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Abstract: We study the computational complexity of auditing finite attributes
in databases allowing statistical queries. Given a database that supports sta-
tistical queries, the auditing problem is to check whether an attribute can be
completely determined or not from a given set of statistical information. Some
restricted cases of this problem have been investigated earlier, e.g. the com-
plexity of statistical sum queries is known by the work of Kleinberg et al. (J.
CSS 66 (2003) 244-253). We characterize all classes of statistical queries such
that the auditing problem is polynomial-time solvable. We also prove that
the problem is coNP-complete in all other cases under a plausible conjec-
ture on the complexity of constraint satisfaction problems (CSP). The char-
acterization is based on the complexity of certain CSP problems; the exact
complexity for such problems is known in many cases. This result is obtained
by exploiting connections between auditing and constraint satisfaction, and
using certain algebraic techniques. We also study a generalisation of the au-
diting problem where one asks if a set of statistical information imply that an
attribute is restricted to K or less different values. We characterize all classes
of polynomial-time solvable problems in this case, too.

Key words: Database, statistical query, auditing, constraint satisfaction prob-
lem, computational complexity



1 Introduction

A statistical database is a collection of data about which queries concerning
general properties of certain subsets of the data may be answered without
revealing ‘secret’ detailed information about the data. A well-known exam-
ple is databases allowing statistical sum queries. For instance, we may have
a database with attributes (name, age, salary) supporting queries of the form
‘give me the sum of salaries of all individuals whose age satisifes a certain
condition’. If we assume that the projection (name, age) is publicly available,
what measures suffice to protect the confidentiality of the salary information?
This suggests an obvious security problem: how to prevent or make difficult
the extraction of data about particular individuals from the answers to statis-
ticial queries. This is the statistical database security problem [1] and many
different approaches have been proposed for dealing with this problem. Ex-
amples include perturbation of the database itself [23], perturbation of query
answers [2] and query restriction [12]. An introduction to security issues in
connection with statistical databases can be found in [6]. Yet another ap-
proach is to audit the statistical queries in order to determine when enough
information has been given out so that compromise becomes possible [8] and
we focus on this approach in this article. Kleinberg et al. [20] have studied
the complexity of this problem for statistical sum queries. Formally speaking,
they studied the following problem:

INSTANCE: A set {zi,...,x,} of variables taking their values from the set
D ={0,1,...,p}, a family of subsets S = {S51,...,5,,} of {1,...,n}, and m
integers by, ..., by,.

QUESTION: Is there an ¢ < n such that in all 0-1-...-p solutions of the system
of equations > ;e x; = bj, j = 1,...,m, the variable z; has the same value.

For Boolean domains (where D = {0,1}), they showed that this problem is
coNP-complete. Our main result is a characterization of all classes of statisti-
cal queries (over finite attributes) having a tractable (i.e. in PTIME) auditing
problem. The algorithm for the tractable cases can also identify the values of
the compromised data efficiently. Our results also imply that, under a widely
believed conjecture, the problem is coNP-complete in all other cases — this
conjecture is, for instance, known to be true if we only consider attributes with
at most three values. The characterization is based on the computational com-
plexity of constraint satisfaction problems. Studying the complexity of CSPs
is a very active area of research so there exist concrete results for a wide range

of CSPs.

To exemplify the use of our results we study the auditing problem for a number
of statistical queries (such as MAX, MEAN and MEDIAN), and we completely
classify the problem of auditing Boolean attributes. We note that the compu-



tational complexity of auditing certain statistical queries (such as MAX, MIN
and mixed MAX/MIN) on infinite attributes has been performed by Chin [7].

We also study an extension of the auditing problem where the question is
whether the possible values of an attribute can be narrowed down to a set of
size at most K (for some K > 0) or not. Obviously, the usual auditing problem
corresponds to the case when K = 1. Solutions to the ordinary auditing prob-
lem can only be used for deciding whether a database is compromised or not.
One may argue that the absence of such a compromise cannot be regarded as
sufficiently ‘safe’ in practice; analogously, the concept of k-anonymity [27] has
been introduced in the context of data privacy protection. We characterize all
tractable cases of the extended auditing problem, too. We complement this
result with the following observation: For any domain size d > 3, and any K
with 1 < K < d—1, there exists a finite set T" of relations over {1,...,d} such
that K-auditing is a polynomial-time solvable problem, but (K + 1)-auditing
is coNP-complete.

The results were obtained by (1) exploiting a connection between the audit-
ing problem and the constraint satisfaction problem (CSP); and (2) using
powerful algebraic techniques for studying constraint satisfaction problems.
In the basic version of CSP, we are given a set of variables taking their val-
ues from a finite domain and a set of constraints (e.g. relations) restricting
the values different variables can simultaneously assume — the question is
whether the variables can be assigned values that are consistent with all con-
straints. Clearly, CSP has many connections with databases. For instance, the
conjunctive-query evaluation problem [21] is to find the predicate (or decide

whether it is non-empty) on variables y1,..., ¥, given by a formula of the
form (3xq)...(3x,) : C where C = p1(s1) A oo A 0g(Sq)s Ty vy Ty Yty o s U
are the variables, and g1, ..., g, are the predicates used in C. It is easy to see

that this problem has a close relationship to CSP.

