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Abstract. We study a family of problems, called Maximum Solution
(Max Sol), where the objective is to maximise a linear goal function
over the feasible integer assignments to a set of variables subject to a set
of constraints. When the domain is Boolean (i.e. restricted to {0, 1}), the
maximum solution problem is identical to the well-studied Max Ones
problem, and the complexity and approximability is completely under-
stood for all restrictions on the underlying constraints. We continue this
line of research by considering the Max Sol problem for relations de-
fined by regular signed logic over finite subsets of the natural numbers;
the complexity of the corresponding decision problem has recently been
classified by Creignou et al. [Theory of Computing Systems, 42(2):239–
255, 2008]. We give sufficient conditions for when such problems are
polynomial-time solvable and we prove that they are APX-hard other-
wise. Similar dichotomies are also obtained for variants of the Max Sol
problem.

1 Introduction

Our starting-point is the combinatorial optimisation problem Max Ones(Γ )
where Γ (known as the constraint language) is a finite set of finitary relations
over {0, 1}. An instance of this problem consists of constraints from Γ applied to
a number of Boolean variables, and the goal is to find an assignment that satisfies
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all constraints while maximising the number of variables set to 1. It is easy to
see that by choosing the constraint language appropriately, Max Ones(Γ ) cap-
tures a number of well-known problems such as Max Independent Set, Max
k-Hypergraph Independent Set, and many variants of Max 0/1 Program-
ming. The approximability (and thus the computational complexity) is known
for all choices of Γ [26]. For any Boolean constraint language Γ , Max Ones(Γ )
is either in PO or is APX-complete or poly-APX-complete or finding a so-
lution of non-zero value is NP-hard or finding any solution is NP-hard. The
exact borderlines between the different cases are given in [26] where it is also
proved that the approximability for the weighted and unweighted versions of the
problem coincide.

In this article, we will consider Max Ones generalised to non-Boolean do-
mains which has also recently been studied in [24, 25, 28]. Let the domain be a
finite set D = {0, 1, . . . , d} equipped with the total order 0 < 1 < . . . < d. For
pedagogical reasons, we sometimes denote the largest element in the domain by
maxD, although we reserve d for the largest element in the domain throughout
the paper. The set of all n-tuples of elements from D is denoted by Dn. Any
subset of Dn is called an n-ary relation on D. The set of all finitary relations over
D is denoted by RD. A constraint language over D is a finite set Γ ⊆ RD. Given
a relation R, we let ar(R) denote the arity of R. Constraint languages are the
way in which we specify restrictions on our problems. The constraint satisfaction
problem over the constraint language Γ , denoted Csp(Γ ), is defined to be the
decision problem with instance (V,D,C), where V is a set of variables, D is a
domain, and C is a set of constraints {C1, . . . , Cq}, in which each constraint Ci is
a pair (%i, si) with si a list of variables of length mi, called the constraint scope,
and %i an mi-ary relation over the set D, belonging to Γ , called the constraint
relation.

The question is whether there exists a solution to (V,D,C) or not, that
is, a function from V to D such that, for each constraint in C, the image of
the constraint scope is a member of the constraint relation. The optimisation
problem we are going to study, Max Sol, can then be defined as follows:

Definition 1. Weighted Maximum Solution over the constraint language Γ , de-
noted Max Sol(Γ ), is defined to be the optimisation problem with

Instance: Tuple (V,D,C,w), where (V,D,C) is a Csp instance over Γ , and
w : V → N is a weight function.

Solution: An assignment f : V → D to the variables such that all constraints
are satisfied.

Measure:
∑

v∈V

w(v) · f(v)

For instance, this framework enables the study of certain problems in integer
linear programming [18], equation solving over Abelian groups [28], and gener-
alisations of the maximum independent set problem [25]. We restrict ourselves
to constraint languages that are definable in regular signed logic [20], This logic
provides us with convenient concepts for defining a class of relations with strong
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modelling capabilities: Jeavons and Cooper [22] have proved that any constraint
can be expressed as the conjunction of expressions over this class of relations. A
disadvantage with their approach is that the resulting set of constraints may by
exponentially large (in the number of tuples in the constraint to be expressed).
An improved algorithm solving the same problem has been suggested by Gil
et al. [15]. It takes a constraint/relation represented by the set of all assign-
ments/tuples that satisfies it and outputs in polynomial time (in the number of
tuples) an expression that is equivalent to the original constraint. The complex-
ity of reasoning within this class of logically defined relations has been considered
before in, for example, [10, 22]. One may also note that this class of relations is
an instance of disjunctive constraints in the sense of Cohen et al. [9]. However,
optimisation within this framework has not been considered earlier.

