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AbstratAn instane of the maximum onstraint satisfation problem (Max CSP) is a �niteolletion of onstraints on a set of variables, and the goal is to assign values tothe variables that maximises the number of satis�ed onstraints. Max CSP ap-tures many well-known problems (suh as Max k-SAT and Max Cut) and isonsequently NP-hard. Thus, it is natural to study how restritions on the allowedonstraint types (or onstraint language) a�et the omplexity and approximabil-ity of Max CSP. The PCP theorem is equivalent to the existene of a onstraintlanguage for whih Max CSP has a hard gap at loation 1, i.e. it is NP-hard todistinguish between satis�able instanes and instanes where at most some onstantfration of the onstraints are satis�able. All onstraint languages, for whih theCSP problem (i.e., the problem of deiding whether all onstraints an be satis�ed)is urrently known to be NP-hard, have a ertain algebrai property. We prove thatany onstraint language with this algebrai property makes Max CSP have a hardgap at loation 1 whih, in partiular, implies that suh problems annot have aPTAS unless P = NP. We then apply this result toMax CSP restrited to a singleonstraint type; this lass of problems ontains, for instane, Max Cut and MaxDiCut. Assuming P 6= NP, we show that suh problems do not admit PTAS ex-ept in some trivial ases. Our results hold even if the number of ourrenes of eahvariable is bounded by a onstant. Finally, we give some appliations of our results.Key words: onstraint satisfation, optimisation, approximability, universalalgebra, omputational omplexity, dihotomy1991 MSC: 68Q17, 68Q25, 90C27Preprint submitted to Elsevier Siene 25 February 2010



1 IntrodutionMany ombinatorial optimisation problems are NP-hard so there has been agreat interest in onstruting approximation algorithms for suh problems. Forsome optimisation problems, there exist powerful approximation algorithmsknown as polynomial-time approximation shemes (PTAS). An optimisationproblem Π has a PTAS A if, for any �xed rational c > 1 and for any instane
I of Π, A(I, c) returns a c-approximate (i.e., within c of optimum) solutionin time polynomial in |I|. There are some well-known NP-hard optimisationproblems that have the highly desirable property of admitting a PTAS: exam-ples inlude Knapsak [33℄, Eulidean Tsp [2℄, and Independent Setrestrited to planar graphs [6,46℄. It is also well-known that a large number ofoptimisation problems do not admit PTAS unless some unexpeted ollapseof omplexity lasses ours. For instane, problems like Max k-SAT [4℄ andIndependent Set [5℄ do not admit a PTAS unless P = NP. We note that if
Π is a problem that does not admit a PTAS, then there exists a onstant c > 1suh that Π annot be approximated within c in polynomial time. Throughoutthe paper, we assume that P 6= NP.The onstraint satisfation problem (CSP) [53℄ and its optimisation variantshave played an important role in researh on approximability. For example, itis well known that the famous PCP theorem has an equivalent reformulationin terms of inapproximability of some CSP [4,26,56℄, and the reent ombi-natorial proof of this theorem [26℄ deals entirely with CSPs. Other importantexamples inlude Håstad's �rst optimal inapproximability results [32℄ and thework around the unique games onjeture (UGC) of Khot [16,39,40,52℄.We will fous on a lass of optimisation problems known as the maximumonstraint satisfation problem (Max CSP). The most well-known examplesin this lass probably are Max k-SAT and Max Cut.We are now ready to formally de�ne our problem. Let D be a �nite set. Asubset R ⊆ Dn is a relation and n is the arity of R. Let R(k)

D be the set of all
k-ary relations on D and let RD = ∪∞

i=1R
(i)
D . A onstraint language is a �nitesubset of RD.De�nition 1 (CSP(Γ)) The onstraint satisfation problem over the on-
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straint language Γ, denoted CSP(Γ), is de�ned to be the deision problemwith instane (V, C), where
• V is a set of variables, and
• C is a olletion of onstraints {C1, . . . , Cq}, in whih eah onstraint Ci isa pair (Ri, si) with si a list of variables of length ni, alled the onstraintsope, and Ri ∈ Γ is an ni-ary relation in RD, alled the onstraint relation.The question is whether there exists an assignment s : V → D whih satis�esall onstraints in C or not. A onstraint (Ri, (vi1 , vi2, . . . , vini

)) ∈ C is satis�edby an assignment s if the image of the onstraint sope is a member of theonstraint relation, i.e., if (s(vi1), s(vi2), . . . , s(vini
)) ∈ Ri.Many ombinatorial problems are subsumed by the CSP framework; examplesinlude problems in graph theory [31℄, ombinatorial optimisation [38℄, andomputational learning [23℄. We refer the reader to [18℄ for an introdution tothis framework.For a onstraint language Γ ⊆ RD, the optimisation problemMax CSP(Γ) isde�ned as follows:De�nition 2 (Max CSP(Γ)) Max CSP(Γ) is de�ned to be the optimisationproblem withInstane: An instane (V, C) of CSP(Γ).Solution: An assignment s : V → D to the variables.Measure: Number of onstraints in C satis�ed by the assignment s.We use olletions of onstraints instead of just sets of onstraints as we do nothave any weights in our de�nition of Max CSP. Some of our redutions willmake use of opies of one onstraint to simulate something whih resemblesweights. We hoose to use olletions instead of weights beause boundedourrene restritions are easier to explain in the olletion setting. Notethat we prove our hardness results in this restrited setting without weightsand with a onstant bound on the number of ourrenes of eah variable.Throughout the artile,Max CSP(Γ)-k will denote the problemMax CSP(Γ)restrited to instanes with the number of ourrenes of eah variable isbounded by k. For our hardness results we will write that Max CSP(Γ)-Bis hard (in some sense) to denote that there is a k suh that Max CSP(Γ)-kis hard in this sense. If a variable ours t times in a onstraint whih ap-pears s times in an instane, then this would ontribute t · s to the number ofourrenes of that variable in the instane.Example 3 Given a (multi)graph G = (V,E), the Max k-Cut problem,

k ≥ 2, is the problem of maximising |E ′|, E ′ ⊆ E, suh that the subgraph3



G′ = (V,E ′) is k-olourable. For k = 2, this problem is known simply asMax Cut. The problem Max k-Cut is known to be APX-omplete for any
k (it is Problem GT33 in [6℄), and so has no PTAS. Let Nk denote the binarydisequality relation on {0, 1, . . . , k−1}, k ≥ 2, that is, (x, y) ∈ Nk ⇐⇒ x 6= y.To see that Max CSP({Nk}) is preisely Max k-Cut, think of verties of agiven graph as of variables, and apply the relation to every pair of variables x, ysuh that (x, y) is an edge in the graph, with the orresponding multipliity.Most of the early results on the omplexity and approximability of CSPand Max CSP were restrited to the Boolean ase, i.e. when D = {0, 1}.For instane, Shaefer [54℄ haraterised the omplexity of CSP(Γ) for all
Γ over the Boolean domain, the approximability of Max CSP(Γ) for all Γover the Boolean domain have also been determined [20,21,38℄. It has beennoted that the study of non-Boolean CSP seems to give a better understand-ing (when ompared with Boolean CSP) of what makes CSP easy or hard:it appears that many observations made on Boolean CSP are speial asesof more general phenomena. Reently, there has been some major progressin the understanding of non-Boolean CSP: Bulatov has provided a ompleteomplexity lassi�ation of the CSP problem over a three-element domain[10℄ and also given a lassi�ation of onstraint languages that ontain allunary relations [8℄. Corresponding results for Max CSP have been obtainedby Jonsson et al. [36℄ and Deineko et al. [24℄.We ontinue this line of researh by studying two aspets of non-BooleanMaxCSP. The omplexity of CSP(Γ) is not known for all onstraint languages Γ� it is in fat a major open question [13,29℄. However, the piture is notompletely unknown sine the omplexity of CSP(Γ) has been settled formany onstraint languages [10,11,13,14,34,35℄.It has been onjetured [29℄ that for all onstraint languages Γ, CSP(Γ) iseither in P or is NP-omplete, and the re�ned onjeture [13℄ (whih we referto as the �algebrai CSP Conjeture�, see �3.2 for details) also desribes thedividing line between the two ases. Reall that if P 6= NP, then Ladner'sTheorem [44℄ states that there are problems of intermediate omplexity, i.e.,there are problems in NP that are not in P and not NP-omplete. Hene, weannot rule out a priori if there is a onstraint language Γ suh that CSP(Γ)is neither in P nor NP-omplete. If the algebrai CSP Conjeture is true,then all NP-omplete problems CSP(Γ) are already identi�ed; i.e., it is thetratability part of the onjeture that is still open.In the �rst part of the artile we study the family of all onstraint languages Γsuh that it is urrently known that CSP(Γ) is NP-omplete. We prove thateah onstraint language in this family makes Max CSP(Γ) have a hard gapat loation 1, even when the number of variable ourrene in an instane isbounded by a su�iently large onstant (depending on Γ), see Theorem 22.4



�Hard gap at loation 1� means that it is NP-hard to distinguish instanesof Max CSP(Γ) in whih all onstraints are satis�able from instanes whereat most an ε-fration of the onstraints are satis�able (for some onstant
ε whih depends on Γ) 2 . This property immediately implies approximationhardness (in partiular, no PTAS) for the problem, even when restrited tosatis�able instanes (Corollary 29). We note that, for the Boolean domain andwithout the bounded ourrene restrition, Theorem 22 follows from a resultof Khanna et al. [38, Theorem 5.14℄.Interestingly, the PCP theorem is equivalent to the fat that, for some on-straint language Γ over some �nite set D, Max CSP(Γ) has a hard gap atloation 1 [4,26,56℄; learly, CSP(Γ) annot be polynomial time solvable inthis ase. Theorem 22 means that Max CSP(Γ) has a hard gap at loation 1for any onstraint language suh that CSP(Γ) is known to be NP-omplete.Moreover, if the above mentioned onjeture holds, then Max CSP(Γ) has ahard gap at loation 1 whenever CSP(Γ) is not in P. Another equivalent refor-mulation of the PCP theorem states that the problemMax 3-SAT has a hardgap at loation 1 [4,56℄, and our proof onsists of a gap preserving redutionfrom this problem through a version of the algebrai argument from [13℄.The seond aspet of Max CSP we study is the ase when the onstraintlanguage onsists of a single relation; this lass of problems ontains some ofthe best-studied examples ofMax CSP suh asMax Cut andMax DiCut.Note that a full omplexity lassi�ation of single-relation CSP is not known.In fat, Feder and Vardi [29℄ have proved that by providing suh a lassi�a-tion, one has also lassi�ed the CSP problem for all onstraint languages.It was proved in [37℄ that, for any non-empty relation R, the problem MaxCSP({R}) is either trivial (i.e., mapping all variables in any instane to thesame �xed value always satis�es all onstraints) or NP-hard. We strengthenthis result by proving approximation hardness (and hene the non-existeneof PTAS) instead of NP-hardness (see Theorem 33), and again even with abound on the number of variable ourrenes. Our proof uses the �rst mainresult, Theorem 22, along with the main result from [7℄. Note that, for someBoolean Max CSP problems, e.g., for Max Cut, a stronger version of The-orem 33 is known (see, e.g., [32℄). We then apply Theorem 33 to generalisesome results from [42,43℄.Raghavendra [52℄ reently proved an interesting result regarding the approx-imability ofMax CSP. He onstruted an approximation algorithm suh that
2 Some authors onsider the promise problem Gap-CSP[ε, 1] where an instane isaMax CSP instane (V,C) and the problem is to deide between the following twopossibilities: the instane is satis�able, or at most ε · |C| onstraints are simultane-ously satis�able. Obviously, if a Max CSP(Γ) has a hard gap at loation 1, thenthere exists an ε suh that the orresponding Gap-CSP[ε, 1] problem is NP-hard.5