Constraints are typically specified by relations, so CSP can be parameterised
by restricting the set of allowed relations which can be used as constraints.
The problem of determining the complexity of CSP for all possible param-
eter sets has attracted much attention (see, e.g., [4,10,13]). For the Boolean
(i.e., two-valued) case, the complexity of CSP has been successfully studied
from the above perspective [28]. It is widely acknowledged that, compared
to the Boolean case, one needs more advanced tools to make progress with
non-Boolean constraint satisfaction problems. Such tools based on algebra,
logic, and graph theory were developed in [4,5,9,13,16,17,21,22]. The algebraic
method [4,5,9,22], which has proved to be quite powerful, builds on the fact
that one can extract much information about the structure and the complexity
of restricted constraint satisfaction problems from knowing certain operations,
called polymorphisms, connected with the constraint relations. More exactly,
polymorphisms provide a convenient ‘dual’ language for describing relations



and, more importantly, they allow one to show that one constraint can be
simulated by other constraints without giving explicit constructions.

The paper is organized as follows. In Section 2, we give basic definitions and
discuss the algebraic method that will be used in the paper. In Section 3,
we show that the algebraic technique is applicable to the auditing problem.
Section 4 contains a proof of our main result and a number of examples are
collected in Section 5. Finally, Section 6 contains some conclusions about the
work we have done.

2 Preliminaries

Throughout the paper we use the standard correspondence between predicates
and relations: a relation consists of all tuples of values for which the corre-
sponding predicate holds. We will use the same symbol for a predicate and its
corresponding relation, since the meaning will always be clear from the con-
text. We will use R%n) to denote the set of all m-ary relations (or predicates)
over a fized finite set D, and Rp to denote the set U;,_; R%n). Note that unary
relations on D are simply the subsets of D.

2.1 Constraint satisfaction problems

Definition 2.1 A constraint language over D is an arbitrary subset of Rp.
The constraint satisfaction problem over the constraint language I' C Rp,
denoted CSP(I"), is the decision problem with instance I = (V, D,C), where

o V is a finite set of variables,

e D is a finite set of values (known as the domain) such that |D| > 1, and

e C is a finite set of constraints {C4,...,C,}, in which each constraint C; is
a pair (s;, 0;) with s; a list of variables of length m;, called the constraint
scope, and o; an m;-ary relation over the set D, belonging to ', called the
constraint relation.

The question is whether there exists a solution to I, that is, a function ¢ :
V' — D such that, for each constraint in C, the image of the constraint scope
is a member of the constraint relation. If I has a solution, then we say that I
1s satisfiable.

Given an instance I of CSP(T'), let Sol(I) = {¢ | ¥ is a solution to I}. We
define the size of a problem instance as the length of the encoding of all tuples
in all constraints. Note that this is a sound definition even if I' is infinite,



since an instance can only contain a finite number of different relations from
I'. We say that CSP(I") is tractable if CSP(T") is in PTIME. Different notions
of tractability of CSP(I") are used in the literature; our notion is sometimes
referred to as global tractability [22]. Throughout this paper we assume that
PTIME # NP.

Example 2.2 Let N and N’ be the following ternary relations on {0,1}:
N ={(1,0,0),(0,1,0),(0,0,1)}, N’ ={0,1}*\{(0,0,0),(1,1,1)}.

It is easy to see that the 1-IN-3-SAT and the NOT-ALL-EQUAL-SAT problems
(as defined in [28]) can be expressed as CSP({N}) and CSP({N'}), respec-
tively. Both problems are known to be NP-complete [28].

Example 2.3 Let #p be the binary disequality relation on any finite D. Then
CSP(#p) is exactly the GRAPH |D|-COLORING problem. It is known to be
tractable if |D| = 2 and NP-complete otherwise [14).

2.2 Statistical databases and the auditing problem

A statistical database B can be viewed as a set of records {ry,...,r,} where
each record r; is a list (aq,...,a,) of attribute values. The i:th position of
these tuples is denoted attribute A;. The domain D; of an attribute A; is the
set of values from which attribute A; draws its values. Throughout this article,
we assume that all domains that may be audited are finite. Loosely speaking,
a statistical query finds those records in the database that satisfy a certain
condition and returns the result of some test or computation on them (but
does not return the records themselves). The standard auditing problem is to
decide if the answers to such a set of statistical queries uniquely determine
the attribute value of some record. We will now define a slight generalisation
of the auditing problem in terms of constraint satisfaction:

Auprir(I)

INSTANCE: A tuple (I,v,k) where I = (V, D,C) is an instance of CSP(T'),
v €V and an integer 1 < k < |D|.

QUESTION: Is [{¢(v) | ¢ € Sol(I)}| < k?

We observe that AupIT(I") is in coNP for every choice of I'. Our definition of
AUDIT generalises the more standard notions of auditing in two ways: (1) we
put no restriction on the set I' of relations that can be used in queries; and (2)
we do not only consider the problem to check whether an attribute value is
completely revealed — we can also check whether an attribute value is narrowed
down to a set of specified size. Our definition of statistical queries is very
broad; the answer to a statistical query is an expression o(x;,, ..., x; ) where



the variables denote attributes in the selected records and p is a predicate. Let
C be a collection of such expressions and assume that variable v corresponds
to a certain attribute a in a certain record r. If v can take only one value when
considering all solutions to C, we know that r[a] must have this value, i.e. r[a]
is compromised. Our ultimate goal is to distinguish those queries that make
auditing tractable from those for which it is hard.