Let Γ be a finite set of relations definable in regular signed logic. Our aim
is to classify the complexity of Max Sol problem when the constraints are
restricted to relations in Γ . Thus, we parameterise our problems according to
the allowed relations and we denote the restricted problem Max Sol(Γ ). We
prove the following dichotomy result:

Max Sol(Γ ) is either in PO or APX-hard.

When a problem is APX-hard, then there is a constant c such that the problems
cannot be approximated in polynomial time within c − ε for any ε > 0 unless
P=NP. A direct consequence is that these problems do not admit polynomial-
time approximation schemes. We also consider the analogous minimisation prob-
lem Min Sol and the problem Max AW Sol (where the weights are not as-
sumed to be non-negative); similar dichotomies are obtained for these problems.
This kind of dichotomy results are important in computational complexity since
they can be seen as exceptions to Ladner’s [29] result; he proved that there exists
an infinite hierarchy of increasingly difficult problems between P and the NP-
complete problems. Thus, the existence of a complexity dichotomy for a class of
problems cannot be taken for granted.

The article is structured as follows: Section 2 contains the basic definitions
and results. The results for Max Sol, Min Sol, and Max AW Sol are pre-
sented in Sections 3–5, respectively. Finally, some concluding remarks are given
in Section 6.

2 Preliminaries

This section contains four parts: in the first, we present regular signed logic and
demonstrate how it can be used for defining constraint languages. The second
part contains some basic definitions and facts concerning approximation prob-
lems and approximability. The final two parts contain material on the algebraic
method for studying constraint satisfaction problems.
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2.1 Logically defined constraint languages

We will now briefly introduce regular signed logic. Let V be a set of variables.
For x ∈ V and a ∈ D, the inequalities x ≥ a and x ≤ a are called positive
and negative literals, respectively. A clause is a disjunction of literals. A clausal
pattern is a multiset of the form P = (+a1, . . . ,+ap,−b1, . . . ,−bq) where p, q ∈ N
and ai, bi ∈ D for all i. The pattern P is said to be negative if p = 0 and positive
if q = 0. The sum p+ q, also denoted |P |, is the length of the pattern.

A clausal language L is a set of clausal patterns. Given a clausal language
L, an L-clause is a pair (P,x), where P ∈ L is a pattern and x is a vector of
not necessarily distinct variables from V such that |P | = |x|. A pair (P,x) with
a pattern P = (+a1, . . . ,+ap,−b1, . . . ,−bq) and variables x = (x1, . . . , xp+q)
represents the clause

(x1 ≥ a1 ∨ . . . ∨ xp ≥ ap ∨ xp+1 ≤ b1 ∨ . . . ∨ xp+q ≤ bq),

where ∨ is the disjunction operator. An L-formula ϕ is a conjunction of a finite
number of L-clauses. An assignment is a mapping I : V → D assigning a domain
element I(x) to each variable x ∈ V and I satisfies ϕ if and only if

(I(x1) ≥ a1 ∨ . . . ∨ I(xp) ≥ ap ∨ I(xp+1) ≤ b1 ∨ . . . ∨ I(xp+q) ≤ bq)

holds for every clause in ϕ. It can be easily seen that the literals +0 and −d are
superfluous since the inequalities x ≥ 0 and x ≤ d vacuously hold. Without loss
of generality, it is sufficient to only consider patterns and clausal languages with-
out such literals. We see that clausal patterns are nothing more than a convenient
way of specifying certain relations — consequently, we can use them for defining
constraint languages. Thus, we make the following definitions: given a clausal lan-
guage L and a clausal pattern P = (+a1, . . . ,+ap,−b1, . . . ,−bq), we let Rel(P )
denote the corresponding relation, i.e. Rel(P ) = {x ∈ Dp+q | (P,x) hold} and
ΓL = {Rel(P ) | P ∈ L}.

