, as we do not need it).
Furthermore, let zF be the unique element in F such that zF + zF = 1F . Note that
for F = Zp we get 1F = 1 and zF = p+1

2 .

Let A denote the set of operations f(x, y) = zF ·F (x +F y), where F is a finite
field of prime order p = |D| and p > 2. The proof will be partitioned into two main
cases due to the following result:

Lemma 6.13 ([14, 49]). If Inv(f) is a maximal relational clone and f is a binary
idempotent operation, then either

1. Inv(f) = Inv(g) where g ∈ A; or
2. B ∈ Inv(f) for some two-element B ⊆ D.

The classification result is given in the next lemma together with a proof outline.
Full proofs concerning the case when Inv(f) = Inv(g) and g ∈ A can be found in
§6.4.1. In §6.4.2 we give a complete characterisation of the complexity for the second
case for domains D such that |D| ≤ 4. Finally, in §6.4.3 we extend the classification
to general domains under the assumption of a conjecture due to Szczepara (Conjec-
ture 6.18).

Lemma 6.14. Let f be a binary commutative idempotent operation on D such
that Inv(f) is a maximal relational clone, and let Γ be a constraint language such
that 〈Γ〉 = Inv(f).

• If Inv(f) = Inv(g) for some g ∈ A, then W-Max Sol(Γ) is APX-complete;
• else if |D| ≤ 4 and there exist a, b ∈ D such that a < b and f(a, b) = a, then

let a∗ be the minimal such element (according to <), then
– W-Max Sol(Γ) is poly-APX-complete if a∗ = 0, and
– APX-complete if a∗ > 0.

• Otherwise, if |D| ≤ 4, then W-Max Sol(Γ) is in PO.
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Proof. If Inv(f) = Inv(g) and g ∈ A, then the result follows from §6.4.1.

If there exist a, b ∈ D such that a < b and f(a, b) = a, then we need to consider
two cases depending on a∗. If a∗ = 0, then W-Max Sol(Γ) is poly-APX-hard by
Lemma 4.4 and a member of poly-APX by Lemma 4.2 since Csp is in P [14]. If
a∗ > 0, then W-Max Sol(Γ) is APX-complete by Lemma 6.25 in §6.4.2.

Finally, if there do not exist any a, b ∈ D such that a < b and f(a, b) = a, then
f acts as the max operation on every two-element B ⊆ D such that B ∈ Inv(f).
Lemma 6.26 shows that f is a generalised max operation in this case, and W-Max
Sol(Γ) is in PO by Theorem 5.10.

6.4.1. f is contained in A. We will now prove that W-Max Sol(Γ) is APX-
complete whenever f ∈ A and 〈Γ〉 = Inv(f).

Lemma 6.15. Let f(x, y) = zF ·F (x +F y), where F is a finite field of prime
order p = |D| > 2 and Inv(f) is a maximal relational clone. Then, W-Max Sol(Γ)
is APX-complete if 〈Γ〉 = Inv(f).

Proof. We will give the proof for F = Zp and after that we will argue that the
proof can easily be adapted to the general case.

Let q = p+1
2 and f be the function f(x, y) = q(x+y) (mod p). We will show that

we can express x − y + z through f .

Note that

p−1
∑

i=1

qi =
1 − qp

1 − q
− 1 = 0 (mod p). (6.4)

(The second equality follows from Fermat’s little theorem: ap−1 = 1 (mod p) for any
prime p and integer a not divisible by p.) By using (6.4) and Fermat’s little theorem
again, we get

p−2
∑

i=1

qi = −1 (mod p). (6.5)

We can now express x − y + z as follows:

f(f(f(. . . f(f(f(
︸ ︷︷ ︸

p−1 times

x, z), y), y) . . .), y), y) =

q(q(q(. . . q(q(q(x + z) + y) + y) + . . .) + y) + y) =

qp−1x + qp−1z +

p−2
∑

i=1

qiy =

x − y + z (mod p)

where the final equality follows from (6.4), (6.5) and Fermat’s little theorem.

As any finite field F of prime order is isomorphic to Zp, it is not hard to see that
x−F y +F z can be expressed through f for any such field. Since Inv(f) is a maximal
relational clone, x −F y +F z can be expressed through f , and x −F y +F z is not a
projection, it follows that Inv(f) = Inv(x −F y +F z). We now get containment in
APX from Theorem 6.12 and APX-hardness from Theorem 6.11.
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6.4.2. f is not contained in A. In the first part of this section we classify the
complexity of W-Max Sol(Γ) when 〈Γ〉 = Inv(f) for all 2-semilattice operations
f . Recall that a 2-semilattice operation f is an operation satisfying the conditions
f(x, x) = x, f(x, y) = f(y, x), and f(x, f(x, y)) = f(x, y). It is noted in [9] that binary
operations f such that Inv(f) is a maximal constraint language on |D| ≤ 4 are either
2-semilattices or otherwise Csp(Γ) is NP-complete. Hence, we get a classification
of the complexity of W-Max Sol(Γ) when 〈Γ〉 = Inv(f) is a maximal constraint
language over |D| ≤ 4 and f is a binary operation.

The second result in this section is a complete complexity classification of W-
Max Sol(Γ) for maximal constraint languages Γ, such that 〈Γ〉 = Inv(f) where f is
a binary operation, under the condition that Conjecture 131 from [47] holds.