Example 2.4 We reconsider the example given in the introduction. Thus, we
have a statistical database with attributes (name, age, salary) supporting queries
of the form ‘give me the sum of salaries of all individuals whose age satisifes
a certain condition’. Assume a large number of such questions have been asked
and we have a knowledge-base containing information like ‘the sum of the
salaries of those being 35 years old is $2.200.000° and ‘the sum of the salaries
of those being older than 55 years is $50.000.000°. Obviously, this knowledge
can easily be cast into an AUDIT problem as defined above: for instance, the
first piece of information can be transformed into the constraint o(x1, ..., xy)
where we assume that there are k individuals being 35 years old, variable z;
denotes the salary of individual © and o is the relation

{(ar,...,ax) € D* | a; + ...+ a, = 2.200.000}.

We let K-AuDIT denote the subproblem of AuDIT such that (I,v,k) is an
instance of K-AuUDIT if and only if 0 < k¥ < K. The problem 1-AUDIT is con-
sequently equivalent to the ‘usual’ auditing problem. Given a CSP instance
I = (V,D,C) and a variable v € V' that has at most k different values under
all solutions to I, we say that v is k-compromised in I. We want to emphasise
that if I has no solution (which indicates that the answers to the statistical
queries are inconsistent), then the given K-AUDIT instance is a ‘yes’-instance.
We also would like to point out that there is a slight difference in our defi-
nition of auditing and the one by Kleinberg et al. [20] (which was presented
in the introduction). In their formulation, one checks if at least one variable
is compromised while we check whether a given variable is compromised or
not — there is an obvious Turing reduction from their problem to ours so our
problem is always at least as hard as theirs.

A problem closely related to auditing is the frozen wvariable problem FV-
CSP [3,11,19,24,29]. Here, we are given a CSP instance I and a variable v,
and the question is whether variable v has the same value in all models — if
I has no solution, then the FV-CSP instance is considered a ‘no’-instance.
The auditing problem and the frozen variable may appear to be very similar
but there are at least two very important differences that the reader should
be aware of: first, FV-CSP is complete for the complexity class DP while the
auditing problem is complete for coNP, and there exists sets of relations such
that FV-CSP is DP-, NP- or coNP-complete, or tractable [19]. Secondly,
for any set of relations I', the auditing problem over I' cannot be easier than



CSP(I") (due to the reduction presented in Proposition 2.5) but this is not
true for FV-CSP, though.

We will exploit complexity results for the CSP problem frequently in this
article. The following reduction is an important link between the complexity
of CSP and the complexity of auditing.

Proposition 2.5 For anyT and K > 1, CSP(T') is polynomial-time reducible
to the complement of K-AupIiT(T').

Proof. Given an instance I = (V, D,C) of CSP(I"), let v denote an variable
not in V" and consider the instance I’ = ((V U {v}, D,C),v,1) of AubIT(I').
If I has a solution, then (V U {v}, D,C) has a solution but v can be assigned
|D| > 1 different values so I’ is a ‘no’-instance. Otherwise, I’ is a ‘yes’-instance.
]

We demonstrate how to use Proposition 2.5 by considering the 1-AUDIT({ N })
problem (where N is defined as in Example 2.2). First, the fact that N(x,y, 2)
holds if and only if z+y+2 = 1 suggests that 1-AuDIT({ N'}) is a subproblem of
the sum query auditing problem. Secondly, CSP({/N}) is NP-complete which
implies that 1-AuDIT({ N}) is coNP-complete by Proposition 2.5. The coNP-
completeness of the sum query auditing problem [20] follows immediately.

2.3 Algebraic framework

In addition to predicates and relations we will also consider arbitrary oper-
ations on the set of values. We will use Ogl) to denote the set of all n-ary
operations on a set D (that is, the set of mappings f: D" — D), and Op to

denote the set U2, 055“.

Any operation on D can be extended in a standard way to an operation on
tuples over D, as follows. For any operation f € Ogl), and any collection of
tuples dy, ds, .. .,d, € D™, where a@; = (a@;(1),...,d;(m)),1=1,...,n, define

Definition 2.6 For any relation o € R({,”’, and any operation f € Og”), if
f(@y,...,a,) € o forall a,...,d, € o, then o is said to be invariant under f,
and f is called a polymorphism of p.

The set of all relations that are invariant under each operation from some set
C' C Op will be denoted Inv(C'). The set of all operations that are polymor-
phisms of every relation from some set I' C Rp will be denoted Pol(T"). By



Pol,,(I") we will denote the set of all n-ary members of Pol(I'). We remark that
the operators Inv and Pol form a Galois correspondence between Rp and Op
(see Proposition 1.1.14 in [25]).

It is easy to see that CSP(I") can be expressed as a logical problem as follows:
is it true that a first-order formula p1(s1) A ... A 04(8,), where each p; is an
atomic formula involving a predicate from I'; is satisfiable?