for any onstraint language Γ the solutions produed by the algorithm is withina fator α(Γ) + ε of the optimal value, for any ε > 0. Furthermore, assumingthe UGC and P 6= NP, he proved that for every onstraint language Γ theproblemMax CSP(Γ) annot be approximated within a fator α(Γ)−ε of theoptimal value for any ε > 0 in polynomial time. Raghavendra's result is verystrong, assuming the UGC and P 6= NP it gives nearly tight approximabil-ity results for every onstraint language. However, it does not give any diretmethod for haraterising the lasses of onstraint languages whih, e.g., doesnot admit a PTAS. Our results are less general in the sense that they apply toa smaller lass of onstraint languages and that they do not give near optimalapproximability results. However, we study a di�erent notion of hardness �hardness at gap loation 1. Furthermore, there are expliit methods for har-aterising the lass of onstraint languages that are �hard�. We also do notneed any more assumptions than P 6= NP to obtain our results.Here is an overview of the artile: In �2 we de�ne some onepts we need.Setion 3 ontains the proof for our �rst result and �4 ontains the proof ofour seond result. In �4.3 we strengthen some earlier published results onMaxCSP as mentioned above. We give a few onluding remarks in �5.2 PreliminariesA ombinatorial optimisation problem is de�ned over a set of instanes (ad-missible input data); eah instane I has a set sol(I) of feasible solutionsassoiated with it, and eah solution y ∈ sol(I) has a value m(I, y). The ob-jetive is, given an instane I, to �nd a feasible solution of optimum value. Theoptimal value is the largest one for maximisation problems and the smallestone for minimisation problems. A ombinatorial optimisation problem is saidto be an NP optimisation (NPO) problem if its instanes and solutions anbe reognised in polynomial time, the solutions are polynomially-bounded inthe input size, and the objetive funtion an be omputed in polynomial time(see, e.g., [6℄).De�nition 4 (Performane ratio) A solution s ∈ sol(I) to an instane Iof an NPO maximization problem Π is r-approximate if
max

{

m(I, s)opt(I)
,
opt(I)

m(I, s)

}

≤ r,where opt(I) is the optimal value for a solution to I. An approximationalgorithm for an NPO problem Π has performane ratio R(n) if, given anyinstane I of Π with |I| = n, it outputs an R(n)-approximate solution.6



PO is the lass of NPO problems that an be solved (to optimality) in poly-nomial time. An NPO problem Π is in the lass APX if there is a polynomialtime approximation algorithm for Π whose performane ratio is bounded by aonstant. The following result is well-known (see, e.g., [17, Proposition 2.3℄).Lemma 5 Let D be a �nite set. For every onstraint language Γ ⊆ RD,Max CSP(Γ) belongs to APX. Moreover, if a is the maximum arity of anyrelation in Γ, then there is a polynomial time approximation algorithm withperformane ratio |D|aDe�nition 6 (Hard to approximate) We say that a problem Π is hardto approximate if there exists a onstant c suh that, Π is NP-hard to ap-proximate within c (that is, the existene of a polynomial-time approximationalgorithm for Π with performane ratio c implies P = NP).The following notion has been de�ned in a more general setting by Petrank [50℄.De�nition 7 (Hard gap at loation α) Max CSP(Γ) has a hard gap atloation α ≤ 1 if there exists a onstant ε < α and a polynomial-time redutionfrom an NP-omplete problem Π to Max CSP(Γ) suh that,
• Yes instanes of Π are mapped to instanes I = (V, C) suh that opt(I) ≥
α|C|, and

• No instanes of Π are mapped to instanes I = (V, C) suh that opt(I) ≤
ε|C|.Note that if a problem Π has a hard gap at loation α (for any α) then

Π is hard to approximate. This simple observation has been used to proveinapproximability results for a large number of optimisation problems. See,e.g., [3,6,56℄ for surveys on inapproximability results and the related PCPtheory.2.1 Approximation Preserving RedutionsTo prove our approximation hardness results we use AP -redutions. This typeof redution is most ommonly used to de�ne ompleteness for ertain lassesof optimisation problems (i.e., APX). However, no APX-hardness results areatually proven in this artile sine we onentrate on proving that problemsare hard to approximate (in the sense of De�nition 6). We will frequentlyuse AP -redutions and this is justi�ed by Lemma 9 below. Our de�nition of
AP -redutions follows [21,38℄.De�nition 8 (AP -redution) Given two NPO problems Π1 and Π2 an AP -7



redution from Π1 to Π2 is a triple (F,G, α) suh that,
• F and G are polynomial-time omputable funtions and α > 0 is a onstant;
• for any instane I of Π1, F (I) is an instane of Π2;
• for any instane I of Π1, and any feasible solution s′ of F (I), G(I, s′) is afeasible solution of I;
• for any instane I of Π1, and any r ≥ 1, if s′ is an r-approximate solutionof F (I) then G(I, s′) is an (1 + (r− 1)α+ o(1))-approximate solution of Iwhere the o-notation is with respet to |I|.If suh a triple exist we say that Π1 is AP -reduible to Π2. We use the notation
Π1 ≤AP Π2 to denote this fat.It is a well-known fat (see, e.g., �8.2.1 in [6℄) that AP -redutions ompose.The following simple lemma makes AP -redutions useful to us.Lemma 9 If Π1 ≤AP Π2 and Π1 is hard to approximate, then Π2 is hard toapproximate.Proof. Let c > 1 be the onstant suh that it is NP-hard to approximate Π1within c. Let (F,G, α) be the AP -redution whih redues Π1 to Π2. We willprove that it is NP-hard to approximate Π2 within

r =
1

α
(c− 1) + 1 − ε′for any ε′ > 0.Let I1 be an instane of Π1. Then, I2 = F (I1) is an instane of Π2. Givenan r-approximate solution to I2 we an onstrut an (1 + (r − 1)α + o(1))-approximate solution to I1 using G. Hene, we get an 1 + (r − 1)α + o(1) =

c − αε′ + o(1) approximate solution to I1, and when the instanes are largeenough this is stritly smaller than c. As c > 1 we an hoose ε′ suh that
ε′ > 0 and c− αε′ > 1. 22.2 Redution TehniquesThe basi redution tehnique in our approximation hardness proofs is basedon strit implementations and perfet implementations. Those tehniques havebeen used before when studying Max CSP and other CSP-related prob-lems [21,36,38℄.De�nition 10 (Implementation) A olletion of onstraints C1, . . . , Cm overa tuple of variables x = (x1, . . . , xp) alled primary variables and y = (y1, . . . , yq)8



alled auxiliary variables is an α-implementation of the p-ary relation R fora positive integer α ≤ m if the following onditions are satis�ed:(1) For any assignment to x and y, at most α onstraints from C1, . . . , Cmare satis�ed.(2) For any x suh that x ∈ R, there exists an assignment to y suh thatexatly α onstraints are satis�ed.(3) For any x,y suh that x 6∈ R, at most (α− 1) onstraints are satis�ed.De�nition 11 (Strit/Perfet Implementation) An α-implementation isa strit implementation if for every x suh that x 6∈ R there exists y suh thatexatly (α−1) onstraints are satis�ed. An α-implementation (not neessarilystrit) is a perfet implementation if α = m.It will sometimes be onvenient for us to view relations as prediates instead. Inthis ase an n-ary relation R over the domain D is a funtion r : Dn → {0, 1}suh that r(x) = 1 ⇐⇒ x ∈ R. Most of the time we will use prediateswhen we are dealing with strit implementations and relations when we areworking with perfet implementations, beause perfet implementations arenaturally written as a onjuntion of onstraints whereas strit implemen-tations may naturally be seen as a sum of prediates. We will write strit
α-implementations in the following form

g(x) + (α− 1) = max
y

m
∑

i=1

gi(xi)where x = (x1, . . . , xp) are the primary variables, y = (y1, . . . , yq) are theauxiliary variables, g(x) is the prediate whih is implemented, and eah xiis a tuple of variables from x and y.We say that a olletion of relations Γ stritly (perfetly) implements a relation
R if, for some α ∈ Z+, there exists a strit (perfet) α-implementation of
R using relations only from Γ. It is not di�ult to show that if R an beobtained from Γ by a series of strit (perfet) implementations, then it analso be obtained by a single strit (perfet) implementation (for the Booleanase, this is shown in [21, Lemma 5.8℄).The following lemma indiates the importane of strit implementations forMax CSP. It was �rst proved for the Boolean ase, but without the assump-tion on bounded ourrenes, in [21, Lemma 5.17℄. A proof of this lemma inour setting an be found in [24, Lemma 3.4℄ (the lemma is stated in a slightlydi�erent form but the proof establishes the required AP -redution).Lemma 12 If Γ stritly implements a prediate f , then, for any integer k,there is an integer k′ suh that Max CSP(Γ ∪ {f})-k ≤AP Max CSP(Γ)-k′.9



Lemma 12 will be used as follows in our proofs of approximation hardness: if
Γ′ is a �xed �nite olletion of prediates eah of whih an be stritly im-plemented by Γ, then we an assume that Γ′ ⊆ Γ. For example, if Γ ontainsa binary prediate f , then we an assume, at any time when it is onve-nient, that Γ also ontains f ′(x, y) = f(y, x), sine this equality is a strit1-implementation of f ′.For proving hardness at gap loation 1, we have the following lemma.Lemma 13 If a �nite onstraint language Γ perfetly implements a relation Rand Max CSP(Γ∪{R})-k has a hard gap at loation 1, then Max CSP(Γ)-k′has a hard gap at loation 1 for some integer k′.Proof. Let N be the minimum number of relations that are needed in a perfetimplementation of R using relations from Γ.Given an instane I = (V, C) of Max CSP(Γ ∪ {R})-k, we onstrut aninstane I ′ = (V ′, C ′) of Max CSP(Γ)-k′ (where k′ will be spei�ed below)as follows: we use the set V ′′ to store auxiliary variables during the redutionso we initially let V ′′ be the empty set. For a onstraint c = (Q, s) ∈ C, thereare two ases to onsider:(1) If Q 6= R, then add N opies of c to C ′.(2) If Q = R, then add the implementation of R to C ′ where any auxiliaryvariables in the implementation are replaed with fresh variables whihare added to V ′′.Finally, let V ′ = V ∪V ′′. It is lear that there exists an integer k′, independentof I, suh that I ′ is an instane of Max CSP(Γ′)-k′.If all onstraints are simultaneously satis�able in I, then all onstraints in I ′are also simultaneously satis�able. On the other hand, if opt(I) ≤ ε|C| thenopt(I ′) ≤ εN |C| + (1 − ε)(N − 1)|C|

= (ε+ (1 − ε)(1 − 1/N)) |C ′|.The inequality holds beause eah onstraint in I introdues a group of Nonstraints in I ′ and, as opt(I) ≤ ε|C|, at most ε|C| suh groups are om-pletely satis�ed. In all other groups (there are (1− ε)|C| suh groups) at leastone onstraint is not satis�ed. We onlude that Max CSP(Γ)-k′ has a hardgap at loation 1. 2An important onept is that of a ore. To de�ne ores formally we needretrations. A retration of a onstraint language Γ ⊆ RD is a funtion π :10



D → D suh that if D′ is the image of π then π(x) = x for all x ∈ D′,furthermore for every R ∈ Γ we have (π(t1), . . . , π(tn)) ∈ R for all (t1, . . . , tn) ∈
R. We will say that Γ is a ore if the only retration of Γ is the identity funtion.Given a relation R ∈ R