It is easy to see that several well-studied optimisation problems are captured
by this framework.

Example 2. Let the domainD be {0, 1}. The problem Independent Set (where
the objective is to find an independent set of maximum weight in an undi-
rected graph) can be viewed as the Max Sol(Γ(−0,−0)) problem. Similarly, Max
Sol(Γ{(−0,...,−0)}) (with k literals) is the Max k-Hypergraph Independent
Set problem while Min Sol(Γ{(+1,+1)}) is the Minimum Vertex Cover prob-
lem.

2.2 Approximability and reductions

A combinatorial optimisation problem is defined over a set of instances (admis-
sible input data); each instance I has a finite set sol(I) of feasible solutions
associated with it. Given an instance I and a feasible solution s of I, m(I, s)
denotes the integer measure of s. Note that the measure is often required to
be a positive integer (cf. [2]) but this is not possible in this article since we
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are considering problems that may have negative optimal measure. Such prob-
lems instances will only occur in connection with the Max AW Sol problem in
Section 5, though.

The objective given an instance I is to find a feasible solution of optimum
value with respect to the measure m. The optimal value is the largest one for
maximisation problems and the smallest one for minimisation problems. A com-
binatorial optimisation problem is said to be an NPO problem if its instances
and solutions can be recognised in polynomial time, the solutions are polynomi-
ally bounded in the input size, and the objective function can be computed in
polynomial time (see, e.g. [3]).

We say that a solution s ∈ sol(I) to an instance I of an NPO problem Π is
r-approximate, r ≥ 1, if it is satisfying

opt(I)
r

≤ m(I, s) ≤ r · opt(I).

An approximation algorithm for an NPO problem Π has performance ratio
R(n) if, given any instance I of Π with |I| = n, it outputs an R(n)-approximate
solution. We define PO to be the class of NPO problems that can be solved
(to optimality) in polynomial time. An NPO problem Π is in the class APX if
there is a polynomial-time approximation algorithm for Π whose performance
ratio is bounded by a constant. Hardness in APX is defined using an appropriate
reduction, called AP -reduction [11, 26].

Definition 3. An NPO problem Π1 is said to be AP -reducible to an NPO
problem Π2 if two polynomial-time computable functions F and G and a constant
α exist such that

(a) for any instance I of Π1, F (I) is an instance of Π2;
(b) for any instance I of Π1, and any feasible solution s′ of F (I), G(I, s′) is a

feasible solution of I;
(c) for any instance I of Π1, and any r ≥ 1, if s′ is an r-approximate solution

of F (I) then G(I, s′) is an (1 + (r − 1)α + o(1))-approximate solution of I
where the o-notation is with respect to |I|.

An NPO problem Π is APX-hard if every problem in APX is AP -reducible
to it. If, in addition, Π is in APX, then Π is called APX-complete.

It is a well-known fact (cf. Section 8.2.1 in [3]) that AP -reductions compose.
In some proofs, we will use another kind of reduction, S-reductions, defined as
follows:

Definition 4. An NPO problem Π1 is said to be S-reducible to an NPO prob-
lem Π2 if two polynomial-time computable functions F and G exist such that

(a) given any instance I of Π1, algorithm F produces an instance I ′ = F (I) of
Π2, such that the measure of an optimal solution for I ′, opt(I ′), is exactly
opt(I).
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(b) given I ′ = F (I), and any solution s′ to I ′, algorithm G produces a solution
s to I such that m(I,G(s′)) = m′(I ′, s′).

Obviously, the existence of an S-reduction from Π1 to Π2 implies the existence
of an AP -reduction from Π1 to Π2. The reason why we need S-reductions is
that AP -reductions do not (generally) preserve membership in PO [26]. We also
note that S-reductions preserve approximation thresholds exactly for problems
in APX: let Π1,Π2 be problems in APX, assume that it is NP-hard to approx-
imate Π1 within c, and that there exists an S-reduction from Π1 to Π2. Then,
it is NP-hard to approximate Π2 within c, too.