Definition 2.7 For any set I' C Rp the set (I') consists of all predicates that
can be expressed using

(1) predicates from I' U {=p},
(2) conjunction,
(3) existential quantification.

A relation belongs to (I') if and only if it can be represented as the projection
of the set of all solutions to some CSP(I')-instance onto some subset of vari-
ables [9,22]. Stated differently, o € (I') if and only if ¢ can be expressed by a
conjunctive query over I' U {=}. Intuitively, constraints using relations from
(I') are exactly those which can be ‘simulated’ by constraints using relations
in I'. In fact, (I') can be characterized in a number of ways [25], and one of
them is most important for our purposes.

Theorem 2.8 ([25]) For every set I' C Rp, (I') = Inv(Pol(T")).

Theorem 2.8 is the corner-stone of the algebraic method, since it shows that
the expressive power of constraints is determined by polymorphisms. In par-
ticular, in order to show that a relation p can be expressed by relations in I,
one does not have to give an explicit construction, but instead one can show
that o is invariant under all polymorphisms of I', which often turns out to be
significantly easier. An operation ¢! : D™ — D is called the i-th n-ary projec-
tionif €' (a1,...,a;,...,a,) = a; for all ay, ..., a, € D. It is easy to check that
any projection is a polymorphism of every relation. We will use the following
result from [26].

Proposition 2.9 Let I" be a set of relations on {0,1}. Either Pol(I") consists
of all projections (and then Inv(Pol(I')) = Ryoa13), or else Pol(I") contains at
least one of the following 7 operations:

(a) the constant operation 0,

(b) the constant operation 1,

(c) the negation operation —x,

(d) the disjunction operation x Vv,

(e) the conjunction operation x Ay,

(f) the majority operation (xV y) A (zV z)A(yV z),
(g9) the affine operation x —y+ z (mod 2).



Example 2.10 Reconsider the relation N from Example 2.2. It is easy to
check that none of the 7 operations from Proposition 2.9 is a polymorphism of
N. Hence, Pol({N}) consists of all projections and ({N}) = Ryo 13-

Example 2.10 illustrates how Theorem 2.8 allows one to make use of known
algebraic results. A number of results on the complexity of constraint satisfac-
tion problems have been obtained via the algebraic approach (e.g., [4,5,9,22]).
For example, it is well-known that Schaefer’s Dichotomy Theorem [28], when
appropriately re-stated, easily follows from well-known algebraic results [26].

Theorem 2.11 ([28]) For any set I' C Ryo1y, CSP(I') is tractable when
Pol(T") contains at least one of the operations (a)-(b) or (d)-(g) from Proposi-
tion 2.9. In all other cases CSP(I") is NP-complete.

3 Algebraic results

In this section, we prove that the complexity of K-AupiT(I') is determined
by the polymorphisms of I' which implies that the algebraic technique is ap-
plicable. A consequence is that the algebraic techniques are applicable to the
unrestricted AuDIT(I") problem, too, since this problem is |D|-AubiT(I"). We
also show how the complexity of K-AuUDIT(I') depends on the set Poly(I") of
unary polymorphisms of I" and on the complexity of CSP(T).

Lemma 3.1 Let I' C Rp and g € (I') for some o € Rp. Then, the problems
K-AupiT(I'U{o}) and K-AupiT(I') are polynomial-time equivalent.

Proof. By the remark after Definition 2.7, each occurence of p in every in-
stance I of CSP(I"U{p}) can be replaced by the corresponding collection
of constraints involving only relations from I' U {=p} (with possible renam-
ing of variables to avoid name clashes). The equality constraint can then be
removed by identifying variables. It is easy to see that transforming an ar-
bitrary instance (/,v) of K-AuDIT(I' U{p}) in the same way and keeping v
the same gives us a polynomial-time reduction from K-AupiT(I'U {o}) to
K-AupIt(I'). The reduction in the other direction is trivial. ]

Theorem 3.2 Arbitrarily choose I'1,I'y C Rp and assume that I'y is finite.
If Pol(I'y) C Pol(T'y) then K-AupIT(I'1) is polynomial-time reducible to K-
Aupir(Iy).

Proof. Follows from Lemma 3.1, Theorem 2.8, and the obvious fact that the
operator Inv is antimonotone (i.e. inclusion-reversing). n
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Theorem 3.2 shows that the complexity of K-AuDIT(I") is determined by the
polymorphisms of I'. The unary polymorphisms are of special interest as is
suggested by the following lemma.

Lemma 3.3 If ¢ is a solution to an instance I of CSP(I") then so is fo for
every f € Poly(T).

Proof. Every relation ¢ € I' is invariant under f, so (ai,...,a;) € o implies
(f(ay),..., f(ax)) € 0. Thus, fp is a solution whenever ¢ is a solution. "

It follows that if @(z) = a for some variable z in [ then, for every b € D
with b = f(a) for some f € Pol;(I"), there is another solution that maps z to
b. This shows that unary polymorphisms are important in the recognition of
compromised variables. For example, if f(d) # d for some f € Pol{(T") then
d cannot be the value taken by a l-compromised variable in an instance of

CSP(D).