(k)
D and a subset X of D we de�ne the restrition of Ronto X as follows: R∣∣∣

X
= {x ∈ Xk | x ∈ R}. For a set of relations Γ we de�ne

Γ
∣

∣

∣

X
= {R

∣

∣

∣

X
| R ∈ Γ}. If π is a retration of Γ with image D′, hosen suh that

|D′| is minimal, then a ore of Γ is the set Γ
∣

∣

∣

D′

. For onstraint language Γ,Γ′we say that Γ retrats to Γ′ if there is a retration π of Γ suh that π(Γ) = Γ′.The intuition here is that if Γ is not a ore, then it has a non-injetive retration
π, whih implies that, for every assignment s, there is another assignment πsthat satis�es all onstraints satis�ed by s and uses only a restrited set ofvalues. Consequently the problem is equivalent to a problem over this smallerset. As in the ase of graphs, all ores of Γ are isomorphi, so one an speakabout the ore of Γ. [31℄The following simple lemma onnets ores with non-approximability.Lemma 14 If Γ′ is the ore of Γ, then, for any k,Max CSP(Γ′)-k has a hardgap at loation 1 if and only if Max CSP(Γ)-k has a hard gap at loation 1.Proof. Let π be the retration of Γ suh that Γ′ = {π(R) | R ∈ Γ}, where
π(R) = {π(t) | t ∈ R}. Given an instane I = (V, C) of Max CSP(Γ)-k,we onstrut an instane I ′ = (V, C ′) of Max CSP(Γ′)-k by replaing eahonstraint (R, s) ∈ C by (π(R), s).From a solution s to I ′, we onstrut a solution s′ to I ′ suh that s′(x) =
π(s(x)). Let (R, s) ∈ C be a onstraint whih is satis�ed by s. Then, thereis a tuple x ∈ R suh that s(s) = x so π(x) ∈ π(R) and s′(s) = π(s(s)) =
π(x) ∈ π(R). Conversely, if (π(R), s) is a onstraint in I ′ whih is satis�ed by
s′, then there is a tuple x ∈ R suh that s′(s) = π(s(s)) = π(x) ∈ π(R), and
s(s) = x ∈ R. We onlude that m(I, s) = m(I ′, s′).It is not hard to see that we an do this redution in the other way too, i.e.,given an instane I ′ = (V ′, C ′) of Max CSP(Γ′)-k, we onstrut an instane
I of Max CSP(Γ)-k by replaing eah onstraint (π(R), s) ∈ C ′ by (R, s).By the same argument as above, this diretion of the equivalene follows, andwe onlude that the lemma is valid. 2An analogous result holds for the CSP problem, i.e., if Γ′ is the ore of Γ,then CSP(Γ) is in P (NP-omplete) if and only if CSP(Γ′) is in P (NP-omplete); see [34℄ for a proof. Cores play an important role in �4, too. Wehave the following lemma: 11



Lemma 15 (Lemma 2.11 in [36℄) Let Γ′ be the ore of Γ. For every k,there exists k′ suh that Max CSP(Γ′)-k ≤AP Max CSP(Γ)-k′.The lemma is stated in a slightly di�erent form in [36℄ but the proof establishesthe required AP -redution.3 Hardness at Gap Loation 1 for Max CSPIn this setion, we prove our �rst main result: Theorem 22. The proof makesuse of some onepts from universal algebra and we present the relevant de�-nitions and results in �3.1 and �3.2. The proof is ontained in �3.3.3.1 De�nitions and Results from Universal AlgebraWe will now present the de�nitions and basi results we need from universalalgebra. For a more thorough treatment of universal algebra in general werefer the reader to [15,19℄. The artiles [13,18℄ ontain presentations of therelationship between universal algebra and onstraint satisfation problems.An operation on a �nite set D is an arbitrary funtion f : Dk → D. Anyoperation on D an be extended in a standard way to an operation on tuplesover D, as follows: let f be a k-ary operation on D. For any olletion of k
n-tuples, t1, t2, . . . , tk ∈ Dn, the n-tuple f(t1, t2, . . . , tk) is de�ned as follows:

f(t1, t2, . . . , tk) = (f(t1[1], t2[1], . . . , tk[1]), f(t1[2], t2[2], . . . , tk[2]), . . . ,

f(t1[n], t2[n], . . . , tk[n])),where tj[i] is the i-th omponent in tuple tj. If f(d, d, . . . , d) = d for all
d ∈ D, then f is said to be idempotent. An operation f : Dk → D whihsatis�es f(x1, x2, . . . , xk) = xi, for some i, is alled a projetion.Let R be a relation in the onstraint language Γ. If f is an operation suhthat for all t1, t2, . . . , tk ∈ R we have f(t1, t2, . . . , tk) ∈ R, then R is said tobe invariant (or, in other words, losed) under f . If all onstraint relations in
Γ are invariant under f , then Γ is said to be invariant under f . An operation
f suh that Γ is invariant under f is alled a polymorphism of Γ. The set of allpolymorphisms of Γ is denoted Pol(Γ). Given a set of operations F , the set ofall relations that is invariant under all the operations in F is denoted Inv(F ).Example 16 Let D = {0, 1, 2} and let R be the direted yle on D, i.e., R =
{(0, 1), (1, 2), (2, 0)}. One polymorphism of R is the operation f : {0, 1, 2}3 →
{0, 1, 2} de�ned as f(x, y, z) = x − y + z (mod 3). This an be veri�ed by12



onsidering all possible ombinations of three tuples from R and evaluating
f omponent-wise. Let K be the omplete graph on D. It is well known andnot hard to hek that if we view K as a binary relation, then all idempotentpolymorphisms of K are projetions.We ontinue by de�ning a losure operator 〈·〉 on sets of relations: for anyset Γ ⊆ RD, the set 〈Γ〉 onsists of all relations that an be expressed usingrelations from Γ ∪ {EQD} (where EQD denotes the equality relation on D),onjuntion, and existential quanti�ation. Those are the relations de�nableby primitive positive formulae (pp-formulae). As an example of a pp-formulaonsider the relations A = {(0, 0), (0, 1), (1, 0)} and B = {(1, 0), (0, 1), (1, 1)}over the Boolean domain {0, 1}. With those two relations we an onstrut
I = {(0, 0), (0, 1), (1, 1)} with the pp-formula

I(x, y) ⇐⇒ ∃z : A(x, z) ∧ B(z, y).Note that pp-formulae and perfet implementations from De�nition 11 arethe same onept. Intuitively, onstraints using relations from 〈Γ〉 are exatlythose whih an be simulated by onstraints using relations from Γ in the CSPproblem. Hene, for any �nite subset Γ′ of 〈Γ〉, CSP(Γ′) is not harder thanCSP(Γ). That is, if CSP(Γ′) is NP-omplete for some �nite subset Γ′ of 〈Γ〉,then CSP(Γ) is NP-omplete. If CSP(Γ) is in P, then CSP(Γ′) is in P forevery �nite subset Γ′ of 〈Γ〉. We refer the reader to [35℄ for a further disussionon this topi.The sets of relations of the form 〈Γ〉 are referred to as relational lones, oro-lones. An alternative haraterisation of relational lones is given in thefollowing theorem.Theorem 17 ([51℄)
• For every set Γ ⊆ RD, 〈Γ〉 = Inv(Pol(Γ)).
• If Γ′ ⊆ 〈Γ〉, then Pol(Γ) ⊆ Pol(Γ′).We will now de�ne �nite algebras and some related notions whih we needlater on. The three de�nitions below losely follow the presentation in [13℄.De�nition 18 (Finite algebra) A �nite algebra is a pair A = (A;F ) where
A is a �nite non-empty set and F is a set of �nitary operations on A.We will only make use of �nite algebras so we will write algebra instead of�nite algebra. An algebra is said to be non-trivial if it has more than oneelement.De�nition 19 (Homomorphism of algebras) Given two algebrasA = (A;FA)and B = (B;FB) suh that FA = {fA

i | i ∈ I}, FB = {fB
i | i ∈ I} and both fA

i13



and fB
i are ni-ary for all i ∈ I, then ϕ : A → B is said to be an homomor-phism from A to B if

ϕ(fA
i (a1, a2, . . . , ani

)) = fB
i (ϕ(a1), ϕ(a2), . . . , ϕ(ani

))for all i ∈ I and a1, a2, . . . , ani
∈ A. If ϕ is surjetive, then B is a homomor-phi image of A.Given a homomorphism ϕ mapping A = (A;FA) to B = (B;FB), we anonstrut an equivalene relation θ on A as θ = {(x, y) | ϕ(x) = ϕ(y)}. Therelation θ is said to be a ongruene relation of A. We an now onstrut thequotient algebra A/θ = (A/θ;FA/θ). Here, A/θ = {x/θ | x ∈ A} and x/θ isthe equivalene lass ontaining x. Furthermore, FA/θ = {f/θ | f ∈ FA} and

f/θ is de�ned suh that f/θ(x1/θ, x2/θ, . . . , xn/θ) = f(x1, x2, . . . , xn)/θ.For an operation f : Dn → D and a subset X ⊆ D we de�ne f ∣∣∣
X

as thefuntion g : Xn → D suh that g(x) = f(x) for all x ∈ Xn. For a set ofoperations F on D we de�ne F ∣∣∣
X

= {f
∣

∣

∣

X
| f ∈ F}.De�nition 20 (Subalgebra) Let A = (A;FA) be an algebra and B ⊆ A. Iffor eah f ∈ FA and any b1, b2, . . . , bn ∈ B, we have f(b1, b2, . . . , bn) ∈ B, then

B = (B;FA

∣

∣

∣

B
) is a subalgebra of A.The operations in Pol(Inv(FA)) are the term operations of A. If all term op-erations are surjetive, then the algebra is said to be surjetive. Note thatInv(FA) is a ore if and only if A is surjetive [13,34℄. If F onsist of all theidempotent term operations of A, then the algebra (A;F ) is alled the fullidempotent redut of A, and we will denote this algebra by Ac. Given a set ofrelations Γ over the domain D we say that the algebra AΓ = (D;Pol(Γ)) isassoiated with Γ. An algebra B is said to be a fator of the algebra A if B isa homomorphi image of a subalgebra of A. A non-trivial fator is an algebrawhih is not trivial, i.e., it has at least two elements.3.2 Constraint Satisfation and AlgebraWe ontinue by desribing some onnetions between onstraint satisfationproblems and universal algebra. The following theorem onerns the hardnessof CSP for ertain onstraint languages.Theorem 21 ([13℄) Let Γ be a ore onstraint language. If Ac

Γ has a non-trivial fator whose term operations are only projetions, then CSP(Γ) is NP-hard. 14



The algebrai CSP onjeture [13℄ states that, for all other ore languages Γ,the problem CSP(Γ) is tratable. This onjeture has been veri�ed in manyimportant ases (see, e.g., [8,10℄).The �rst main result of this artile is the following theorem whih states thatMax CSP(Γ)-B has a hard gap at loation 1 whenever the ondition whihmakes CSP(Γ) hard in Theorem 21 is satis�ed.Theorem 22 Let Γ be a ore onstraint language. If Ac
Γ has a non-trivialfator whose term operations are only projetions, then Max CSP(Γ)-B hasa hard gap at loation 1.The proof of this result an be found in �3.3. Note that if the above onjetureis true then Theorem 22 desribes all onstraint languages Γ for whih MaxCSP(Γ) has a hard gap at loation 1 beause, obviously, Γ annot have thisproperty when CSP(Γ) is tratable.There is another haraterisation of the algebras in Theorem 21 whih or-responds to tratable onstraint languages. To state the haraterisation weneed the following de�nition.De�nition 23 (Weak Near-Unanimity Funtion) An operation f : Dn →