In some of our hardness proofs, it will be convenient for us to use a third
kind of approximation-preserving reduction known as L-reduction [3]:

Definition 5. An NPO problem Π1 is said to be L-reducible to an NPO prob-
lem Π2 if two polynomial-time computable functions F and G and positive con-
stants β and γ exist such that

(a) given any instance I of Π1, algorithm F produces an instance I ′ = F (I) of
Π2, such that the measure of an optimal solution for I ′, opt(I ′), is at most
β · opt(I);

(b) given I ′ = F (I), and any solution s′ to I ′, algorithm G produces a solution
s to I such that |m1(I, s)−opt(I)| ≤ γ · |m2(I ′, s′)−opt(I ′)|, where m1 is
the measure for Π1 and m2 is the measure for Π2.

It is well-known (see, e.g. Lemma 8.2 in [3]) that, if Π1 is L-reducible to Π2 and
Π1 ∈ APX then there is an AP -reduction from Π1 to Π2. This explains why
some of the forthcoming technical results are APX-completeness results and not
(only) APX-hardness results.

We say that an optimisation problem Π admits a polynomial-time approx-
imation scheme (Ptas) if there exists an algorithm A satisfying the following
property: for any instance I of Π and any rational value r > 1, A(I, r) returns
an r-approximate solution of I in time polynomial in |I|. It is well-known (cf. [2,
Corr. 3.13]) that if P 6= NP, then no APX-hard problem admits a polynomial-
time approximation scheme.

2.3 Algebraic framework

Our results are to a certain extent based on recent algebraic methods for studying
constraint satisfaction problems. The use of algebraic techniques for studying
such problems has made it possible to clarify the borderline between polynomial-
time solvable and intractable cases. Both our tractability and hardness results
exploit algebraic techniques — typically, we prove a restricted base case and
then extend the result to its full generality via algebraic techniques. To this end,
we introduce (in the next section) the concept of max-cores (which is a variant of
the algebraic and graph-theoretic concept core) and show some of its properties.

An operation on D is an arbitrary function f : Dk → D. Any operation on D
can be extended in a standard way to an operation on tuples over D, as follows:
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Let f be a k-ary operation on D and let R be an n-ary relation over D. For any
collection of k tuples, t1, t2, . . . , tk ∈ R, the n-tuple f(t1, t2, . . . , tk) is defined
as follows:

f(t1, . . . , tk) = (f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n]))

where tj [i] is the i-th component in tuple tj . If f is an operation such that for
all t1, t2, . . . , tk ∈ R, f(t1, t2, . . . , tk) ∈ R, then R is said to be invariant (or
closed) under f . If all constraint relations in Γ are invariant under f then Γ
is invariant under f . An operation f such that Γ is invariant under f is called
a polymorphism of Γ . The set of all polymorphisms of Γ is denoted Pol(Γ ).
Given a set of operations F , the set of all relations that is invariant under all
the operations in F is denoted Inv(F ). Sets of operations of the form Pol(Γ )
are known as clones, and they are well-studied objects in algebra (cf. [33]). We
remark that the operators Inv and Pol form a Galois correspondence between
the set of relations over D and the set of operations on D. A basic introduction
to this correspondence can be found in [32], and a comprehensive study in [33].

A first-order formula ϕ over a constraint language Γ is said to be primitive
positive (or pp-formula for short) if it is of the form

∃x : (R1(x1) ∧ . . . ∧Rk(xk))

whereR1, . . . , Rk ∈ Γ and x,x1, . . . ,xk are vectors of variables such that ar(Ri) =
|xi| for all i and all variables in x appear in x1, . . . ,xk. Note that a pp-formula
ϕ with m free variables defines an m-ary relation R ⊆ Dm, denoted R ≡pp ϕ;
the relation R is the set of all m-tuples satisfying the formula ϕ.

We define a closure operation 〈·〉 such that R ∈ 〈Γ 〉 if and only if the relation
R can be obtained from Γ ∪ {=D} by pp-formulas, where =D is the equivalence
relation on the domain D. If Γ is a constraint language over a finite domain,
then 〈Γ 〉 = Inv(Pol(Γ )) [33].