To be able to state the results in forthcoming sections, we need some notation
and some basic results. Let C denote the relation on D defined by the following
rule: a C b if and only if f(a) = b for some f € Pol;(I"). It is easy to see that
C is a quasi-order (i.e. reflexive and transitive) since Poli(I") is closed under
composition and contains the identity operation. It is well known and easy to
show that the relation #, such that a 6 b if and only if a E b and b C a, is an
equivalence relation on D. Let [a] denote the f-class containing a. It is also
well known and easy to show that the relation <, on the set of all #-classes,
such that [a] < [b] if and only if a C b, is well-defined and is a partial order. Let
P denote the corresponding poset. We will often omit 6 and call the elements
of P classes. The intuition behind the poset P is simple: if, in some instance,
a variable can take some value a in a solution then by Lemma 3.3 it also
takes, in some other solution, any other value lying in the same class as a or
in a class that is above [a] in P. In particular, values taken by 1-compromised
variables must belong to maximal classes in P that are one-element. We have
the following results:

Lemma 3.4 Let I be an arbitrary instance of CSP(I') and {t,,t2} € T for
some class T in P. If there exists a solution ¢ to I such that p(v) = t1, then
there exists another solution ¢’ such that ¢'(v) = to.

Proof. By the definition of P and T, there is f € Pol;(I") such that f(¢;) = ts.
Therefore, f is a solution to I by Proposition 2.5 and fp(v) = ts. n

Lemma 3.5 For every class T in P, the unary relation Ry = \{T" | T <T"}
is in (T').

11



Proof. Let t' = f(ty,...,t,) for some f € Pol,(I') and t,...,t, € Rr. By
the definition of Rr, there exist fi...f, € Pol{(I") such that f;(t) = t; for
some t € T. It is easy to see that the function f'(z) = f(fi(x),..., fu(z)) is
a member of Pol;(T') and f’(¢t) = t’. By the definition of P, we infer that ¢’
belongs to some class 7" such that 7" < T” in P, that is, ' € Rr. Therefore,
Ry € Inv(Pol(T")), and, by Theorem 2.8, the result follows. "

A consequence of Lemma 3.5 is the following:

Corollary 3.6 If T is a mazimal class in P, then T € (T').

4 The AUDIT problem

In this section, we characterize all T' such that K-AupiT(I') (for fixed K)
and AupIT(I") is tractable. Note that Proposition 2.5 implies that any such
characterization must, for all problems AuUDIT(I'), contain the tractability
condition for the corresponding CSP ().

Let K be fixed and let I' be an arbitrary set of relations over some finite
domain D. Let the partial order P be defined as in Section 3 and assume P
contains the classes T1,...,T,. For every T' € P, define U(T) = Yy |T"|
and, for every 1 < k < K, let

Z,={T eP|UT) <k}

We note that Zj, is always non-empty. If Zx = {Z;,..., Z,,}, thenlet zq,. .., 2,
denote arbitrarily chosen elements in 71, ..., Z,,, respectively, and let ['; = T"'U
{{zi}}. The exact choice of z; € Z; is not important since if CSP(I" U {{z;}})
is tractable, then CSP(I" U {{z/}}) is tractable for every 2/ € Z; (which follows
from Lemma 3.3). We also note that Z, C Zx whenever k£ < K.

Next, we present a transformation on CSP instances that will facilitate the
forthcoming proof. Loosely speaking, this transformation replaces all unary
constraints of the type (v, ¢;) with the unary constraints (v, 02) and, moreover,
forces the variables affected by this change to take the same value. Let I =
(V, D, C) be an arbitrary instance of CSP(I"), and let g1, 0o be unary relations
over D. We construct the CSP instance I[g; — 2] as follows:

(1) introduce a new variable v and a constraint (v, g3),
(2) for every constraint of the form (z, 0;) in C,
e remove this constraint from C,
e identify all occurences of x in C' (if they exist) with v.

12



Input: An instance (/,v, k) of K-Aupit(I').
Output: ‘Yes’ if v is k-compromised in I and ‘No’ otherwise.

(1) if A # 0 then answer ‘no’ and stop
(2) if 3,es1Z;| > k then answer ‘no’ else answer ‘yes’

Fig. 1. Algorithm for solving K-AupIiT(I")
Clearly, the resulting instance is an instance of CSP((I"' — {01 }) U {02}).

Theorem 4.1 K-AupiT(l') is tractable if and only if CSP(I;) is tractable
for all 1 < i < m. Furthermore, K-AuDIT(I") is coNP-complete if CSP(I")
is NP-complete or there exists some I';, 1 < i < m, such that CSP(T;) is
NP-complete.

Proof. To prove that K-AupIiT(I') is tractable if CSP(I;) is tractable for all
1 <17 < m, we begin by defining

Wy ={T € 2, | |T| + U(T) > k}

for 1 < k < K and we assume that I = ((V,D,C),v,k) is an arbitrary
instance of K-AupIT(I'), i.e. & < K. For each j with Z; € Z, let I; =
(V.D,C U{(v,{z;})}) and define the sets A and B such that

A ={Z; e Wi | Sol(I;) # 0}

and

B={Z; € Z,\ Wi | Sol(I;) # 0}.