D, where n ≥ 2, is a weak near-unanimity funtion if f is idempotent and
f(x, y, y, . . . , y) = f(y, x, y, y, . . . , y) = . . . = f(y, . . . , y, x)for all x, y ∈ D.Hereafter we will use the aronym wnuf for weak near-unanimity funtions.We say that an algebra A admits a wnuf if there is a wnuf among the termoperations of A. We also say that a onstraint language Γ admits a wnufif there is a wnuf among the polymorphisms of Γ. By ombining a theoremby Maróti and MKenzie [48, Theorem 1.1℄ with a result by Bulatov andJeavons [12, Proposition 4.14℄, we get the following:Theorem 24 Let A be an idempotent algebra. The following are equivalent:

• There is a non-trivial fator B of A suh that B only has projetions asterm operations.
• The algebra A does not admit any wnuf.3.3 Proof of Theorem 22Let 3SAT0 denote the relation {0, 1}3 \ {(0, 0, 0)}. We also introdue threeslight variations of 3SAT0, let 3SAT1 = {0, 1}3 \{(1, 0, 0)}, 3SAT2 = {0, 1}3 \15



{(1, 1, 0)}, and 3SAT3 = {0, 1}3 \ {(1, 1, 1)}. To simplify the notation we let
Γ3SAT = {3SAT0, 3SAT1, 3SAT2, 3SAT3}. It is not hard to see that theproblem Max CSP(Γ3SAT ) is preisely Max 3Sat. It is well-known that thisproblem, even when restrited to instanes in whih eah variable ours atmost a onstant number of times, has a hard gap at loation 1, see e.g., [56,Theorem 7℄. We state this as a lemma.Lemma 25 ([56℄) Max CSP(Γ3SAT )-B has a hard gap at loation 1.To prove Theorem 22 we will utilise expander graphs.De�nition 26 (Expander graph) A d-regular graph G is an expander graphif, for any S ⊆ V [G], the number of edges between S and V [G] \ S is at least
min(|S|, |V [G] \ S|).Expander graphs are frequently used for proving properties of Max CSP,f. [22,49℄. Typially, they are used for bounding the number of variable o-urrenes. A onrete onstrution of expander graphs has been provided byLubotzky et al. [47℄.Theorem 27 A polynomial-time algorithm T and a �xed integer N exist suhthat, for any k > N , T (k) produes a 14-regular expander graph with k(1+o(1))verties.There are four basi ingredients in the proof of Theorem 22. The �rst threeare Lemma 13, Lemma 25, and the use of expander graphs to bound thenumber of variable ourrenes. We also use an alternative haraterisation(Lemma 28) of onstraint languages satisfying the onditions of the theorem.This is a slight modi�ation of a part of the proof of Proposition 7.9 in [13℄.The impliation below is in fat an equivalene and we refer the reader to [13℄for the details. Given a funtion f : D → D, and a relation R ∈ RD, the fullpreimage of R under f , denoted by f−1(R), is the relation {x | f(x) ∈ R}(as usual, f(x) denotes that f should be applied omponentwise to x). Forany a ∈ D, we denote the unary onstant relation ontaining only a by ca,i.e., ca = {(a)}. Let CD denote the set of all onstant relations over D, thatis, CD = {ca | a ∈ D}.Lemma 28 Let Γ be a ore onstraint language. If the algebra Ac

Γ has a non-trivial fator whose term operations are only projetions, then there is a subset
B of D and a surjetive mapping ϕ : B → {0, 1} suh that the relational lone
〈Γ ∪ CD〉 ontains the relations ϕ−1(3SAT0), ϕ−1(3SAT1), ϕ−1(3SAT2), and
ϕ−1(3SAT3)}.Proof. Let A′ be the subalgebra of Ac

Γ suh that there is a homomorphism ϕfrom A′ to a non-trivial algebra B whose term operations are only projetions.We an assume, without loss of generality, that the set {0, 1} is ontained in16



the universe of B. It is easy to see that any relation is invariant under any pro-jetions. Sine B only has projetions as term operations, the four relations
3SAT0, 3SAT1, 3SAT2 and 3SAT3 are invariant under the term operationsof B. It is not hard to hek (see [13℄) that the full preimages of those re-lations under ϕ are invariant under the term operations of A′ and thereforethey are also invariant under the term operations of Ac

Γ. By the observationthat Ac
Γ = AΓ∪CD

and Theorem 17, this implies {ϕ−1(3SAT0), ϕ
−1(3SAT1),

ϕ−1(3SAT2), ϕ
−1(3SAT3)} ⊆ 〈Γ ∪ CD〉. 2We are now ready to present the proof of Theorem 22. Let S be a permutationgroup on the set X. An orbit of S is a subset Ω of X suh that Ω = {g(x) |

g ∈ S} for some x ∈ X.Proof. By Lemma 13, in order to prove the theorem, it su�es to �nd a �niteset Γ′ ⊆ 〈Γ〉 suh that Max CSP(Γ′)-B has a hard gap at loation 1.Sine Γ is a ore, its unary polymorphisms form a permutation group S on D.We an without loss of generality assume that D = {1, . . . , p}. It is known (seeProposition 1.3 of [55℄) and not hard to hek (using Theorem 17) that Γ anperfetly implement the following relation: RS = {(g(1), . . . , g(p)) | g ∈ S}.Then it an also perfetly implement the relations EQi for 1 ≤ i ≤ p where
EQi is the restrition of the equality relation on D to the orbit in S whihontains i. We have
EQi(x, y) ⇐⇒ ∃z1, . . . , zi−1, zi+1, . . . , zp :RS(z1, . . . , zi−1, x, zi+1, . . . , zp)∧

RS(z1, . . . , zi−1, y, zi+1, . . . , zp).By Lemma 28, there exists a subset (in fat, a subalgebra) B of D and asurjetive mapping ϕ : B → {0, 1} suh that the relational lone 〈Γ ∪ CD〉ontains ϕ−1(Γ3SAT ) = {ϕ−1(R) | R ∈ Γ3SAT}. For 0 ≤ i ≤ 3, let Ri be thepreimage of 3SATi under ϕ. Sine Ri ∈ 〈Γ ∪ CD〉, we an show that thereexists a (p+ 3)-ary relation R′
i in 〈Γ〉 suh that

Ri = {(x, y, z) | (1, 2, . . . , p, x, y, z) ∈ R′
i}.Indeed, sine Ri ∈ 〈Γ∪CD〉, Ri an be de�ned by a pp-formulaRi(x, y, z) ⇐⇒

∃t : ψ(t, x, y, z) (here t denotes a tuple of variables) where ψ is a onjuntionof atomi formulas involving prediates from Γ∪CD and variables from t and
{x, y, z}. Note that, in ψ, no prediate from CD is applied to one of {x, y, z}beause these variables an take more than one value in Ri. We an withoutloss of generality assume that every prediate from CD appears in ψ exatlyone. Indeed, if suh a prediate appears more than one, then we an identifyall variables to whih it is applied, and if it does not appear at all then we an17



add a new variable to t and apply this prediate to it. Now assume without lossof generality that the prediate ci, 1 ≤ i ≤ p, is applied to the variable ti in ψ,and ψ = ψ1 ∧ ψ2 where ψ1 =
∧p

i=1 ci(ti) and ψ2 ontains only prediates from
Γ \ CD. Let t

′ be the list of variables obtained from t by removing t1, . . . , tp.It now is easy to hek that that the (p + 3)-ary relation R′
i de�ned by thepp-formula ∃t′ : ψ2(t, x, y, z) has the required property.Choose R′

i to be the (inlusion-wise) minimal relation in 〈Γ〉 suh that
Ri = {(x, y, z) | (1, 2, . . . , p, x, y, z) ∈ R′

i}and let Γ′ = {R′
i | 0 ≤ i ≤ 3} ∪ {EQ1, . . . , EQp}. Note that we have Γ′ ⊆ 〈Γ〉.We will need a more onrete desription of R′

i, so we now show that
R′

i = {(g(1), g(2), . . . , g(p), g(x), g(y), g(z)) | g ∈ S, (x, y, z) ∈ Ri}.The set on the right-hand side of the above equality must be ontained in R′
ibeause R′

i is invariant under all operations in S. On the other hand, if a tuple
b = (b1, . . . , bp, d, e, f) belongs to R′

i, then there is a permutation g ∈ S suhthat (b1, . . . , bp) = (g(1), . . . , g(p)) (otherwise, the intersetion of this relationwith RS ×D
3 ∈ 〈Γ〉 would give a smaller relation with the required property).Now note that the tuple (1, . . . , p, g−1(d), g−1(e), g−1(f)) also belongs to R′

iimplying, by the hoie of R′
i, that (g−1(d), g−1(e), g−1(f)) ∈ Ri. Therefore,the relation R′

i is indeed as desribed above.By Lemma 25, there is an integer l suh that Max CSP(Γ3SAT )-l has a hardgap at loation 1. By Lemma 14, Max CSP(ϕ−1(Γ3SAT ))-l has the sameproperty (beause Γ3SAT is the ore of ϕ−1(Γ3SAT )). To omplete the proof,we will now AP -redue Max CSP(ϕ−1(Γ3SAT ))-l to Max CSP(Γ′)-l′ where
l′ = max{14p + 1, l} (reall that p = |D| is a onstant). Take an arbitraryinstane I = (V, C) of Max CSP(ϕ−1(Γ3SAT ))-l, and build an instane I ′ =
(V ′, C ′) of Max CSP(Γ′) as follows: introdue new variables u1, . . . , up, andreplae eah onstraint Ri(x, y, z) in I by R′

i(u1, . . . , up, x, y, z). Note thatevery variable, exept the ui's, in I ′ appears at most l times. We will now useexpander graphs to onstrut an instane I ′′ ofMax CSP(Γ′) with a onstantbound on the number of ourrenes for eah variables.Let q be the number of onstraints in I and let q′ = max{N, q}, where Nis the onstant in Theorem 27. Let G = (W,E) be an expander graph (on-struted in polynomial time by the algorithm T (q′) in Theorem 27) suh that
W = {w1, w2, . . . , wm} and m ≥ q. The expander graph T (q′) has q′(1 + o(1))verties. Hene, there is a onstant α suh that T (q′) has at most αq verties.For eah 1 ≤ j ≤ p, we introdue m fresh variables wj

1, w
j
2, . . . , w

j
m into I ′′. Foreah edge {wi, wk} ∈ E and 1 ≤ j ≤ p, introdue p opies of the onstraint

EQj(w
j
i , w

j
k) into C ′′. Let C1, C2, . . . , Cq be an enumeration of the onstraints18



in C ′. Replae uj by wj
i in Ci for all 1 ≤ i ≤ q. Finally, let C∗ be the union ofthe (modi�ed) onstraints in C ′ and the equality onstraints in C ′′. It is learthat eah variable ours in I ′′ at most l′ = max{14p + 1, l} times (as G is14-regular).Clearly, a solution s to I satisfying all onstraints an be extended to a solutionto I ′′, also satisfying all onstraints, by setting s(wj

i ) = j for all 1 ≤ i ≤ mand all 1 ≤ j ≤ p.On the other hand, if m(I, s) ≤ ε|C|, then let s′ be an optimal solution to I ′′.We will prove that there is a onstant ε′ < 1 (whih depends on ε but not on
I) suh that m(I ′′, s′) ≤ ε′|C∗|.We �rst prove that, for eah 1 ≤ j ≤ p, we an assume that all variables in
W j = {wj