Lemma 6.16. Let f be a 2-semilattice operation on D and 〈Γ〉 = Inv(f). If there
exist a, b ∈ D such that a < b, f(a, b) = a, and a∗ > 0 where a∗ is the minimal element
such that there is b∗ with f(a∗, b∗) = a∗, then W-Max Sol(Γ) is APX-complete.

Proof. The APX-hardness part is clear. What remains is to show that the
problem is in APX. We can assume, without loss of generality, that a = a∗ and b = b∗.
We begin by proving that U = D \ {0} is in Inv(f). Assume that f(a, b) = 0 and
a, b > 0, then f(a, f(a, b)) = f(a, b) = 0 and consequently f(a, 0) = 0 contradicting
the assumption that a > 0 was the minimal such element. Hence, f(a, b) = 0 if and
only if a = b = 0. In particular U is in Inv(f).

We continue with the actual proof of the lemma. Let I = (V, D, C, w) be an
arbitrary instance of W-Max Sol(Γ). Define V ′ ⊆ V such that

V ′ = {v ∈ V | S(v) = 0 for every solution S of I}.

We see that V ′ can be computed in polynomial time: a variable v is in V ′ if and only
if the Csp instance (V, D, C ∪ {((v), U)}) is not satisfiable.

Given two assignments A, B : V → D, we define the assignment f(A, B) such that
f(A, B)(v) = f(A(v), B(v)). We note that if A and B are solutions of I, then f(A, B)
is a solution to I, too: indeed, arbitrarily choose one constraint ((x1, . . . , xk), r) ∈
C. Then, (A(x1), . . . , A(xk)) ∈ r and (B(x1), . . . , B(xk)) ∈ r which implies that
(f(A(x1), B(x1)), . . . , f(A(xk), B(xk))) ∈ r, too.

Let S1, . . . , Sm be an enumeration of all solutions of I and define

S+ = f(S1, f(S2, f(S3 . . . f(Sm−1, Sm) . . .))).

By the choice of V ′ and the fact that f(c, d) = 0 if and only if c = d = 0, we see that the
solution S+ has the following property: S+(v) = 0 if and only if v ∈ V ′. Let p denote
the second least element in D, and note that opt(I) ≥

∑

v∈V \V ′ w(v)p = c. Thus,

by finding a solution with measure ≥ c, we have approximated I within (maxD)/p
and W-Max Sol(Γ) is in APX. To find such a solution, we consider the instance
I ′ = (V, D, C′, w), where C′ = C ∪ {((v), u) | v ∈ V \ V ′}. This instance has feasible
solutions (since S+ is a solution) and every solution has measure ≥ c. Finally, a
concrete solution can be found in polynomial time by the result in [19].

Lemma 6.17. If f is a 2-semilattice operation such that f 6∈ A, Γ is a maximal
constraint language satisfying 〈Γ〉 = Inv(f), and for all two-element B ∈ Inv(f) the
operation f acts as the max operation on B, then W-Max Sol(Γ) is in PO.

Proof. What we will prove is that if f acts as max on all two-element B ∈ Inv(f),
then f is a generalised max operation and consequently W-Max Sol(Γ) is in PO.

First note that if a 6= b and f(a, b) = a, then by assumption a > b and f(a, b) >
min{a, b}. Now, if f(a, b) 6= a, then f(a, f(a, b)) = f(a, b) and by assumption f
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is max on {a, f(a, b)}. As a consequence of this we get f(a, b) > min{a, b}. Now,
f(a, b) > min{a, b} for all a 6= b. Moreover, f is idempotent, so f is a generalised max
operation and tractability follows from Theorem 5.10.

We have now completely classified the complexity of W-Max Sol(Γ) for all
constraint languages Γ such that 〈Γ〉 is maximal and |D| ≤ 4.

6.4.3. Complete Classification under a Conjecture. In this section we will
prove that the validity of Conjecture 131 from [47] implies a complete complexity clas-
sification of W-Max Sol(Γ) for all constraint languages Γ such that 〈Γ〉 is maximal.
Given a binary operation f on D, the fixity of f is denoted F(f) and is defined by

F(f) = {(x, y) ∈ D2 | f(x, y) ∈ {x, y}}.

The fixity-count of f is defined to be the cardinality of F(f) and is denoted |F(f)|.
Conjecture 6.18 ([47], Conjecture 131). If Inv(f) is a maximal relational

clone and Inv(f ′) = Inv(f), then |F(f)| = |F(f ′)|.
Although Conjecture 6.18 is not known to hold in the general case, it has been

verified for small domains. In particular, it was shown in [47] that for domains D such
that |D| ≤ 4 the conjecture holds. Our proof builds on a construction that facilitates
the study of operation f—the details are collected in Lemma 6.19. The underlying
idea and the proof of Lemma 6.19 are inspired by Lemma 3 in [14].

Let f be a binary operation on D and define operations f1, f2, . . . : D2 → D
inductively:

f1(x, y) = f(x, y)

fn+1(x, y) = f(x, fn(x, y)).

Lemma 6.19. Assume f to be a binary commutative idempotent operation on D
such that Inv(f) is a maximal relational clone and Inv(f) 6= Inv(g) for every g ∈ A.
The following holds:

1. f |B = fn|B for every n ≥ 1 and every two-element B ⊆ D in Inv(f); and
2. Inv(f) = Inv(fn), n ≥ 1.