We claim that the algorithm in Fig. 1 solves I in polynomial time. By assump-
tion, CSP(I';), 1 < ¢ < m, are tractable problems so the algorithm runs in
polynomial time. The correctness of line (1) follows from the fact that if I; is
satisfiable, then v can take |Z;| + U(Z;) > k different values. If the inequality
in line (2) of the algorithm holds then, obviously, the answer is ‘no’. Assume
that it does not hold and, in some solution to I, v takes a value in some class
T & Z;.. Choose T to be maximal with this property. By the definition of Z,
all maximal classes in P belongs to Z;. Hence, there are classes in P above
T, and they all belong to Zj., by the choice of T'. Due to the test in line (1) of
the algorithm, all classes above T' belong to Zj \ Wk, and, since T' ¢ Zj,, we
have U(T') > k. Now, by Lemma 3.3 and by the definition of P, it follows that
v can take all values from classes above T'. But then the inequality in line (2)
of the algorithm holds, contrary to our assumption. This means that after the
check in line (1) and provided the inequality does not hold, the values taken
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by v (if there exists any) belong to U(Z) \ Wk). Now correctness of line (2)
follows from the facts that the classes in Zj \ Wj, are pairwise disjoint, and
that if I; is satisfiable then v can take any of the values in Z;.

We now prove the necessity of the condition. Assume, without loss of gener-
ality, that CSP(I') is intractable. We consider two cases:

Z, is maximal. We make a polynomial-time reduction from CSP(I';) to CSP(I)
which, by Proposition 2.5, implies intractability of K-AupiT(I"). We observe
that Z; € (I') by Corollary 3.6. Let I be an arbitrary instance of CSP(I'y) and
let I' = I[{z1} — Z] and assume variable v is introduced by the transforma-
tion. If I is not satisfiable, then I is not satisfiable since {z;} C Z;. Otherwise,
p(v) = z € Z; for some ¢ € Sol(I') and I has a solution by Lemma 3.4.

7 is not maximal. We make a polynomial-time reduction from CSP(I';) to
the complement of K-AupIT(I'). We begin by defining the unary relation
R = U{T | Z; < T} and we note that R # Z; since Z; is not maximal.
By Lemma 3.5, R € (I'), and by Lemma 3.1, we may assume that R is in
I'. Let I be an arbitrary instance of CSP(I'y) and let I’ = I[{z;} — R| and
assume v to be the variable introduced by the transformation. Map I to the
instance (I',v,|R| — |Z1]) of K-AuDIT(I') and let k = |R| — |Z;|. Note that
0 < k < K by the choice of elements in Zx. We show that I is not satisfiable
if and only if v is k-compromised in I’. If v is k-compromised in I’ then v
cannot be assigned any value in Z; (and hence not z;) since this would imply
that v could take |R| different values. We conclude that I is not satisfiable. If
v is not k-compromised in I’, then p(v) = z € Z; for some ¢ € Sol(I'). By
Lemma 3.4, I has a solution.

The second part of the theorem holds since the reductions above prove coNP-
completeness of K-AuDIT(I') whenever CSP(I") is NP-complete or CSP(T)
is NP-complete for some 1. "

We note that when K = |D|, i.e. when we do not assume K to be a fixed
constant, the previous theorem can be modified to yield the next result.

Corollary 4.2 AupIT(I') is a tractable problem if and only if CSP(I' U {{d}})
is tractable for all d € D. Furthermore, AUDIT(I") is coNP-complete if there
exists some d € D such that CSP(I' U {{d}}) is NP-complete.

The next corollary says that, whenever K-AupIT(I") is tractable, not only
can the compromised variables be recognized efficiently, but also the possible
values for them can be found in polynomial time.

Corollary 4.3 ChooseT" such that K-AuDiT(I") is tractable. Then, the values
for all k-compromised, k < K wvariables in any instance of K-AupIiT(I') can
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be found in polynomial time.

Proof. Assume the algorithm in Fig. 1 has indicated that variable v is k-
compromised. Then, {p(v) | ¢ € Sol(I)} = U B. [

Note that if the conjecture that every CSP(I") is either tractable or NP-
complete holds (and there is strong evidence that it does [4,5,9,13,18,22,28]),
then Theorem 4.1 also gives a complete characterization of the coNP-complete
subproblems of K-AuDIT(I'). It was proved in [4] that, for |D| < 3, this
conjecture is true and that there exists a polynomial-time algorithm which
determines, for a given finite I' C Rp, whether CSP(I") is tractable or NP-
complete. We get the following dichotomy result.

Corollary 4.4 Let |D| < 3. Then, for every I' C Rp and 1 < K < 3, K-
AupiT(I) is either tractable or coNP-complete. Moreover, there is a polynomial-

time algorithm which determines, for a given finite I' C Rp, into which case
the problem K-AupiT(I") falls.

A natural question at this point is whether there exists problems such that
K-AuDIT is tractable and (K +1)-AUDIT is computationally hard. We answer
this question affirmatively below.

Theorem 4.5 For any D such that |D| > 3, and any K with 1 < K < |D|-1,
there ezist a finite set I' C Rp such that K-AuDIT(T') is tractable, but (K+1)-
AupIiT(T') is coNP-complete.