1, w
j
2, . . . , w

j
m} have been assigned the same value by s′ and that allonstraints in C ′′ are satis�ed by s′. We show that given a solution s′ to I ′′,we an onstrut another solution s2 suh that m(I ′′, s2) ≥ m(I ′′, s′) and s2satis�es all onstraints in C ′′.Let aj be the value that at leastm/p of the variables inW j have been assignedby s′. We onstrut the solution s2 as follows: s2(w

j
i ) = aj for all i and j, and

s2(x) = s′(x) for all other variables.If there is some j suh that X = {x ∈ W j | s′(x) 6= aj} is non-empty,then, sine G is an expander graph, there are at least p · min(|X|, |W j \X|)onstraints in C ′′ whih are not satis�ed by s′. Note that by the hoie of
X, we have |W j \X| ≥ m/p whih implies p · min(|X|, |W j \X|) ≥ |X|. Byhanging the value of the variables inX, we will make at most |X| non-equalityonstraints in C∗ unsatis�ed beause eah of the variables in W j ours in atmost one non-equality onstraint in C∗. In other words, when the value of thevariables in X are hanged we gain at least |X| in the measure as some of theequality onstraints in C ′′ will beome satis�ed, furthermore we lose at most
|X| by making at most |X| onstraints in C∗ unsatis�ed. We onlude that
m(I ′, s2) ≥ m(I ′, s′). Thus, we may assume that all equality onstraints in C ′′are satis�ed by s′.Sine the expander graph G is 14-regular and has at most αq verties, it has atmost 14

2
αq edges. Hene, the number of equality onstraints in C ′′ is at most

7αqp, and |C ′′|/|C ′| ≤ 7αp. We an now bound m(I ′′, s2) as follows:
m(I ′′, s2) ≤ opt(I ′) + |C ′′| ≤

ε|C ′| + |C ′′|

|C ′| + |C ′′|
(|C ′| + |C ′′|) ≤

ε+ 7αp

1 + 7αp
(|C ′| + |C ′′|).Sine |C∗| = |C ′| + |C ′′|, it remains to set ε′ = ε+7αp

1+7αp
. 219



We �nish this setion by using Theorem 22 to answer, at least partially, twoopen questions. The �rst one onerns the omplexity of CSP(Γ)-B. In par-tiular, the following onjeture has been made by Feder et al. [28℄.Conjeture: For any �xed Γ suh that CSP(Γ) is NP-omplete there is aninteger k suh that CSP(Γ)-k is NP-omplete.Under the assumption that the algebrai CSP onjeture (that all problemsCSP(Γ) not overed by Theorem 21 are tratable) holds, an a�rmative answerfollows immediately from Theorem 22. So for all onstraint languages Γ suhthat CSP(Γ) is urrently known to be NP-omplete it is also the ase thatCSP(Γ)-B is NP-omplete.The seond result onerns the approximability of equations over non-abeliangroups. Petrank [50℄ has noted that hardness at gap loation 1 implies thefollowing: suppose that we restrit ourselves to instanes of Max CSP(Γ)suh that there exist solutions that satisfy all onstraints, i.e. we onentrateon satis�able instanes. Then, there exists a onstant c (depending on Γ) suhthat no polynomial-time algorithm an approximate this problem within c.We get the following result for satis�able instanes:Corollary 29 Let Γ be a ore onstraint language and let A be the algebraassoiated with Γ. Assume there is a fator B of Ac suh that B only haveprojetions as term operations. Then, there exists a onstant c suh that MaxCSP(Γ)-B restrited to satis�able instanes annot be approximated within cin polynomial time.We will now use this observation for studying a problem onerning groups.Let G = (G, ·) denote a �nite group with identity element 1G. An equationover a set of variables V is an expression of the form w1 · . . .·wk = 1G, where wi(for 1 ≤ i ≤ k) is either a variable, an inverted variable, or a group onstant.Engebretsen et al. [27℄ have studied the following problem:De�nition 30 (EqG) The omputational problem EqG (where G is a �nitegroup) is de�ned to be the optimisation problem withInstane: A set of variables V and a olletion of equations E over V .Solution: An assignment s : V → G to the variables.Measure: Number of equations in E whih are satis�ed by s.The problem Eq1
G[3℄ is the same as EqG exept for the additional restritionsthat eah equation ontains exatly three variables and no equation ontainsthe same variable more than one. Their main result was the following inap-proximability result:Theorem 31 (Theorem 1 in [27℄) For any �nite group G and onstant ε >20



0, it is NP-hard to approximate Eq1
G[3℄ within |G| − ε.Engebretsen et al. left the approximability of Eq1

G[3℄ for satis�able instanesas an open question. We will give a partial answer to the approximability ofsatis�able instanes of EqG .It is not hard to see that for any integer k, the equations with at most kvariables over a �nite group an be viewed as a onstraint language. For agroup G, we denote the onstraint language whih orresponds to equationswith at most three variables by ΓG. Hene, for any �nite group G, the problemMax CSP(ΓG) is no harder than EqG .Goldmann and Russell [30℄ have shown that CSP(ΓG) is NP-hard for every�nite non-abelian group G. This result was extended to more general algebrasby Larose and Zádori [45℄. They also showed that for any non-abelian group G,the algebra A = (G;Pol(ΓG)) has a non-trivial fator B suh that B only hasprojetions as term operations. We now ombine Larose and Zádori's resultwith Theorem 22:Corollary 32 For any �nite non-abelian group G, EqG has a hard gap atloation 1.Thus, there is a onstant c suh that no polynomial-time algorithm an approx-imate satis�able instanes of EqG better than c. There also exists a onstant
k (depending on the group G) suh that the result holds for instanes withvariable ourrene bounded by k.
4 Approximability of Single Relation Max CSPIn this setion, we will prove the following theorem:Theorem 33 Let R ∈ R

(n)
D be non-empty. If (d, . . . , d) ∈ R for some d ∈ D,then Max CSP({R}) is solvable in linear time. Otherwise, Max CSP({R})-

B is hard to approximate.Proof. The tratability part of the theorem is trivial. It was shown in [36℄that any non-empty non-valid relation of arity n ≥ 2 stritly implements abinary non-empty non-valid relation. Hene, by Lemma 12, it is su�ient toto prove the the hardness part for binary relations. It is often onvenient toview binary relations as digraphs. The proof for vertex-transitive digraphs ispresented in �4.1, and for the remaining digraphs in �4.2. 221



Reall that a digraph is a pair (V,E) suh that V is a �nite set and E ⊆ V ×V .A graph is a digraph (V,E) suh that for every pair (x, y) ∈ E we also have
(y, x) ∈ E. Let R ∈ RD be a binary relation. As R is binary it an be viewedas a digraph G with vertex set V [G] = D and edge set E[G] = R. We willmix freely between those two notations. For example, we will sometimes write
(x, y) ∈ G with the intended meaning (x, y) ∈ E[G].Let G be a digraph, R = E[G], and let Aut(G) denote the automorphismgroup of G. If Aut(G) is transitive (i.e., ontains a single orbit), then we saythat G is vertex-transitive. If D an be partitioned into two sets, A and B,suh that for any x, y ∈ A (or x, y ∈ B) we have (x, y) 6∈ R, then R (and
G) is bipartite. The direted yle of length n is the digraph G with vertexset V [G] = {0, 1, . . . , n − 1} and edge set E[G] = {(x, x + 1) | x ∈ V [G]},where the addition is modulo n. Analogously, the undireted yle of length nis the graph H with vertex set V [H ] = {0, 1, . . . , n− 1} and edge set E[H ] =
{(x, x+1) | x ∈ V [H ]}∪{(x+1, x) | x ∈ V [H ]} (also in this ase the additionsare modulo n). The undireted path with two verties will be denoted by P2.4.1 Vertex-transitive DigraphsWe will now takle non-bipartite vertex-transitive digraphs and prove thatthey give rise to Max CSP problems whih are hard at gap loation 1. To dothis, we make use of the algebrai framework whih we used and developed in�3. We will also use a theorem by Barto, Kozik, and Niven [7℄ on the omplexityof CSP(G) for digraphs G without soures and sinks. A vertex v in a digraphis a soure if there is no inoming edge to v. Similarly, a vertex v is a sink ifthere is no outgoing edge from v.Theorem 34 ([7℄) If G is a ore digraph without soures and sinks whihdoes not retrat to a disjoint union of direted yles, then G admits no wnuf.>From this result we derive the following orollary.Corollary 35 Let H be a vertex-transitive ore digraph whih is non-empty,non-valid, and not a direted yle. Then, Max CSP({H})-B has a hard gapat loation 1.Proof. Let v and u be two verties in H . As H is vertex-transitive the in- andout-degrees of u and v must oinide, and hene the in- and out-degrees of vmust be the same. Hene, H does not have any soures or sinks. Furthermore,as H is vertex-transitive and a ore it follows that it is onneted. The resultnow follows from Theorem 34, Theorem 24, and Theorem 22. 222



The next lemmas help to deal with the remaining vertex-transitive graphs, i.e.those that retrat to a direted yle.Lemma 36 If G is the undireted path with two verties P2, or an undiretedyle Ck, k > 2, then Max CSP({G})-B is hard to approximate.Proof. If G = P2, then the result follows from Example 3. If G = Ck and kis even, then the ore of Ck is isomorphi to P2 and the result follows fromLemmas 15, 9 ombined with Example 3.From now on, assume that G = Ck, k is odd, and k ≥ 3. We will show that wean stritly implement Nk, i.e., the inequality relation. We use the followingstrit implementation
Nk(z1, zk−1) + (k − 3) = max

z2,z3,...,zk−2

Ck(z1, z2) + Ck(z2, z3) + . . .+

Ck(zk−3, zk−2) + Ck(zk−2, zk−1).It is not hard to see that if z1 6= zk−1, then all k − 2 onstraints on the righthand side an be satis�ed. If z1 = zk−1, then k− 3 onstraints are satis�ed bythe assignment zi = z1 + i− 1, for all i suh that 1 < i < k − 1 (the additionand subtration are modulo k). Furthermore, no assignment an satisfy allonstraints. To see this, note that suh an assignment would de�ne a path
z1, z2, . . . , zk−1 in Ck with k − 2 edges and z1 = zk−1. This is impossible sine
k − 2 is odd and k − 2 < k .The lemma now follows from Lemmas 12 and 9 together with Example 3. 2Lemma 37 If G is a digraph suh that (x, y) ∈ E[G] ⇒ (y, x) 6∈ E[G],then Max CSP({H})-B ≤AP Max CSP({G})-B, where H is the undiretedgraph obtained from G by replaing every edge in G by two edges in opposingdiretions in H.Proof. H(x, y) + (1 − 1) = G(x, y) +G(y, x) is a strit implementation of Hand the result follows from Lemma 12. 2Lemma 38 If G is a non-empty non-valid vertex-transitive digraph, thenMax CSP({G})-B is hard to approximate.Proof. By Lemmas 15 and 9, it is enough to onsider ores. For direted y-les, the result follows from Lemmas 36 and 37, and, for all other digraphs,from Corollary 35. 223



4.2 General DigraphsWe now deal with digraphs that are not vertex-transitive.Lemma 39 If G is a bipartite digraph whih is neither empty nor valid, thenMax CSP({G})-B is hard to approximate.Proof. If there are two edges (x, y), (y, x) ∈ E[G], then the ore of G is iso-morphi to P2 and the result follows from Lemmas 9 and 15 together withExample 3. If no suh pair of edges exist, then Lemmas 9 and 37 redue thisase to the previous ase where there are two edges (x, y), (y, x) ∈ E[G]. 2We will use a tehnique known as domain restrition [24℄ in the sequel. Fora subset D′ ⊆ D, let Γ
∣

∣

∣

D′

= {R
∣

∣

∣

D′

| R ∈ Γ and R∣∣∣
D′

is non-empty}. Thefollowing lemma was proved in [24, Lemma 3.5℄ (the lemma is stated in aslightly di�erent form there, but the proof together with [6, Lemma 8.2℄ andLemma 5 implies the existene of the required AP -redution).Lemma 40 If D′ ⊆ D and D′ ∈ Γ, then Max CSP(Γ
∣