The following lemma from [24] states that Max Sol over finite subsets of
〈Γ 〉 is no harder than Max Sol over Γ itself.

Lemma 6 ([24]). Let Γ ′ be a finite constraint language such that Γ ′ ⊆ 〈Γ 〉. If
Max Sol(Γ ) is in PO, then Max Sol(Γ ′) is in PO and if Max Sol(Γ ′) is
APX-hard then Max Sol(Γ ) is APX-hard.

The lemma above also holds also for Min Sol and Max AW Sol. Also note
the following consequence: if Γ and Γ ′ are finite constraint languages such that
〈Γ ′〉 = 〈Γ 〉, then Max Sol(Γ ) is APX-hard (in PO) if and only if Max Sol(Γ ′)
is APX-hard (in PO).

The next lemma simplifies some of the forthcoming proofs and its proof is
an easy consequence of the preceding lemma.

Lemma 7. Let P = (+a1,+a2, . . . ,+ap,−b1, . . . ,−bq) and

P1 = (+a1,+min{a2, . . . , ap},−b1, . . . ,−bq).
Then, APX-hardness of Max Sol(Γ{P1}) implies the APX-hardness of Max
Sol(Γ{P}). Similarly, if

P2 = (+a1, . . . ,+ap,−b1,−max{b2, . . . , bq}),
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then APX-hardness of Max Sol(Γ{P2}) implies APX-hardness of Max Sol(Γ{P}).
The same results also hold for Min Sol and Max AW Sol.

Proof. We see that (x ≥ a1 ∨ y ≥ min(a2, . . . , ap) ∨ z1 ≤ b1 ∨ . . . ∨ zq ≤ bq) ≡pp

(x ≥ a1 ∨ y ≥ a2 ∨ . . . ∨ y ≥ ap ∨ z1 ≤ b1 ∨ . . . zq ≤ bq) so if Max Sol(Γ{P1})
is APX-hard then, by Lemma 6, so is Max Sol(Γ{P}). The other cases can be
proved analogously. ut

2.4 Max-cores

The concept of a core of a constraint language Γ has previously shown its value
when classifying the complexity of CSP(Γ ). For instance, it is known that a
complete classification of the core languages implies a complete classification of
all constraint languages [6, 23].

Definition 8. An endomorphism of Γ is a unary operation f : D → D such
that, for all R ∈ Γ and all (a1, . . . , am) ∈ Dm:

(a1, . . . , am) ∈ R⇒ (f(a1), . . . , f(am)) ∈ R.

We say that Γ is a core if every endomorphism of Γ is injective (i.e. a permu-
tation).

Obviously, the endomorphisms of Γ are the unary operations in Pol(Γ ). In order
to gain some intuition, assume that Γ is not a core. Then, Γ has a non-injective
endomorphism f , which implies that, for every assignment ϕ, there is another
assignment fϕ that satisfies all constraints satisfied by ϕ. Furthermore, fϕ uses
only a restricted set of values so CSP(Γ ) is equivalent to CSP(Γ |D′) where
D′ ⊂ D. It is known that all cores of F are isomorphic, so one can speak about
the core of F .

We define a related concept (called max-core) for the Max Sol problem. For
a relation R = {(d11, . . . , d1m), . . . , (dt1, . . . , dtm)} and a unary operation f , let
f(R) denote the relation

{(f(d11), . . . , f(d1m)), . . . , (f(dt1), . . . , f(dtm))}.

Similarly, let f(Γ ) denote the constraint language {f(R) | R ∈ Γ}. We will now
turn our attention to increasing endomorphisms, i.e. endomorphisms that satisfy
f(d) ≥ d for all d ∈ D.

Lemma 9. Let Γ be a finite constraint language over D and f an increasing
endomorphism. The following holds: Max Sol(Γ ) is in PO (APX-hard) if and
only if Max Sol(f(Γ )) is in PO (APX-hard).