Proof. Assume D = {0,...,l—1} and 1 < K <[l—1. Let I' = {1, 02} where
the relations g, (l-ary) and g (ternary) are defined as follows:

o (r1,...,x;) € oy ifand only if 1) 21 =0,...,2x = K — 1,21 = K, and
2) either g0 =+ =2, € {0,... K} or (xgi2...,2;) is a permutation of
{K+1...,1—1};

o (zy1,x9,23) € poif and only if either both 21 # x9 and x5 € {K+1,...,[—1},
or else 1, x5, 23 € {0,... K}

We will show that I' has the required property. First, we compute Pol;(T).
Take an arbitrary f € Pol;(I"). Since f is a polymorphism of ¢, and the tuple
(0,1,...,1 — 1) belongs to o1, the tuple (f(0), f(1),...,f(l — 1)) must also
belong to p;. On the other hand, it is easy to check that any unary operation
f with this property is polymorphism of both ¢; and go. Hence, Pol; (I") consists
of all unary operations with the above property.

Then, the poset P has the following structure: it has K + 2 classes, where
the classes {0}, ..., {K} are maximal, and {K +1,...,l— 1} is the only class
below them all. Note that Zj consists precisely of the maximal classes in P.
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Fix f € Pol(I') such that f(K +1) = ---f(l —1) = 0 and let f(I') =
{f(01), f(02)} where f(0;) = {f(a) | @ € a:}, = 1,2. By [9,22], CSP(T)
is polynomial-time equivalent to CSP(f(I")). Note that, for 1 <i < K + 1,
f(T;) is a set of relations on {0,... K}. It is straightforward to verify that
that the binary operation min(z,y) on {0,..., K} is a polymorphism of every
f(I;). Hence, CSP(f(I;)) is tractable by [9,22]. This implies that CSP(I';)
is tractable for all 1 < ¢ < K + 1, and thus K-AupIT(I') is tractable by
Theorem 4.1.

It remains to prove that (K + 1)-AuDIT(I") is coNP-complete. Note that the
class {K +1,...,1— 1} belongs to Zx, 1. Hence, one of the sets I'; that needs
to be checked in Theorem 4.1 is T U{{a}} where a € {K +2,...,1—1}. Note
that the disequality relation #p on D belongs to (I'U {{a}}), since

x 7éD Y= 32(@2<x’y72) Nz = CL).

It is obvious that CSP(#p) corresponds precisely to the GRAPH | D|-COLORING
problem so it is NP-complete. Now, the problem (K +1)-AubpiT(I") is coNP-
complete by Lemma 3.1 and Theorem 4.1. "

5 Examples

As concrete examples, we will study the complexity of auditing a number of
different statistical queries and give a complete classification for the Boolean
auditing problem. Most examples of statistical queries are taken from [6]. We
note that some of the statistical queries studied here have been considered by
Chin [7]; the main difference is that he considers infinite attributes.

Note that whenever we are considering Boolean domains, it is sufficient to
consider the 1-auditing problem. Before we begin, define the relation sumj C
{0,1}3 such that (x,y,2) €sum; if and only if x + y + 2z = 1. The example
at the end of Subsection 2.2 implies coNP-completeness of 1-AUDIT({SUM}}).

Max and Min queries

The results by Kleinberg et al. [20] have shown that the 1-auditing problem for
MAX queries over real-valued data is tractable. We complement this result by
showing that the K-auditing problem is tractable over arbitrary finite domains
D ={1,...,d}. Define the relation MAX!, C D™ such that

(x1,...,Zm) € MAX!, if and only if MAX{z1,...,2,} =t
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Assume that ' consists of {MAX!, | m > 0 and 1 < ¢ < d} together with
the unary relations {1},...,{d}. If CSP(I) is tractable, then K-AupIT(I') is
tractable by Corollary 4.2. To prove tractability of CSP(T"), we note that if the
binary max operation is in Pol(T"), then CSP(I") is tractable [9,22]. The unary
relations in I' are obviously invariant under max since it is an idempotent
function. Now, arbitrarily choose a function MAX!, € T and arbitrarily choose

two tuples (z1,...,2n), (z],...,2),) in MAX! . If MAX! is invariant under

rYm

max, then the tuple (max(z1,2}), ..., max(z,,, 2, )) must be in MAX! . This
is obviously true since the largest element among 1, ..., z,, 2}, ..., 2, have

value t.

By using similar techniques, it follows that auditing MIN queries is also tractable.
However, if MAX and MIN queries are mixed, then auditing is hard: Consider
the Boolean domain {0, 1}. The MAX3(z,y, z) relation holds if and only if the
Boolean clause (x V y V z) is satisfied. Similarly, MIN)(z,y, z) holds if and
only if the clause (—x V =y V —z2) is satisfied. Consequently, Theorem 4.1 and
Theorem 2.11 imply coNP-completeness of 1-AUDIT({MAX:, MIN}).

Sum queries modulo |D|

We know that the auditing problem for sum queries is coNP-complete, cf.
Kleinberg et al [20]. We will now show that the K-auditing problem is tractable
if we consider sum queries modulo |D|. Assume D = {0,...,|D|— 1}. Define
the relation MsuM!, C D™ such that

(1,...,Ty) € MSUML, if and only if 21 + ... + 2, =t (mod | D).