Proof. 1. Arbitrarily choose a two-element {a, b} = B ⊆ D in Inv(f). There
are two possible binary commutative idempotent operations on B, namely max and
min. We assume without loss of generality that f |B = max and prove the result
by induction over n. Since f1 = f , the claim holds for n = 1. Assume it holds for
n = k and consider fk+1. We see that fk+1(a, b) = f(a, fk(a, b)) and, by the induction
hypothesis, fk(a, b) = max(a, b). Hence, fk+1(a, b) = max(a, max(a, b)) = max(a, b).

2. Obviously, fn ∈ Pol(Inv(f)) and, thus, Inv(f) ⊆ Inv(fn) ⊆ RD. Since
Inv(f) 6= Inv(g) for every g ∈ A, we know from Lemma 6.13 that there is some two-
element B ∈ Inv(f). By the proof above, we also know that f |B = fn|B so fn|B (and
consequently fn) is not a projection. Thus, Inv(fn) 6= RD, since Inv(f ′) = RD if
and only if f ′ is a projection. By the assumption that Inv(f) is a maximal relational
clone and the fact that Inv(f) ⊆ Inv(fn) ( RD, we can draw the conclusion that
Inv(f) = Inv(fn).

We will now present some technical machinery that is needed for proving Lemmas
6.25 and 6.26.

Lemma 6.20 ([47], Lemma 28). Let f be an idempotent binary operation and
n ∈ N. Then, F(f) ⊆ F(fn).
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Proof. Let (x, y) ∈ F(f). Then, either f(x, y) = x or f(x, y) = y. Now

f(x, y) = x =⇒ fn(x, y) = f(x, f(x, . . . , f(x, y) . . . ))
︸ ︷︷ ︸

n times

=

f(x, f(x, . . . , f(x, x) . . . ))
︸ ︷︷ ︸

n−1 times

= x =⇒ fn(x, y) = x.

While

f(x, y) = y =⇒ fn(x, y) = f(x, f(x, . . . , f(x, y) . . . ))
︸ ︷︷ ︸

n times

=

f(x, f(x, . . . , f(x, y) . . . ))
︸ ︷︷ ︸

n−1 times

=⇒ fn(x, y) = y.

Assuming that Conjecture 6.18 holds, we get the following corollary as a conse-
quence of Lemma 6.20.

Corollary 6.21. If Inv(f) is maximal relational clone such that f is commuta-
tive, idempotent, and (x, y) ∈ F(fk), (i.e. fk(x, y) ∈ {x, y}), then {x, y} ∈ Inv(f).

Proof. By Lemma 6.20, we have F(f) ⊆ F(fk), and if Conjecture 6.18 holds,
then |F(f)| = |F(fk)| which implies that F(f) = F(fk). Now, if fk(x, y) ∈ {x, y},
then f(x, y) ∈ {x, y} and by the commutativity of f we have f(y, x) ∈ {x, y}. Since
f is idempotent, it is clear that {x, y} ∈ Inv(f).

We continue by introducing a digraph associated with the binary operation f .
This digraph enables us to make efficient use of Lemma 6.19. Given a binary op-
eration f : D2 → D, we define Gf = (V, E) such that V = D × D and E =
{((a, b), (a, f(a, b))) | a, b ∈ D}. We make the following observations about Gf :

(1) an edge ((a, b), (a, c)) implies that f(a, b) = c;
(2) every vertex has out-degree 1; and
(3) there is no edge ((a, b), (c, d)) with a 6= c.
We extract some more information about Gf in the next three lemmas.
Lemma 6.22. The digraph Gf contains no directed cycle.
Proof. Assume Gf contains a directed cycle. Fact (3) allows us to assume (without

loss of generality) that the cycle is (0, 1), (0, 2), . . . , (0, k), (0, 1) for some k ≥ 2. Fact
(1) tells us that f(0, 1) = 2, f(0, 2) = 3, . . ., f(0, k − 1) = k and f(0, k) = 1.
Furthermore, one can see that f2(0, 1) = 3, f2(0, 2) = 4, . . ., and inductively fp(0, i) =
i + p (mod k). This implies that fk(0, 1) = 1 + k (mod k) = 1. By Corollary 6.21,
{0, 1} is a subalgebra of Inv(f) which contradicts the fact that f(0, 1) = 2.

Lemma 6.23. Every path in Gf of length n ≥ |D| ends in a reflexive vertex, i.e.,
fn(a, b) = c implies that (a, c) is a reflexive vertex.

Proof. Assume that Gf contains a path P of length n ≥ |D|. This path can
contain at most |D| distinct vertices by fact (3). Fact (2) together with the acyclicity
of Gf implies that at least one vertex v on P is reflexive; by using fact (2) once again,
we see that there exists exactly one reflexive vertex on P and it must be the last
vertex.

Lemma 6.24. If fn(a, b) = c, then (a, c) is a reflexive vertex in Gf .
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Proof. By Lemma 6.23, every path in Gf of length n ≥ |D| ends in a reflexive
vertex. Hence, (a, fn(a, b)) = (a, c) is a reflexive vertex.

Lemma 6.25. Let f be a binary commutative idempotent operation on D such that
Γ is a maximal constraint language satisfying 〈Γ〉 = Inv(f). If there exist a, b ∈ D
such that a < b, f(a, b) = a, and a∗ > 0 where a∗ is the minimal element such that
there is b∗ with f(a∗, b∗) = a∗, then (assuming Conjecture 6.18) W-Max Sol(Γ) is
APX-complete.