Proof. We begin by showing that Max Sol(f(Γ )) is AP -reducible to Max
Sol(Γ ). Given an instance I = (V,D,C,w) of Max Sol(f(Γ )), let F (I) =
(V,D′, C ′, w) be the instance of Max Sol(Γ ) where every constraint relation
f(Ri) occurring in a constraint Ci ∈ C has been replaced by Ri. Given a solution
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s′ of F (I), let G(I, s′) be the solution s of I where s(x) = f(s′(x)) for each
variable x; note that m(I,G(I, s′)) ≥ m(I ′, s′) since f is increasing. That f
is increasing also implies that opt(I) ≤ opt(F (I)). However, f ∈ Pol(Γ ) so
opt(I) ≥ opt(F (I)) and opt(I) = opt(F (I)). Consequently,

opt(I)
m(G(I, s′)

≤ opt(F (I))
m(s′)

and we have an AP -reduction with parameter α = 1, mapping optimal solutions
to optimal solutions, which preserve membership in PO.

To prove the other direction, we show that there is a S-reduction from Max
Sol(Γ ) to Max Sol(f(Γ )). Given an instance I = (V,D,C,w) of Max Sol(Γ ),
let F (I) = (V,D′, C ′, w) be the instance of Max Sol(f(Γ )) where every con-
straint relation Ri occurring in a constraint Ci ∈ C has been replaced by f(Ri).
By an argument similar to the one above, we see that opt(F (I)) = opt(I).
Given a solution s′ of F (I), let G(I, s′) = s′ and note that this is a solution (of
the same measure) to I since f ∈ Pol(Γ ). ut

We define max-cores to be constraint languages that do not satisfy the precon-
ditions of the previous lemma.

Definition 10. A constraint language Γ is a max-core if and only if Γ has
no non-injective increasing endomorphism. A constraint language Γ ′ is a max-
core of Γ if and only if Γ ′ is a max-core and Γ ′ = f(Γ ) for some increasing
endomorphism f .

The identity function idD (which is increasing) is always an endomorphism
so we only consider non-injective operations in the previous definition. We con-
tinue to show that it is often sufficient to consider max-cores when studying the
approximability and complexity of Max Sol

Lemma 11. Assume that Γ ′ is a max-core of Γ . Then, Max Sol(Γ ) is in PO
(APX-hard) if and only if Max Sol(Γ ′) is in PO (APX-hard).

Proof. By the definition of a max-core we have that Γ ′ = f(Γ ) for some increas-
ing endomorphism f . Hence, the result follows directly from Lemma 9. ut

It is well-known that the cores of a constraint language Γ are isomorphic. We
prove something similar for max-cores: every constraint language has a unique
max-core.

Lemma 12. If f and g are endomorphisms of Γ and f(Γ ) = Γ ′, then f ◦ g is
an endomorphism of Γ ′.

Proof. Assume a tuple (a, b, . . . , c) ∈ R′ such that (f(g(a)), f(g(b)), . . . , f(g(c))) /∈
R′ where R′ ∈ Γ ′ and f(R) = R′ for some R ∈ Γ . From (a, b, . . . , c) ∈ R′ and
g, f ∈ Pol(Γ ), we get that (g(a), g(b), . . . , g(c)) ∈ R, and by f(R) = R′ we get
that (f(g(a)), f(g(b)), . . . , f(g(c))) ∈ R′ which is a contradiction. ut
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Let Im(f) = {f(d) | d ∈ D} for any function f : D → D.

Lemma 13. Let f be an increasing unary operation witnessing the fact that Γ ′

is a max-core of Γ , i.e. Γ ′ is a max-core and f(Γ ) = Γ ′. Then, f(f(d)) = f(d)
for all d ∈ D i.e. f(d) = d for all d ∈ Im(f).

Proof. We let f2(x) denote the unary operation f(f(x)). Obviously, Im(f2) ⊆
Im(f). Assume, with the aim of reaching a contradiction, that f2(d) 6= f(d)
for some d ∈ D. Moreover, assume that f(d) is the minimum element in D
such that f2(d) > f(d). Since f is increasing this implies that f(d) /∈ Im(f2),
and Im(f2) ⊂ Im(f). Note that, by Lemma 12, f ∈ Pol(Γ ) and f(Γ ) = Γ ′

so f2 ∈ Pol(Γ ′). This together with Im(f2) ⊂ Im(f) contradicts that Γ ′ is a
max-core and, consequently, we have that f(d) = d for all d ∈ Im(f). ut

Theorem 14. If Γ1 and Γ2 are max-cores of Γ , then Γ1 = Γ2. In other words,
each constraint language has a unique max-core.