Assume that T' consists of {MSUM!, | m > 0 and ¢ > 0} together with the
unary relations {0},...,{|D| — 1}. To prove tractability of K-AupiT(I'), we
note that (D, +) is an abelian group and tractability of CSP(I") (and conse-
quently K-AupIT(I")) follows from [15]. The tractability of CSP(I") can also
be proved by noting that the affine operation M(x,y,2) = x —y + 2z is in
Pol(T") and using results from [9,22].

Mean queries
We will study the complexity of auditing three different mean queries. Let S =
(ay,...,a,) be a finite sequence of real numbers and define the arithmetical
mean (AMEAN(S)), the geometrical mean (GMEAN(S)) and the harmonic mean
(HMEAN(S)) as

1 n n 1/n 1
— a;, a; and - ,
n ; <z:l_[1 ) (1/n) X0, 1/a;

respectively. For every o € R and m > 0, we define the relation AMEANS C
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D™ such that

(x1,...,2m) € AMEAN® if and only if AMEAN(z1,...,2,) = «

and relations GMEAN;, and HMEAN; analogously.

We begin by considering AMEAN on the domain D = {0,1}. It is obvious
that AMEAN;,/ 3 =sUM; and coNP-completeness of 1-auditing AMEAN queries
follows immediately. In the case of GMEAN, we will consider two examples
with different domains leading to different complexities. First, let D = {0, 1}
and note that GMEAN(ay,...,a,) € {0,1} for all choices of ay,...,a,. The
relation GMEAN! (ay,...,a,) holds if and only if a; = ... = a, = 1 while
GMEANY (ay, ..., a,) holds if and only if at least one a; = 0. Interpreting these
relations as Boolean clauses give us the following: GMEAN! (a1,...,a,) <
aiA...Aa, and GMEAN? (ay,...,a,) < (ma; V...V —a,). Thus, the GMEAN!,
relations together with the unary relations {0} and {1} is contained in the
Horn fragment of propositional logic (and is consequently tractable). Corol-
lary 4.2 implies tractability of the 1-auditing problem. Let us now consider
the domain D = {1,2} instead. Let a = /2. It is easy to see that the relation
GMEANY is isomorphic to the relation SUM; under the isomorphism f(1) = 0
and f(2) = 1 and coNP-completeness of 1-auditing follows. Since HMEAN
is not defined for domains containing zero, we continue using the domain
D = {1,2}. It is easy to see that HMEANY* is isomorphic to suM; under the
same isomorphism f so coNP-completeness follows in this case, too.

Median queries

Define the relation MEDIAN! C D™ such that (xq,...,x,,) € MEDIAN! if and
only if the [m/2]th largest element in (x1,...,z,) equals t. Let us consider
the case D = {0,1}; then, MEDIANS = {(0,0,0),(1,0,0),(0,1,0),(0,0,1)}
and MEDIANS = {(0,1,1),(1,0,1),(1,1,0), (1,1,1)}. By Schaefer’s dichotomy
result (Theorem 2.11), CSP({MEDIAN},MEDIAN3}) is NP-complete and the
l-auditing problem for median queries in coNP-complete by Theorem 4.1.

Boolean attributes
We give a complete classification of the 1-auditing problem when the domain
is Boolean, i.e. |[D| = 2. Let I' C Ry 13. We claim that

(1) if Pol(I") contains both constant operations, 0 and 1, or at least one of the
operations (d)-(g) from Proposition 2.9 then 1-AupIT(I") is tractable;
(2) otherwise 1-AuDIT(I") is coNP-complete.

Before the proof, we observe that the conditions above can be verified effi-
ciently for any finite I' € Ry ;3. We prove the two cases as follows:
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1) If Pol(I') contains both constants, then every instance of CSP(()I') has
the two solutions where all variables are assigned the same value (0 or 1),
and so no variable can ever be 1-compromised. In cases (d)-(g), the prob-
lem CSP(I"U{{0},{1}}) is tractable by Theorem 2.11, and tractability of
1-Aupit follows from Corollary 4.2.

2) Assume that 1 € Pol(I'), 0 ¢ Pol(I") and no operation from cases (d)-(g)
is in Pol(T"). In this case, CSP(I") is tractable by Theorem 2.11. We have
Pol;(I") = {id{o1},1}. Therefore the quasi-order defined before Theorem 4.1
satisfies 0 C 1 and 1 Z 0, and we have Z; = {{0},{1}}. It follows from
Theorem 2.11 that CSP(I" U {{0}}) is NP-complete since the relation {0} is
not invariant under constant operation 1. Consequently, Theorem 4.1 implies
that 1-AupIT(I") is coNP-complete.

In the remaining cases, CSP(I') is NP-complete by Theorem 2.11 and we
conclude that 1-AupIT(I") is coNP-complete by Theorem 4.1.

6 Conclusion

We have studied the auditing problem for databases supporting statistical
queries. Under the assumption that the attributes are finite, we have identified
all classes of statistical queries having a tractable auditing problem. We have
also proved that the problem is coNP-complete in all other cases if a certain
conjecture is true. The results were obtained by exploiting connections between
auditing and constraint satisfaction, and using certain algebraic techniques.
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