Proof. We can assume, without loss of generality, that a = a∗ and b = b∗.
The APX-hardness part follows from Lemma 4.3. What remains is to show that the
problem is in APX. We begin the proof by proving that the unary relation U = D\{0}
is a member of Inv(f). Consider the digraph Gf . As we have already observed in
Lemma 6.22, there are no cycles (a, b1), . . . , (a, bk), (a, b1), k ≥ 2, in Gf and every
path of length n ≥ |D| ends in a reflexive vertex (by Lemma 6.23). Obviously, no
vertex (a, 0) (a > 0) in Gf is reflexive since this implies that f(a, 0) = 0 which is a
contradiction. In particular, there exists no path in Gf of length n ≥ |D| starting in
a vertex (a, b) (a > 0) and ending in a vertex (a, 0), since this implies that (a, 0) is
reflexive by Lemma 6.23.

We can now conclude that fn(a, b) > 0 when a > 0: if fn(a, b) = 0, then (a, 0)
is reflexive by Lemma 6.24 which would lead to a contradiction. Hence, fn(a, b) > 0
whenever a, b ∈ D\{0} = U so U is in Inv(fn), and by Lemma 6.19(2), U is in Inv(f),
too. We also note that U ∈ Inv(f) together with the assumption that f(0, b) > 0 for
all b > 0 implies that f(c, d) = 0 if and only if c = d = 0. The rest of the proof is
identical to the second part of the proof of Lemma 6.16.

Lemma 6.26. If f is a binary commutative idempotent operation such that f 6∈
A, Γ is a maximal constraint language satisfying 〈Γ〉 = Inv(f), and for all two-
element B ∈ Inv(f) the operation f acts as the max operation on B, then (assuming
Conjecture 6.18) W-Max Sol(Γ) is in PO.

Proof. What we will prove is that if f 6∈ A and f acts as max on all two-element
B ∈ Inv(f), then there exists a generalised max function f ′ such that Inv(f ′) =
Inv(f) and, hence, W-Max Sol(Γ) is in PO.

Recall that there are no cycles in Gf and every path of length n = |D| must end
in a reflexive vertex by Lemmas 6.22 and 6.23. We also note that if Gf contains a
reflexive vertex (a, c) with a 6= c, then f(a, c) = c and c > a since f is assumed to act
as the max operation on all two-element B ∈ Inv(f).

We now claim that fn is a generalised max operation. Arbitrarily choose a, b ∈ D.
If fn(a, b) = c (a 6= c), then there is a path in Gf from (a, b) to a reflexive vertex (a, c),
and c > a as explained above. If fn(a, b) = a, then {a, b} ∈ Inv(f) by Corollary 6.21.
Since f(a, b) = max(a, b), Lemma 6.19(1) implies that fn(a, b) = max(a, b). Thus, fn

is a generalised max-operation.

7. Homogeneous Constraint Languages. In this section, we will classify the
complexity of Max Sol when the constraint language is homogeneous. A constraint
language is called homogeneous if every permutation relation is contained in the lan-
guage.

Definition 7.1. A relation R is a permutation relation if there is a permutation
π : D → D such that

R = {(x, π(x)) | x ∈ D}.

Let Q denote the set of all permutation relations on D. The main result of this section
is Theorem 7.16 which gives a complete classification of the complexity of W-Max
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Sol(Γ) when Q ⊆ Γ. The theorem provide the exact borderlines between tractability,
APX-completeness, poly-APX-completeness, and NP-hardness of finding a feasible
solution.

As a direct consequence of Theorem 7.16, we get that the class of injective relations
is a maximal tractable class for W-Max Sol(Γ). That is, if we add a single relation
which is not an injective relation to the class of all injective relations, then the problem
is no longer in PO (unless P = NP).

Dalmau has completely classified the complexity of Csp(Γ) when Γ is a homoge-
neous constraint language [23], and this classification relies heavily on the structure
of homogeneous algebras. An algebra is called homogeneous if and only if every per-
mutation on its universe is an automorphism of the algebra. We will not need a
formal definition of homogeneous algebras and refer the reader to [39, 40, 48] for fur-
ther information on their properties. All homogeneous algebras have been completely
classified by Marczewski [40] and Marchenkov [39].

Our classification for the approximability of W-Max Sol(Γ) when Γ is a homo-
geneous constraint language uses the same approach as in [23], namely, we exploit the
inclusion structure of homogeneous algebras (as proved in [39, 40]). By Theorem 3.3,
it is sufficient to consider constraint languages Γ that are relational clones. This is
where the homogeneous algebras comes in: the classification of homogeneous algebras
gives us a classification of all homogeneous relational clones, and in particular their
inclusion structure (lattice) under set inclusion. We refer the reader to [48] for a
deeper treatment of homogeneous algebras and their inclusion structure.

The lattice of all homogeneous relational clones on a domain D having n (≥ 5)
elements is given in Figure 7.1. The lattices for the corresponding relational clones
over smaller domains (i.e., 2 ≤ |D| ≤ 4) contains some exceptional relational clones
and are presented separately in Figures 7.2–7.4. Note that the corresponding lattices
presented in [23] and [48] are the dual of ours, since they instead consider the inclusion
structure among the corresponding clones of operations (but the two approaches are
in fact equivalent as shown in [43, Satz 3.1.2]). To understand the lattices we first
need some definitions.