Proof. Assume to the contrary that there is a constraint language Γ having at
least two different max-cores, i.e. Γ has two increasing endomorphisms f, g such
that f(Γ ) = Γ1, g(Γ ) = Γ2, Γ1 and Γ2 are max-cores and Γ1 6= Γ2.

We begin by showing that Im(f) = Im(g). Assume to the contrary that
Im(f) 6= Im(g) and that d is the least element such that d ∈ Im(f) ∪ Im(g)
but d /∈ Im(f) ∩ Im(g). Without loss of generality assume that d ∈ Im(g) but
d /∈ Im(f). Consider the unary operation h(x) = g(f(x)). Obviously, Im(h) ⊆
Im(g) and since d is the least element such that d ∈ Im(g) but d /∈ Im(f), we
see that d /∈ Im(h) and Im(h) ⊂ Im(g). By Lemma 12, h ∈ Pol(Γ2) and this
contradicts that Γ2 is a max-core.

Let S denote the image of f and g. By Lemma 13, we know that f(d) =
g(d) = d for all d ∈ S. Obviously, no element d′ ∈ D which is not in S appears
in f(Γ ) = Γ1 or g(Γ ) = Γ2. We know that Γ1 6= Γ2 so we assume (without loss
of generality) that there is a relation R1 ∈ Γ1 such that R1 /∈ Γ2. Consequently,
there is a relation R ∈ Γ such that f(R) = R1 but g(R) = R2 6= R1. Given a
tuple (a, b, . . . , c) ∈ R where {a, b, . . . , c} ⊆ S, then

(f(a), f(b), . . . , f(c)) = (a, b, . . . , c) = (g(a), g(b), . . . , g(c)).

Thus, R1 and R2 contain all such tuples. Any tuple t in R containing at least one
element which is not in S will by definition neither appear in R1 nor R2. Hence,
R1 = R2 and we have a contradiction. Thus, we have proved that Γ1 = Γ2 and
every constraint language has a unique max-core. ut

3 Approximability of Max Sol

In this section, we present sufficient conditions for when Max Sol is tractable
and prove that it is APX-hard otherwise. To do so, we use a family of operations
maxu : D2 → D, u ∈ D, defined such that

maxu(a, b) =
{
u if max(a, b) ≤ u
max(a, b) otherwise

10



Theorem 15. Max Sol(ΓL) is tractable if ΓL is invariant under maxu for
some u ∈ D. Otherwise, Max Sol(ΓL) is APX-hard.

We divide the proof into three parts which can be found in Sections 3.1-3.3.

3.1 Tractability result

The tractability of Max Sol(ΓL) when ΓL is invariant under maxu for some
u ∈ D follows from the fact that maxu-closed constraint languages are a special
case of the more general tractable class of generalised max-closed constraint
languages identified in [24].

Lemma 16 ([24]). If ΓL is invariant under maxu for some u ∈ D, then Max
Sol(ΓL) is in PO.

Also note that the maxu-closed constraint languages are already known to be
tractable for the CSP problem. If maxu ∈ Pol(Γ ), then it is easy to see that
the core of Γ is invariant under the max operation and, hence, tractability for
CSP(Γ ) follows from [22].

3.2 APX-hardness results

The ultimate goal of this section is to prove that Max Sol(Rel(P )) is APX-
hard whenever P is a negative pattern containing at least two literals. In the
sequel, we will frequently encounter Max Sol problems restricted to instances
where each variable may occur at most k times. Such problems are denoted Max
Sol(Γ )-k.

We begin by proving an APX-hardness result for the pattern (−0,−1) over
the domain D = {0, 1, 2}. The reduction is based on the well known APX-
complete maximisation problem Max-E3Sat-5 [13]:

Instance: Set U of variables, collection C of disjunctive clauses containing ex-
actly 3 literals each, and where each variable occurs at most 5 times.