∣

∣

D′

)-B ≤AP MaxCSP(Γ)-B.Typially, we will let D′ be an orbit in the automorphism group of a graph.We are now ready to present the three lemmas that are the building bloksof the main lemma in this setion, Lemma 44. Let G be a digraph. For a set
A ⊆ V [G], we de�ne A+ = {j | (i, j) ∈ E[G], i ∈ A}, and A− = {i | (i, j) ∈
E[G], j ∈ A}.Lemma 41 If a onstraint language Γ ontains two unary prediates S, Tsuh that S ∩ T = ∅, then Γ stritly implements S ∪ T .Proof. Let U = S ∪ T . Then U(x) + (1 − 1) = S(x) + T (x) is a strit imple-mentation of U(x). 2Lemma 42 Let H be a ore digraph and Ω an orbit in Aut(H). Then, Hstritly implements Ω+ and Ω−.Proof. Assume that H ∈ RD where D = {1, 2, . . . , p} and (without loss ofgenerality) assume that 1 ∈ Ω. We onstrut a strit implementation of Ω+;the other ase an be proved in a similar way. Consider the funtion

g(z1, . . . , zp) =
∑

H(i,j)=1

H(zi, zj).24



Sine H is a ore, it follows that g(a1, . . . , ap) = |E[H ]| if and only if thefuntion mapping i to ai, i = 1, . . . , p, is an automorphism of H . This alsoimplies that a neessary ondition for g(a1, . . . , ap) = |E[H ]| is that a1 isassigned some element in the orbit ontaining 1, i.e. the orbit Ω. We laimthat Ω+ an be stritly implemented as follows:
Ω+(x) + (α− 1) = max

z
(H(z1, x) + g(z))where z = (z1, z2, . . . , zp) and α = |E[H ]| + 1.Assume �rst that x ∈ Ω+ and hoose y ∈ Ω suh thatH(y, x) = 1. Then, thereexists an automorphism σ suh that σ(1) = y and H(z1, x)+g(z) = 1+ |E[H ]|by assigning variable zi, 1 ≤ i ≤ p, the value σ(i).If x 6∈ Ω+, then there is no y ∈ Ω suh that H(y, x) = 1. If the onstraint

H(z1, x) is to be satis�ed, then z1 must be hosen suh that z1 6∈ Ω. We havealready observed that suh an assignment annot be extended to an automor-phism of H and, onsequently, H(z1, x) + g(z) < 1 + |E[H ]| whenever z1 6∈ Ω.However, the assignment zi = i, 1 ≤ i ≤ p, makes H(z1, x) + g(z) = |E[H ]|sine the identity funtion is an automorphism of H . 2Lemma 43 If H is a ore digraph and Ω an orbit in Aut(H), then, for every
k, there is a k′ suh that Max CSP({H|Ω})-k ≤AP Max CSP({H})-k′.Proof. Let V [H ] = {1, 2, . . . , p} and arbitrarily hoose one element d ∈ Ω.Let I = (V, C) be an arbitrary instane of Max CSP({H|Ω})-k and let V =
{v1, . . . , vn}. Let k′ = k|E[H ]|+k. We onstrut an instane I ′ = (V ′∪V, C ′∪
C) of Max CSP({H})-k′ as follows: for eah variable vi ∈ V :(1) Add fresh variables w1

i , . . . , w
d−1
i , wd+1

i , . . . , wp
i to V ′ and let wd

i denotethe variable vi.(2) For eah (a, b) ∈ E[H ], add k opies of the onstraint H(wa
i , w

b
i ) to C ′.It is lear that I ′ is an instane ofMax CSP({H})-k′. (If some vertex i ∈ V [H ]our in every edge in H , then wd

i our at most k|E[H ]|+k times in I ′. Thisis the worst ase given by the onstrution above.)Let s′ be a solution to I ′. For an arbitrary variable vi ∈ V , if there is someonstraint in C ′ whih is not satis�ed by s′, then we an get another solution
s′′ by modifying s′ so that every onstraint in C ′ is satis�ed (if H(wa

i , w
b
i ) isa onstraint whih is not satis�ed by s′ then set s′′(wa

i ) = a and s′′(wb
i ) = b).We will denote this polynomial-time algorithm by P ′, so s′′ = P ′(s′). Theorresponding solution to I will be denoted by P (s′), so P (s′)(vi) = P ′(s′)(wd

i ).25



The algorithm P may make some of the onstraints involving vi unsatis�ed (atmost k onstraints will be made unsatis�ed as vi ours in at most k onstraintsin I). However, the number of opies, k, of the onstraints in C ′ implies that
m(I ′, s′) ≤ m(I ′, P ′(s′)). In partiular, this means that any optimal solutionto I ′ an be used to onstrut another optimal solution whih satis�es allonstraints in C ′.Hene, for eah vi ∈ V , all onstraints from step 2 are satis�ed by s′′ =
P ′(s′). As H is a ore, s′′ restrited to w1

i , . . . , w
p
i (for any vi ∈ V ) induesan automorphism of H . Denote the automorphism by f : V [H ] → V [H ] andnote that f an be de�ned as f(x) = s′′(wx

i ). Furthermore, s′′(wd
i ) ∈ Ω for all

wd
i ∈ V sine d ∈ Ω.To simplify the notation we let l = |E[H ]|. By a straightforward probabilistiargument we have opt(I) ≥ l

p2 |C|. Using this fat and the argument abovewe an bound the optimum of I ′ as follows:opt(I ′) ≤ opt(I) + kl|V |

≤ opt(I) + k2l|C|

≤ opt(I) + k2p2opt(I)

= (1 + k2p2)opt(I).

>From Lemma 5 we know that there exists a polynomial-time approximationalgorithm A for Max CSP(H
∣

∣

∣

Ω
). Let us assume that A is a c-approximationalgorithm, i.e., it produes solutions whih are c-approximate in polynomialtime. We onstrut the algorithm G in the AP -redution as follows:

G(I, s′) =











P (s′) if m(I, P (s′)) ≥ m(I, A(I)),

A(I) otherwise.We see that opt(I)/m(I, G(I, s′)) ≤ c. Let s′ be an r-approximate solutionto I ′. As m(I ′, s′) ≤ m(I ′, P ′(s′)), we get that P ′(s′) is an r-approximatesolution to I ′, too. Furthermore, sine P ′(s′) satis�es all onstraints introduedin step 2, we have opt(I ′) −m(I ′, P ′(s′)) = opt(I) −m(I, P (s′)). Let β =26



1 + k2p2 and note thatopt(I)

m(I, G(I, s′))
=

m(I, P (s′))

m(I, G(I, s′))
+
opt(I ′) −m(I ′, P ′(s′))

m(I, G(I, s′))

≤ 1 +
opt(I ′) −m(I ′, P ′(s′))

m(I, G(I, s′))

≤ 1 + c ·
opt(I ′) −m(I ′, P ′(s′))opt(I)

≤ 1 + cβ ·
opt(I ′) −m(I ′, P ′(s′))opt(I ′)

≤ 1 + cβ ·
opt(I ′) −m(I ′, P ′(s′))

m(I ′, P ′(s′))
≤ 1 + cβ(r − 1).

2Lemma 44 Let H be a non-empty non-valid digraph with at least two vertieswhih is not vertex-transitive. Then Max CSP({H})-B is hard to approxi-mate.Proof. The proof is by indution on the number of verties, |V [H ]|. If |V [H ]| =
2 then the result follows from Lemma 39. Assume now that |V [H ]| > 2 andthe lemma holds for all digraphs with a smaller number of verties. Note thatif H is not a ore then the ore of H has fewer verties or is vertex-transitive.In either ase, the result follows. So assume that H is a ore.We laim that either (a) Max CSP({H})-B is hard to approximate, or (b)there exists a proper subset X of V suh that |X| ≥ 2, H∣∣∣

X
is non-empty, H∣∣∣

Xis non-valid and for every k there exists a k′ suh that Max CSP({H
∣

∣

∣

X
})-k

≤AP Max CSP({H})-k′. Sine the ore of H∣∣∣
X
either is vertex-transitive orhas fewer verties than H , the lemma will follow from this laim.We now split the proof of the laim into three ases.Case 1: There exists an orbit Ω1 ( V [H ] suh that Ω+

1 ontains atleast one orbit.If H∣∣∣
Ω1

is non-empty, then we get the result from Lemma 43 and the indutionhypothesis, sine Ω1 ( V [H ] (we annot have |Ω1| = 1 beause then H wouldontain a loop). Assume that H∣∣∣
Ω1

is empty. As H∣∣∣
Ω1

is empty, we get that Ω+
1is a proper subset of V [H ] with at least two elements. If H∣∣∣

Ω+

1

is non-empty,then we get the result from Lemmas 42, 12 and 40. Hene, we assume that
H
∣

∣

∣

Ω+

1

is empty. 27



Arbitrarily hoose an orbit Ω2 ⊆ Ω+
1 and note that Ω+

1 ∩ Ω−
2 = ∅ sine H∣∣∣

Ω+

1is empty. If Ω+
1 ∪ Ω−

2 ( V [H ], then we get the result from Lemmas 42, 12,41 and 40 beause H∣∣∣
Ω+

1
∪Ω−

2

is non-empty. Hene, we an assume without lossof generality that Ω+
1 ∪ Ω−

2 = V [H ], and sine Ω+
1 ∩ Ω−

2 = ∅, we have anpartition of V [H ] into the sets Ω+
1 and Ω−

2 . Using the same argument as for
Ω+

1 , we an assume that H∣∣∣
Ω−

2

is empty. Therefore, Ω+
1 ,Ω−

2 is a partition of
V [H ] and H∣∣∣

Ω+

1

,H∣∣∣
Ω−

2

are both empty. This implies that H is bipartite and weget the result from Lemma 39.Case 2: There exists an orbit Ω1 ⊂ V [H ] suh that Ω−
1 ontains atleast one orbit.This ase is analogous to the previous ase.Case 3: For every orbit Ω ⊆ V [H ], neither Ω+ nor Ω− ontains anyorbits.Pik any two orbits Ω1 and Ω2 (not neessarily distint). Assume that thereare x ∈ Ω1 and y ∈ Ω2 suh that (x, y) ∈ E[H ]. Let z be an arbitrary vertexin Ω2. Sine Ω2 is an orbit of H , there is an automorphism ρ ∈ Aut(H) suhthat ρ(y) = z, so (ρ(x), z) ∈ E[H ]. Furthermore, Ω1 is an orbit of Aut(H) so

ρ(x) ∈ Ω1. Sine z was hosen arbitrarily, we onlude that Ω2 ⊆ Ω+
1 . However,this ontradits our assumption that neither Ω+

1 nor Ω−
1 ontains any orbit.We onlude that for any pair Ω1, Ω2 of orbits and any x ∈ Ω1, y ∈ Ω2, wehave (x, y) 6∈ E[G]. This implies that H is empty and Case 3 annot our. 2We will now give a simple example on how Theorem 33 an be used for study-ing the approximability of onstraint languages.Corollary 45 Let Γ be a onstraint language suh that Aut(Γ) ontains asingle orbit. If Γ ontains a non-empty k-ary, k > 1, relation R whih is not

d-valid for all d ∈ D, thenMax CSP(Γ)-B is hard to approximate. Otherwise,Max CSP(Γ) is tratable.Proof. If a relation R with the properties desribed above exists, then MaxCSP(Γ)-B is hard to approximate by Theorem 33 (note that R annot be
d-valid for any d). Otherwise, every k-ary, k > 1, relation S ∈ Γ is d-valid forall d ∈ D. If Γ ontains a unary relation U suh that U ( D, then Aut(Γ)would ontain at least two orbits whih ontradit our assumptions. It followsthat Max CSP(Γ) is trivially solvable. 228