Throughout this section n denotes the size of the domain D, i.e., n = |D|.
Definition 7.2.
• The switching operation s is defined by

s(a, b, c) =







c if a = b,
b if a = c,
a otherwise.

• The discriminator operation t is defined by

t(a, b, c) =

{
c if a = b,
a otherwise.

• The dual discriminator operation d is defined by

d(a, b, c) =

{
a if a = b,
c otherwise.

• The k-ary near projection operation lk (3 ≤ k ≤ n) defined by

lk(a1, . . . , ak) =

{
a1 if |{a1, . . . , ak}| < k,
ak otherwise.
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Fig. 7.1. Lattice of all homogeneous relational clones over domain size n ≥ 5.

• The (n − 1)-ary operation rn defined by

rn(a1, . . . , an−1) =

{
a1 if |{a1, . . . , an−1}| < n − 1,
an otherwise.

In the second case we have {an} = D \ {a1, . . . , an−1}.
• The (n − 1)-ary operation dn (where n ≥ 4) defined by

dn(a1, . . . , an−1) =

{
d(a1, a2, a3) if |{a1, . . . , an−1}| < n − 1,
an otherwise.

In the second case we have {an} = D \ {a1, . . . , an−1}.
• the operation x + y + z where (D, +,−) is a 4-element group of exponent 2.

The notation in the lattices in Figures 7.1–7.4 is explained below.
• D0

1 = Inv(t);
• D0

i = Inv({d, li+1}) for 2 ≤ i ≤ n − 1;
• D0

n = Inv(d);
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Fig. 7.2. Lattice of all homogeneous relational clones over domain size n = 4.
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Fig. 7.4. Lattice of all homogeneous relational clones over domain size n = 2.
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• D1
1 = Inv({t, rn});

• D1
i = Inv({d, li+1, rn}) for 2 ≤ i ≤ n − 2;

• D1
n = Inv(dn);

• E0
1 = Inv(s);

• E0
i = Inv(li+1) for 2 ≤ i ≤ n − 1;

• E0
n = RD, i.e., all finitary relations over D;

• E1
1 = Inv({s, rn}) for n 6= 3;

• E1
i = Inv({li+1, rn}) for 2 ≤ i ≤ n − 3;

• E1
n−2 = Inv(rn) for n ≥ 4.

Note that the relational clones described above depend on the size of the domain
|D| = n. Hence, E0

2 in Figure 7.3 (|D| = 3) is not the same relational clone as E0
2

(|D| = 4) in Figure 7.2. Also note that when we state our (in)approximability results
by saying, for example that, W-Max Sol(E1

1) is APX-complete, we mean that W-
Max Sol(E1

1) is APX-complete for all sizes of the domain where E1
1 is defined (e.g.,

E1
1 is not defined for n = 3). We always assume that n = |D| ≥ 2.

We now state Dalmau’s classification for the complexity of Csp(Γ) for homoge-
neous constraint languages Γ.

Theorem 7.3 ([23]). Let Γ be a homogeneous constraint language. Then, Csp(Γ)
is in P if Pol(Γ) contains the dual discriminator operation d, the switching operation
s, or an affine operation. Otherwise, Csp(Γ) is NP-complete.

We have the following corollary of Dalmau’s classification.

Corollary 7.4. Let Γ be a homogeneous constraint language. Then, W-Max
Sol(Γ) is in poly-APX if Pol(Γ) contains the dual discriminator operation d, the
switching operation s, or an affine operation. Otherwise, it is NP-hard to find a
feasible solution to W-Max Sol(Γ).

Proof. All dual discriminator operations, switching operations, and affine opera-
tions are idempotent (i.e., f(x, x, x) = x for all x ∈ D). Hence, Γ is invariant under a
dual discriminator operation, switching operation, or an affine operation if and only if
Γc = {Γ∪ {{(d1)}, . . . , {(dn)}} is invariant under the corresponding operation. Thus,
it follows from Theorem 7.3 that Csp(Γc) is in P if Pol(Γ) contains the dual discrim-
inator operation d, the switching operation s, or an affine operation. This together
with Lemma 4.2 gives us that W-Max Sol(Γ) is in poly-APX if Pol(Γ) contains
the dual discriminator operation d, the switching operation s, or an affine operation.

The NP-hardness part follows immediately from Theorem 7.3.

We begin by investigating the approximability of W-Max Sol(Γ) for some par-
ticular homogeneous constraint languages Γ.

Lemma 7.5. W-Max Sol(D0
n) is in APX if 0 /∈ D and in poly-APX other-

wise.

Proof. Remember that D0
n = Inv(d). Hence, membership in poly-APX follows

directly from Corollary 7.4. It is known from Dalmau’s classification that Csp(D0
n)

is in P. Thus, by Proposition 4.1, it follows that W-Max Sol(D0
n) is in APX when

0 /∈ D.

Lemma 7.6. W-Max Sol(D1
2) is APX-complete if 0 /∈ D and poly-APX-

complete if 0 ∈ D.

Proof. Choose any a, b ∈ D such that a < b. The relation r = {(a, a), (a, b), (b, a)}
is in D1

i = Inv({d, li+1, rn}) for 2 ≤ i ≤ n − 2. Hence, by Lemmas 4.3 and 4.4, it
follows that W-Max Sol(D1

2) is APX-hard if 0 /∈ D and poly-APX-hard if 0 ∈ D.
This together with Lemma 7.5 and fact that D1

i ⊆ D0
n give us that W-Max Sol(D1

2)
is APX-complete if 0 /∈ D and poly-APX-complete if 0 ∈ D.
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Lemma 7.7. Finding a feasible solution to W-Max Sol(E1
2) is NP-hard.

Proof. Remember that E1
2 = Inv({l3, rn}) when n > 4 and E1

2 = Inv(rn) when
n = 4, so it follows from Dalmau’s classification that Csp(E1

2 ) is NP-complete.

Lemma 7.8. W-Max Sol(D0
1) is in PO.

Proof. It is well-known that D0
1 = Inv(t) = 〈ID〉; for instance, it is a direct

consequence of Theorem 4.2 in [48]. Hence, W-Max Sol(D0
1) is in PO by the results

in §5.1.

Lemma 7.9. W-Max Sol(E0
1) is in APX.

Proof. Remember that E0
1 = Inv(s). Dalmau gives a polynomial-time algo-

rithm for Csp(Inv(s)) in [23] (he actually gives a polynomial-time algorithm for the
more general class of para-primal problems). Dalmau’s algorithm exploits in a clever
way the internal structure of para-primal algebras to show that any instance I of
Csp(Inv(s)) can be split into independent subproblems I1, . . . , Ij , such that

• the set of solutions is preserved (i.e., any solution to I is also a solution to each
of the independent subproblems, and any solution to all of the independent
subproblems is also a solution to I); and

• each Ii (1 ≤ i ≤ j) is either an instance of Csp(Inv(t)) or an instance
of Csp(Inv(a)), where t is the discriminator operation and a is an affine
operation.

Hence, to show that W-Max Sol(E0
1) is in APX, we first use Dalmau’s algorithm

to reduce the problem (in a solution preserving manner) to a set of independent W-
Max Sol(Γ) problems where Γ is either invariant under an affine operation or the
discriminator operation. We know from Lemma 7.8 that W-Max Sol(Γ) is in PO

when Γ is invariant under the discriminator operation, and from Theorem 6.12 we
know that W-Max Sol(Γ) is in APX when Γ is invariant under an affine operation.
Since all the independent subproblems are in APX, we get that the original W-Max
Sol(E0

1) problem is also in APX.

Lemma 7.10. W-Max Sol(E1
1) is APX-complete.

Proof. Remember that E1
1 = Inv({s, rn}). Note that E1

1 ⊆ E0
1 so membership in

APX follows from Lemma 7.9.

For the hardness part, we begin by considering the general case when n = |D| ≥ 4.
Choose an arbitrary two-element subset {a, b} of D (without loss of generality assume
that a < b) and let (G, +,−) be the two element group on G = {a, b} defined by
a+a = a, a+ b = b+a = b, and b+ b = a. Let Γ be the set of all relations expressible
as the set of solutions to equations over (G, +,−). It is easy to realise that Γ is
invariant under rn (since rn (n ≥ 4) acts as a projection on {a, b}). Furthermore Γ
is invariant under s since s(x, y, z) acts as the affine operation x + y + z on {a, b}.
It is proved in Lemma 6.8 that W-Max Sol Eqn(Z2, g) is APX-hard so W-Max
Sol(Γ) is APX-complete. For n = |D| = 3 there is no relational clone of the type
E1

1 = Inv({s, rn}) so the only case that remains to be dealt with is the case where
n = |D| = 2.

Without loss of generality assume that D = {a, b} where a < b. Again consider
the group (G, +,−) on {a, b}. Let Γ = {R1, R2} where R1 is the (4-ary) relation on D
which is the set of solutions to the equation x1+x2+x3+x4 = a and R2 is the (binary)
relation representing the set of solutions to the equation y1 +y2 = b. Furthermore, let
Γ0,1 = {R1, R2} denote the special case where a = 0, b = 1 (i.e., D = {0, 1}). It has
been proved in [37, Lemma 6.9] that Max Sol(Γ0,1) is APX-complete. Let I be an
instance of Max Sol(Γ0,1) containing k variables. It is easy to realise that if I has a
solution, then opt(I) ≥ k/2 (just note that the complement of any solution to I is also
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a solution to I). We give an L-reduction from Max Sol(Γ0,1) to Max Sol(Γa,b). Let
F (I) be the instance of Max Sol(Γa,b) where all occurrences of 0 has been replaced
by a and all occurrences of 1 has been replaced by b. Since opt(I) ≥ k/2, we get that
opt(F (I)) ≤ bk ≤ 2b · opt(I) and β = 2b is a valid parameter in the L-reduction.
Let s be an arbitrary solution to F (I) and define G(F (I), s) to be the corresponding
solution to I where a is replaced by 0 and b is replaced by 1. Then,

|m(I, G(F (I), s)) − opt(I)| ≤
1

b − a
|m(F (I), s) − opt(F (I))|

and γ = 1
b−a is a valid parameter in the L-reduction. This completes the APX-

hardness proof for Max Sol(Γa,b). Now, the unary operation r2 acts as the non-
identity permutation on {a, b} (i.e., r2(a) = b, and r2(b) = a) so both R1 and R2 are
invariant under r2. As we have already observed, s acts as the affine operation on
{a, b} and R1 and R2 are invariant under s, too. Hence, Γa,b ⊆ Inv({s, r2}) which
concludes the proof.