Note that the onstraint languages onsidered in Corollary 45 may be seen asa generalisation of vertex-transitive graphs.4.3 Max CSP and SupermodularityIn this setion, we will prove two results whose proofs make use of Theorem 33.The �rst result (Proposition 51) onerns the hardness of approximatingMaxCSP(Γ) for Γ whih ontains all at most binary relations whih are 2-monotone(see �4.3.1 for a de�nition) on some partially ordered set whih is not a lattieorder. The other result, Theorem 53, states that Max CSP(Γ) is hard to ap-proximate if Γ ontains all at most binary supermodular prediates on somelattie and in addition ontains at least one prediate whih is not supermod-ular on the lattie.These results strengthens earlier published results [42,43℄ in various ways (e.g.,they apply to a larger lass of onstraint languages or they give approximationhardness instead of NP-hardness). In �4.3.1 we give a few preliminaries whihare needed in this setion while the new results are ontained in �4.3.2.4.3.1 PreliminariesReall that a partial order ⊑ on a domain D is a lattie order if, for every
x, y ∈ D, there exist a greatest lower bound x ⊓ y and a least upper bound
x ⊔ y. The algebra L = (D;⊓,⊔) is a lattie, and x ⊔ y = y ⇐⇒ x ⊓ y =
x ⇐⇒ x ⊑ y. We will write x ⊏ y if x 6= y and x ⊑ y. All latties we onsiderwill be �nite, and we will simply refer to these algebras as latties instead ofusing the more appropriate term �nite latties. The diret power of L, denotedby Ln, is the lattie with domain Dn and operations ating omponentwise.De�nition 46 (Supermodular funtion) Let L be a lattie. A funtion f :
Ln → R is alled supermodular on L if it satis�es,

f(a) + f(b) ≤ f(a ⊓ b) + f(a ⊔ b) (1)for all a, b ∈ Ln.The set of all supermodular prediates on a lattie L will be denoted bySpmodL and a onstraint language Γ is said to be supermodular on a lattie
L if Γ ⊆ SpmodL. We will sometimes use an alternative way of haraterisingsupermodularity:Theorem 47 ([25℄) An n-ary funtion f is supermodular on a lattie L ifand only if it satis�es inequality (1) for all (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ Lnsuh that 29



(1) ai = bi with one exeption, or(2) ai = bi with two exeptions, and, for eah i, the elements ai and bi areomparable in L.The following de�nition �rst ourred in [17℄.De�nition 48 (Generalised 2-monotone) Given a poset P = (D,⊑), aprediate f is said to be generalised 2-monotone on P if
f(x) = 1 ⇐⇒ ((xi1 ⊑ ai1)∧ . . .∧ (xis ⊑ ais))∨ ((xj1 ⊒ bj1)∧ . . .∧ (xjs

⊒ bjs
))where x = (x1, x2, . . . , xn) and ai1 , . . . , ais, bj1 , . . . , bjs

∈ D, and either of thetwo disjunts may be empty.It is not hard to verify that generalised 2-monotone prediates on some lattieare supermodular on the same lattie. For brevity, we will use the word 2-monotone instead of generalised 2-monotone.The following theorem follows from [24, Remark 4.7℄. The proof in [24℄ usesthe orresponding unbounded ourrene ase as an essential stepping stone;see [21℄ for a proof of this latter result.Theorem 49 (Max CSP on a Boolean domain) Let D = {0, 1} and Γ ⊆
RD be a ore. If Γ is not supermodular on any lattie on D, thenMax CSP(Γ)-
B is hard to approximate. Otherwise, Max CSP(Γ) is tratable.4.3.2 ResultsThe following proposition is a ombination of results proved in [17℄ and [42℄.Proposition 50
• If Γ onsists of 2-monotone relations on a lattie, then Max CSP(Γ) anbe solved in polynomial time.
• Let P = (D,⊑) be a poset whih is not a lattie. If Γ ontains all at mostbinary 2-monotone relations on P, then Max CSP(Γ) is NP-hard.We strengthen the seond part of the above result as follows:Proposition 51 Let ⊑ be a partial order, whih is not a lattie order, on
D. If Γ ontains all at most binary 2-monotone relations on ⊑, then MaxCSP(Γ)-B is hard to approximate.Proof. Sine ⊑ is a non-lattie partial order, there exist two elements a, b ∈ Dsuh that either a ⊓ b or a ⊔ b do not exist. We will give a proof for the �rstase and the other ase an be handled analogously.30



Let g(x, y) = 1 ⇐⇒ (x ⊑ a) ∧ (y ⊑ b). The prediate g is 2-monotone on Pso g ∈ Γ. We have two ases to onsider: (a) a and b have no ommon lowerbound, and (b) a and b have at least two maximal ommon lower bounds.In the �rst ase g is not valid. To see this, note that if there is an element
c ∈ D suh that g(c, c) = 1, then c ⊑ a and c ⊑ b, and this means that c is aommon lower bound for a and b, a ontradition. Hene, g is not valid, andthe proposition follows from Theorem 33.In ase (b) we will use the domain restrition tehnique from Lemma 40 to-gether with Theorem 33. In ase (b), there exist two distint elements c, d ∈ D,suh that c, d ⊑ a and c, d ⊑ b. Furthermore, we an assume that there is no el-ement z ∈ D distint from a, b, c suh that c ⊑ z ⊑ a, b, and, similarly, we anassume there is no element z′ ∈ D distint from a, b, d suh that d ⊑ z′ ⊑ a, b.Let f(x) = 1 ⇐⇒ (x ⊒ c) ∧ (x ⊒ d). This prediate is 2-monotone on P.Note that there is no element z ∈ D suh that f(z) = 1 and g(z, z) = 1, butwe have f(a) = f(b) = g(a, b) = 1. By restriting the domain to D′ = {x ∈
D | f(x) = 1} with Lemma 40, the result follows from Theorem 33. 2A diamond is a lattie L on a domainD suh that |D|−2 elements are pairwiseinomparable. That is, a diamond on |D| elements onsist of a top element, abottom element and |D| − 2 elements whih are pairwise inomparable. Thefollowing result was proved in [43℄.Theorem 52 Let Γ ontain all at most binary 2-monotone prediates on somediamond L. If Γ 6⊆ SpmodL, then Max CSP(Γ) is NP-hard.By modifying the original proof of Theorem 52, we an strengthen the resultin three ways: our result applies to arbitrary latties, we prove inapproxima-bility results instead of NP-hardness, and we prove the result for boundedourrene instanes.Theorem 53 Let Γ ontain all at most binary 2-monotone prediates on anarbitrary lattie L. If Γ 6⊆ SpmodL, then Max CSP(Γ)-B is hard to approxi-mate.Proof. Let f ∈ Γ be a prediate suh that f 6∈ SpmodL. We will �rst provethat f an be assumed to be at most binary. By Theorem 47, there is a unaryor binary prediate f ′ 6∈ SpmodL whih an be obtained from f by substitutingall but at most two variables by onstants. We present the initial part of theproof with the assumption that f ′ is binary and the ase when f ′ is unaryan be dealt with in the same way. Denote the onstants by a3, a4, . . . , an andassume that f ′(x, y) = f(x, y, a3, a4, . . . , an).31



Let k ≥ 5 be an integer and assume that Max CSP(Γ ∪ {f ′})-k is hard toapproximate. We will prove that Max CSP(Γ)-k is hard to approximate byexhibiting an AP -redution from Max CSP(Γ ∪ {f ′})-k to Max CSP(Γ)-
k. Given an instane I = (V, C) of Max CSP(Γ ∪ {f ′})-k, where C =
{C1, C2, . . . , Cq}, we onstrut an instane I ′ = (V ′, C ′) of Max CSP(Γ)-
k as follows:(1) for any onstraint (f ′,v) = Cj ∈ C, introdue the onstraint (f,v′) into

C, where v′ = (v1, v2, y
j
3, . . . , y

j
n), and add the fresh variables yj

3, y
j
4, . . . , y

j
nto V ′. Add two opies of the onstraints yj

i ⊑ ai and ai ⊑ yj
i for eah

i ∈ {3, 4, . . . , n} to C ′.(2) for other onstraints, i.e., (g,v) ∈ C where g 6= f ′, add (g,v) to C ′.It is lear that I ′ is an instane ofMax CSP(Γ)-k. If we are given a solution s′to I ′, we an onstrut a new solution s′′ to I ′ by letting s′′(yj
i ) = ai for all i, jand s′′(x) = s′(x), otherwise. Denote this transformation by P , so s′′ = P (s′).It is not hard to see that m(I ′, P (s′)) ≥ m(I ′, s′).From Lemma 5 we know that there is a onstant c and polynomial-time c-approximation algorithm A for Max CSP(Γ ∪ {f ′}). We onstrut the algo-rithm G in the AP -redution as follows:

G(I, s′) =
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V
) ≥ m(I, A(I)),

A(I) otherwise.We see that opt(I)/m(I, G(I, s′)) ≤ c.By Lemma 5, there is a onstant c′ suh that for any instane I of MaxCSP(Γ), we have opt(I) ≥ c′|C|. Furthermore, due to the onstrution of I ′and the fat that m(I ′, P (s′)) ≥ m(I ′, s′), we haveopt(I ′) ≤ opt(I) + 4(n− 2)|C|

≤ opt(I) +
4(n− 2)
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4(n− 2)

c′

)

.

Let s′ be an r-approximate solution to I ′. As m(I ′, s′) ≤ m(I ′, P (s′)), we getthat P (s′) also is an r-approximate solution to I ′. Furthermore, sine P (s′)satis�es all onstraints introdued in step 1, we have opt(I ′)−m(I ′, P (s′)) =32



opt(I) −m(I, P (s′)
∣

∣
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V
). Let β = 1 + 4(n− 2)/c′ and note thatopt(I)

m(I, G(I, s′))
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m(I, P (s′)
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V
)
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+
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opt(I ′) −m(I ′, P (s′))opt(I)
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opt(I ′) −m(I ′, P (s′))opt(I ′)

≤ 1 + cβ ·
opt(I ′) −m(I ′, P (s′))

m(I ′, P (s′))
≤ 1 + cβ(r − 1).We onlude that Max CSP(Γ)-k is hard to approximate if Max CSP(Γ ∪

{f ′})-k is hard to approximate.We will now prove that Max CSP(Γ)-B is hard to approximate under theassumption that f is at most binary. We say that the pair (a, b) witnesses thenon-supermodularity of f if f(a) + f(b) 6≤ f(a ⊓ b) + f(a ⊔ b).Case 1: f is unary. As f is not supermodular on L, there exists elements
a, b ∈ L suh that (a, b) witnesses the non-supermodularity of f .Note that a and b annot be omparable beause we would have {a⊔b, a⊓b} =
{a, b}, and so f(a⊔b)+f(a⊓b) = f(a)+f(b) ontraditing the hoie of (a, b).We an now assume, without loss of generality, that f(a) = 1. Let z∗ = a ⊓ band z∗ = a ⊔ b. Note that the two prediates u(x) = 1 ⇐⇒ x ⊑ z∗ and
u′(x) = 1 ⇐⇒ z∗ ⊑ x are 2-monotone and, hene, ontained in Γ. By usingLemma 40, it is therefore enough to prove approximation hardness for MaxCSP(Γ
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D′