We have now proved all the results needed to give a complete classification for
the approximability of W-Max Sol(Γ) for all homogeneous relational clones Γ over
domains D of size at least 5. In order to complete the classification also for domains
of size 2, 3 and 4, we need to consider some exceptional homogeneous relational
clones. For domains of size 4, we need to consider the homogeneous relational clone
Inv(x + y + z) where + is the operation of a 4-element group (D, +,−) of exponent
2 (i.e., a 4-element group such that for all a ∈ D, a + a = e where e is the identity
element in (D, +,−)).

Lemma 7.11. Let f(x, y, z) = x + y + z where (D, +,−) is a group of exponent
2. Then, W-Max Sol(Inv(f)) is APX-complete.

Proof. The operation x+y+x is the affine operation on (D, +,−) (since −y = y in
(D, +,−)) and it follows directly from Theorem 6.11 and Theorem 6.12 that W-Max
Sol(Inv(x + y + z)) is APX-complete.

For 3-element domains, it remains to classify the approximability of W-Max
Sol(Inv(r3)) where r3 is the binary operation defined as follows:

r(a1, a2) =

{
a1 if a1 = a2,
a3 where {a3} = D \ {a1, a2} otherwise.

Lemma 7.12. W-Max Sol(Inv(r3)) is APX-complete.
Proof. The operation r3(x, y) is actually an example of an operation of the type

p+1
2 (x + y) (where + is the operation of an Abelian group of order |D| = p) from

Lemma 6.15. In our case p = 3 and r3(x, y) = 2x+2y where + is the operation of the
Abelian group (D, +,−) isomorphic to Z3. Hence, it follows from Lemma 6.15 that
W-Max Sol(Inv(r3)) is APX-complete.

For 3-element domains we also need to classify the approximability of W-Max
Sol(E0

2) since hardness no longer follows from the hardness of W-Max Sol(E1
2)

(there is no relational clone E1
2 over 3-element domains).

Lemma 7.13. It is NP-hard to find a feasible solution to W-Max Sol(E0
2).

Proof. Immediate consequence of Theorem 7.3.
Similarly, we also need to classify the approximability of W-Max Sol(D0

2) since
hardness no longer follows from the hardness of W-Max Sol(D1

2) (there is no rela-
tional clone D1

2 over 3-element domains).
Lemma 7.14. W-Max Sol(D0

2) is APX-complete if 0 /∈ D and poly-APX-
complete if 0 ∈ D.
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Proof. Remember that D0
2 = Inv({d, l3}). It follows from the proof of Lemma

7.6 that W-Max Sol(D0
2) is APX-complete if 0 /∈ D and poly-APX-complete if

0 ∈ D.

For two-element domains {a, b}, we need to classify the unary operation r2 which
acts as the non-identity permutation (i.e., r2(a) = b and r2(b) = a).

Lemma 7.15. Finding a feasible solution to W-Max Sol(Inv(r2)) is NP-hard.
Proof. Follows from Dalmau’s classification.

Finally, we are in the position to present the complete classification for the ap-
proximability of all homogeneous constraint languages.

Theorem 7.16. Let Γ be a homogeneous constraint language.
1. If 〈Γ〉 ∈ {Ei

j | i ∈ {0, 1}, j ≥ 2} or 〈Γ〉 = Inv(r2), then it is NP-hard to find
a feasible solution to W-Max Sol(Γ);

2. else if, 0 ∈ D and 〈Γ〉 ∈ {Di
j | i ∈ {0, 1}, j ≥ 2}, then W-Max Sol(Γ) is

poly-APX-complete;
3. else if,

〈Γ〉 ∈ {E1
1 , E0

1 , Inv(x + y + z), Inv(r3)} or

〈Γ〉 ∈ {Di
j | i ∈ {0, 1}, j ≥ 2} and 0 /∈ D,

then W-Max Sol(Γ) is APX-complete;
4. otherwise, 〈Γ〉 ∈ {D1

1, D
0
1} and W-Max Sol(Γ) is in PO.

Proof. We know from Theorem 3.3 that it is sufficient to consider constraint
languages that are relational clones.

1. It is proved in Lemmas 7.7 and 7.13 that it is NP-hard to find a feasible
solution to W-Max Sol(E1

2) and W-Max Sol(E0
2). NP-hardness of finding

a feasible solution to W-Max Sol(Inv(r2)) was proved in Lemma 7.15. The
result follows from the fact that E1

2 ⊆ E1
j and E0

2 ⊆ E0
j (2 ≤ j ≤ n).

2. Membership in poly-APX is proved in Lemma 7.5 and poly-APX-hardness
of W-Max Sol(D1

2) and W-Max Sol(D0
2) when 0 ∈ D is proved in Lem-

mas 7.6 and 7.14. The result follows from the fact that D1
2 ⊆ D1

j ⊆ D0
n and

D0
2 ⊆ D0

j ⊆ D0
n (2 ≤ j ≤ n).

3. It is proved in Lemmas 7.11 and 7.12 that W-Max Sol(Inv(x + y + z)) and
W-Max Sol(Inv(r3)) are APX-complete. It is proved in Lemma 7.9 that
W-Max Sol(E0

1) is in APX. APX-hardness for W-Max Sol(E1
1) is proved

in Lemma 7.10. For n ≥ 4 or n = 2 we have that E1
1 ⊆ E0

1 and it follows that
W-Max Sol(E0

1) and W-Max Sol(E1
1) are APX-complete. For n = 3,

there exists no E1
1 so APX-hardness for W-Max Sol(E0

1) must be proved
separately. Since E0

1 = Inv(s) it is easy to see that the proof of Lemma 7.10
gives APX-hardness for W-Max Sol(E0

1).
Membership in APX for W-Max Sol(D0

n) when 0 6∈ D is the first part of
Lemma 7.5. APX-hardness of W-Max Sol(D1

2) and W-Max Sol(D0
2) are

proved in Lemmas 7.6 and 7.14, respectively. Hence, APX-completeness of
W-Max Sol(D0

j ) and W-Max Sol(D1
j ) (2 ≤ j ≤ n) when 0 /∈ D follows

from the fact that D1
2 ⊆ D1

j ⊆ D0
n, D0

2 ⊆ D0
j ⊆ D0

n (2 ≤ j ≤ n).

4. It is proved in Lemma 7.8 that W-Max Sol(D0
1) is in PO and the result

follows from the fact that D1
1 ⊆ D0

1 .

As a direct consequence of the preceding theorem, we get that the class of injective
relations is a maximal tractable class for W-Max Sol(Γ). That is, if we add a single



34 GENERALISED MAX ONES

relation which is not an injective relation to the class of all injective relations, then
the problem is no longer in PO (unless P = NP).

Corollary 7.17. Let ΓD
I be the class of injective relations and R an arbitrary

relation which is not in ΓD
I . Then, W-Max Sol(ΓD

I ∪ {R}) is not in PO (unless P

= NP).
Proof. We know from the proof of Lemma 7.8 that D0

1 = Inv(t) = ΓD
I = 〈ID〉. It

follows from the lattices of homogeneous relational clones that either E0
1 ⊆ 〈D0

1∪{R}〉
or D0

2 ⊆ 〈D0
1 ∪ {R}〉. We know from Lemma 7.10 and Lemma 7.6 that both W-Max

Sol(E0
1) and W-Max Sol(D0

2) are APX-hard. Thus, W-Max Sol(D0
1 ∪ {R}) is

APX-hard and it follows that W-Max Sol(ΓD
I ∪ {R}) is not in PO (unless P =

NP).

8. Conclusions. We view this article as a first step towards a better understand-
ing of the approximability of non-Boolean W-Max Sol. The ultimate long-term goal
for this research is, of course, to completely classify the approximability for all finite
constraint languages. However, we expect this to be a hard problem since not even
a complete classification for the corresponding decision problem Csp is known. A
more manageable task would be to completely classify W-Max Sol for constraint
languages over small domains (say, of size 3 or 4). For size 3, this has already been
accomplished for Csp [10] and Max Csp [34]. Another obvious way to extend the
results of this paper would be to complete the classification of maximal constraint
languages over arbitrary finite domains, perhaps by proving Conjecture 131 from [47].

Our results combined with Khanna et al.’s [37] results for Boolean domains sug-
gest the following conjecture:

Conjecture. For every constraint language Γ, one of the following holds:
1. W-Max Sol(Γ) is in PO;
2. W-Max Sol(Γ) is APX-complete;
3. W-Max Sol(Γ) poly-APX-complete;
4. it is NP-hard to find a non-zero solution to W-Max Sol(Γ); or
5. it is NP-hard to find any solution to W-Max Sol(Γ).

If this conjecture is true, then there does not exist any constraint language Γ1

such that W-Max Sol(Γ1) has a polynomial-time approximation scheme (Ptas)
but W-Max Sol(Γ1) is not in PO. Natural such classes exist, however, if one
restricts the way constraints are applied to variables (instead of restricting the al-
lowed constraint types). Maximum Independent Set (and, equivalently, Max
Ones({(0, 0), (1, 0), (0, 1)})) is one example: the unrestricted problem is poly-APX-
complete and not approximable within O(n1−ǫ), ǫ > 0 (unless P=NP) [52], but the
problem restricted to planar instances admits a Ptas [4]. One may ask several ques-
tions in connection with this: is there a constraint language with the properties of
Γ1 above? For which constraint languages does W-Max Sol admit a Ptas on pla-
nar instances? Or more generally: under which restrictions on variable scopes does
W-Max Sol(Γ) admit a Ptas?

It is interesting to note that the applicability of the algebraic approach to W-
Max Sol demonstrated in this article also holds for the corresponding minimisation
problem W-Min Sol, that is, Theorem 3.3 still holds. The question whether the
algebraic approach can shed some new light on the intriguing approximability of
minimisation problems (as manifested, e.g., in [37]) is an interesting open question.

As mentioned in the introduction, it is known from [37] that the approximability
of the weighted and unweighted versions of (W)-Max Sol coincide for all Boolean
constraint languages. We remark that the same result holds for all constraint lan-
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guages considered in this article. This can be readily verified by observing that the
AP -reduction from W-Max Ones to Max Ones in the proof of Lemma 3.11 in [37]
easily generalises to arbitrary finite domains. Hence, we get an AP -reduction from
W-Max Sol to Max Sol. Furthermore, our tractability proofs are given for the
weighted version of the problem. In general, it is still an open problem if tractability
(i.e., membership in PO) of Max Sol(Γ) implies tractability of W-Max Sol(Γ) for
every constraint language Γ (the AP -reduction used above do not give us this result
as AP -reductions do not, in general, preserve membership in PO).
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