)-B, where D′ = {x ∈ D | z∗ ⊑ x ⊑ z∗}.Subase 1a: f(a) = 1 and f(b) = 1. At least one of f(z∗) = 0 and f(z∗) = 0must hold.Assume that f(z∗) = 0, the other ase an be handled in a similar way. Let
g(x, y) = 1 ⇐⇒ [(x ⊑ a) ∧ (y ⊑ b)] and note that g is 2-monotone so g ∈ Γ.Let d be an arbitrary element inD′ suh that g(d, d) = 1. >From the de�nitionof g we know that d ⊑ a, b so d ⊑ z∗ whih implies that d = z∗. Furthermore, wehave g(a, b) = 1, f(a) = f(b) = 1, and f(z∗) = 0. Let D′′ = {x ∈ D′ | f(x) =

1}. By applying Theorem 33 to g|D′′, we see that Max CSP(Γ
∣
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D′′

)-B is hardto approximate. Now Lemma 40 implies the result for Max CSP(Γ
∣

∣

∣

D′

)-B,and hene for Max CSP(Γ)-B. 33



Subase 1b: f(a) = 1 and f(b) = 0. In this ase, f(z∗) = 0 and f(z∗) = 0holds.If there exists d ∈ D′ suh that b ⊏ d ⊏ z∗ and f(d) = 1, then we get f(a) = 1,
f(d) = 1, a⊔d = z∗ and f(z∗) = 0, so this ase an be handled by Subase 1a.Assume that suh an element d does not exist.Let u(x) = 1 ⇐⇒ b ⊑ x. The prediate u is 2-monotone so u ∈ Γ. Let h(x) =
f |D′(x)+u|D′(x). By the observation above, this is a strit implementation. ByLemmas 12 and 9, it is su�ient to prove the result for Γ′ = Γ|D′∪{h}. This anbe done exatly as in the previous subase, with D′′ = {x ∈ D′ | h(x) = 1}.Case 2: f is binary. We now assume that Case 1 does not apply. By Theo-rem 47, there exist a1, a2, b1, b2 suh that

f(a1, a2) + f(b1, b2) 6≤ f(a1 ⊔ b1, a2 ⊔ b2) + f(a1 ⊓ b1, a2 ⊓ b2) (2)where a1, b1 are omparable and a2, b2 are omparable. Note that we annothave a1 ⊑ b1 and a2 ⊑ b2, beause then the right hand side of (2) is equalto f(b1, b2) + f(a1, a2) whih is a ontradition. Hene, we an without loss ofgenerality assume that a1 ⊑ b1 and b2 ⊑ a2.As in Case 1, we will use Lemma 40 to restrit our domain. In this ase, wewill onsider the subdomain D′ = {x ∈ D | z∗ ⊑ x ⊑ z∗} where z∗ = a1 ⊓ b2and z∗ = a2⊔ b1. As the two prediates uz∗(x) and uz∗(x), de�ned by uz∗(x) =
1 ⇐⇒ x ⊑ z∗ and uz∗(x) = 1 ⇐⇒ z∗ ⊑ x, are 2-monotone prediates andmembers of Γ, Lemma 40 tells us that it is su�ient to prove hardness forMax CSP(Γ′)-B where Γ′ = Γ

∣

∣

∣

D′

.We de�ne the funtions ti : {0, 1} → {ai, bi}, i = 1, 2 as follows:
• t1(0) = a1 and t1(1) = b1;
• t2(0) = b2 and t2(1) = a2.Hene, ti(0) is the least element of ai and bi and ti(1) is the greatest elementof ai and bi.Our strategy will be to redue a ertain Boolean Max CSP problem to MaxCSP(Γ′)-B. De�ne three Boolean prediates as follows: g(x, y) = f(t1(x), t2(y)),
c0(x) = 1 ⇐⇒ x = 0, and c1(x) = 1 ⇐⇒ x = 1. One an verify that MaxCSP({c0, c1, g})-B is hard to approximate for eah possible hoie of g, byusing Theorem 49; onsult Table 1 for the di�erent possibilities of g.The following 2-monotone prediates (on D′) will be used in the redution:
hi(x, y) = 1 ⇐⇒ [(x ⊑ z∗) ∧ (y ⊑ ti(0))] ∨ [(z∗ ⊑ x) ∧ (ti(1) ⊑ y)], i = 1, 2.34



Table 1Possibilities for g.
x y t1(x) t2(y) g(x, y)

0 0 a1 b2 0 0 0 0 1

0 1 a1 a2 1 1 0 1 1

1 0 b1 b2 1 0 1 1 1

1 1 b1 a2 1 0 0 0 0The prediates h1, h2 are 2-monotone so they belong to Γ′. We will also usethe following prediates:
• Ld(x) = 1 ⇐⇒ x ⊑ d,
• Gd(x) = 1 ⇐⇒ d ⊑ x, and
• Nd,d′(x) = 1 ⇐⇒ (x ⊑ d) ∨ (d′ ⊑ x)for arbitrary d, d′ ∈ D′. These prediates are 2-monotone.Let w be an integer suh that Max CSP({g, c0, c1})-w is hard to approx-imate; suh an integer exists aording to Theorem 49. Let I = (V, C),where V = {x1, x2, . . . , xn} and C = {C1, . . . , Cm}, be an instane of MaxCSP({g, c0, c1})-w. We will onstrut an instane I ′ of Max CSP(Γ′)-w′,where w′ = 8w + 5, as follows:1. For every Ci ∈ C suh that Ci = g(xj, xk), introdue(a) two fresh variables yi

j and yi
k,(b) the onstraint f(yi

j, y
i
k),() 2w + 1 opies of the onstraints Lb1(y

i
j), Ga1

(yi
j), Na1,b1(y

i
j),(d) 2w + 1 opies of the onstraints La2

(yi
k), Gb2(y

i
k), Nb2,a2

(yi
k), and(e) 2w + 1 opies of the onstraints h1(xj , y

i
j), h2(xk, y

i
k).2. for every Ci ∈ C suh that Ci = c0(xj), introdue the onstraint Lz∗(xj),and3. for every Ci ∈ C suh that Ci = c1(xj), introdue the onstraint Gz∗(xj).The intuition behind this onstrution is as follows: due to the bounded our-rene property and the quite large number of opies of the onstraints in steps1, 1d and 1e, all of those onstraints will be satis�ed in �good� solutions. Theelements 0 and 1 in the Boolean problem orresponds to z∗ and z∗, respe-tively. This may be seen in the onstraints introdued in steps 2 and 3. Theonstraints introdued in step 1 essentially fore the variables yi

j to be either
a1 or b1, and the onstraints in step 1d work in a similar way. The onstraintsin step 1e work as bijetive mappings from the domains {a1, b1} and {a2, b2}to {z∗, z

∗}. For example, h1(xj , y
i
j) will set xj to z∗ if yi

j is a1, otherwise if yi
jis b1, then xj will be set to z∗. Finally, the onstraint introdued in step 1borresponds to g(xj, xk) in the original problem.35



It is lear that I ′ is an instane of Max CSP(Γ′)-w′. Note that due to thebounded ourrene property of I ′, a solution whih does not satisfy all on-straints introdued in steps 1, 1d and 1e an be used to onstrut a newsolution whih satis�es those onstraints and has a measure whih is greaterthan or equal to the measure of the original solution. We will denote thistransformation of solutions by P .Given a solution s′ to I ′, we an onstrut a solution s = G(s′) to I by, forevery x ∈ V , letting s(x) = 0 if P (s′)(x) = z∗ and s(x) = 1, otherwise.Let M be the number of onstraints in C of type g. We have that, for anarbitrary solution s′ to I ′, m(I ′, P (s′)) = m(I, G(s′)) + 8(2w + 1) · M ≥
m(I ′, s′). Furthermore, opt(I ′) = opt(I) + 8(2w + 1)M .Now, assume that opt(I ′)/m(I ′, s′) ≤ ε′. Then opt(I ′)/m(I ′, P (s′)) ≤ ε′and opt(I) + 8(2w + 1)M

m(I, G(s′)) + 8(2w + 1)M
≤ ε′ ⇒opt(I) ≤ ε′m(I, G(s′)) + (ε′ − 1)8(2w + 1)M ⇒opt(I)

m(I, G(s′))
≤ ε′ +

8(2w + 1)M(ε′ − 1)

m(I, G(s′))
.Furthermore, by standard arguments, we an assume that m(I, G(s′)) ≥

|C|/c, for some onstant c. We get,opt(I)

m(I, G(s′))
≤ ε′ + 8(2w + 1)c(ε′ − 1).Hene, a polynomial time approximation algorithm forMax CSP(Γ′)-w′ withperformane ratio ε′ an be used to obtain ε′′-approximate solutions, where

ε′′ is given by ε′ + 8(2w + 1)c(ε′ − 1), for Max CSP({c0, c1, g})-w in polyno-mial time. Note that ε′′ tends to 1 as ε′ approahes 1. This implies that MaxCSP(Γ′)-w′ is hard to approximate beause Max CSP({c0, c1, g})-w is hardto approximate. 2

5 Conlusions and Future WorkThis artile has two main results: the �rst one is thatMax CSP(Γ) has a hardgap at loation 1 whenever Γ satis�es a ertain ondition whih makes CSP(Γ)NP-hard. This ondition aptures all onstraint languages whih are urrentlyknown to make CSP(Γ) NP-hard. This ondition has also been onjeturedto be the dividing line between tratable (in P) CSPs and NP-hard CSPs.36



The seond result is that single relation Max CSP is either trivial or hard toapproximate.It is possible to strengthen these results in a number of ways. The followingpossibilities applies to both of our results.We have paid no attention to the onstant whih we prove inapproximabilityfor. That is, given a onstraint language Γ, what is the smallest onstant csuh thatMax CSP(Γ) is not approximable within c−ε for any ε > 0 in poly-nomial time? For some relations a lot of work has been done in this diretion,f. [6,32,40,56℄ for more details. As mentioned in the introdution Raghaven-dra's result [52℄ give almost optimal approximability results for all onstraintlanguages, assuming the UGC. The methods used to obtain good onstants arebased on sophistiated PCP onstrutions, semide�nite programming and theUGC. We note that these tehniques are very di�erent from the ones we haveused in this paper. At present it seems di�ult to use the algebrai tehniquesto obtain good onstants.We have a onstant number of variable ourrenes in our hardness results,but the onstant is unspei�ed. For some problems, for exampleMax 2Sat, itis known that allowing only three variable ourrenes still makes the problemhard to approximate (even APX-hard) [6℄. This is also true for some otherMax CSP problems suh asMax Cut [1℄. However, there are CSP problemswhih are NP-hard but whih beomes easy if the number of variable our-renes are restrited to three. In partiular, it is known that for eah k ≥ 3there is an integer f(k) suh that if s ≤ f(k) then k-Sat-s (the satis�abilityproblem with lauses of length k and at most s ourrenes of eah variable)is trivial (every instane is satis�able) and otherwise, if s > f(k), then theproblem is NP-omplete. Some bounds are also known for f but the exatbehaviour remains unknown [41℄. As every instane is satis�able the orre-sponding maximisation problem Max k-Sat-s is also trivial for s ≤ f(k).This leads to the following problem: �nd the smallest integer k(Γ) suh thatMax CSP(Γ)-k(Γ) is hard to approximate, for onstraint languages Γ whihsatis�es the ondition in Lemma 21 (so Csp(Γ) isNP-omplete). One an alsoask the same question for a single non-empty non-valid relation R: �nd thesmallest integer k(R) so that Max CSP({R})-k(R) is hard to approximate.One of the main open problems is to lassify Max CSP(Γ) for all onstraintlanguages Γ, with respet to tratability of �nding an optimal solution. Theurrent results in this diretion [17,24,36,43℄ seems to indiate that the oneptof supermodularity is of entral importane for the omplexity of Max CSP.However, the problem is open on both ends � we do not know if supermod-ularity implies tratability and neither do we know if non-supermodularityimplies non-tratability. Here �non-tratability� should be interpreted as �notin PO� under some suitable omplexity-theoreti assumption, the questions37
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