Solution: A truth assignment for U .
Measure: Number of clauses satisfied by the truth assignment.

Note that we prove APX-completeness in the next lemma: the reason for this
is that an L-reduction will be made from Max Sol(R)-11 in Lemma 19 and
membership in APX ensures that this reduction can be transformed into an
AP -reduction.

Lemma 17. Let D = {0, 1, 2} and R = {(x, y) ∈ D2 | x ≤ 0 ∨ y ≤ 1}, Then,
Max Sol(R)-11 is APX-complete even if all variables have weight 1.

Proof. Membership in APX follows from the fact that the all-1 assignment is
a 2-approximation. We prove APX-hardness by giving an L-reduction (with
β = 14 and γ = 1) from Max-E3Sat-5 to Max Sol(R). The reduction relies

11



on the following ‘gadget’: Let V = {A,B,C, a, b, c} be a set of variables and
impose the following constraints:

R(A,B), R(B,C), R(C,A), R(A, a), R(B, b), R(C, c).

One can see that the optimum solution to this gadget is 7 and this optimum
appears if exactly one of A,B,C is assigned the value 2.

Let I be an arbitrary Max-E3Sat-5 instance with m clauses C1, . . . , Cm. Con-
struct a Max Sol(R) instance F (I) = (X,D,C,w) as follows:

X = {X1
1 , X

1
2 , X

1
3 , x

1
1, x

1
2, x

1
3, . . . , X

m
1 , X

m
2 , X

m
3 , x

m
1 , x

m
2 , x

m
3 },

w(x) = 1 for all x ∈ X, and introduce a gadget on Xi
1, X

i
2, X

i
3, x

i
1, x

i
2, x

i
3 (as

defined above) for each clause Ci = {li1, li2, li3}. Finally, the clauses are connected
by adding the constraints R(Xi

j , X
i′

j′) and R(Xi′

j′ , Xi
j) whenever lij = ¬li′j′ .

By well-known arguments, at least half of the clauses in an instance of Max-
E3Sat-5 can be satisfied so m ≤ 2opt(I). We also know that opt(F (I)) ≤ 7m
since each gadget corresponding to a clause contributes at most 7 to the measure
of any solution to F (I). It follows that opt(F (I)) ≤ 14·opt(I) and we can choose
β = 14.

Now, given F (I) and a solution s to F (I), let s′ = G(F (I), s) be the solution
to I (the instance of Max-3Sat) defined as follows: s′(x) = true if there exists
a literal lij = x and s(Xi

j) = 2, s′(x) = false if there exists a literal lij = ¬x
and s(Xi

j) = 2, and s′(x) = false for all other variables x. First we note that
s′(x) is well-defined; any two contradictory literals are prevented from being
assigned the same truth value by the constraints introduced in the last step in
the construction of F (I).

We will show that opt(I)−m(I, s′) ≤ opt(F (I))−m(F (I), s) and γ = 1 is
a valid parameter in the L-reduction. We begin by showing that opt(F (I)) −
opt(I) ≥ 6m. If opt(I) = k, i.e. k clauses (but no more) can be satisfied, then
each of the k satisfied clauses contains a true literal lij . In each of the satisfied
clauses Ci we choose one true literal (say lij) and assign 2 to the corresponding
variableXi

j in the corresponding gadgetGi (on variables {Xi
1, X

i
2, X

i
3, x

i
1, x

i
2, x

i
3})

in F (I). Assign 1 to xi
j , 2 to the other two xi variables, and 0 to the two unas-

signed Xi variables. In each gadget Gj corresponding to an unsatisfied clause
Cj (in opt(I)), assign 0 to all the Xj variables and 2 to all the xj variables.
The resulting solution to F (I) shows that

opt(F (I)) ≥ 7k + 6(m− k) = k + 6m

and opt(F (I))− opt(I) ≥ 6m since k = opt(I). Assume now that

opt(I)−m(I, s) > opt(F (I))−m(F (I), s′)

which implies m(F (I), s′) − m(I, s) > 6m. This leads to a contradiction so
opt(I) −m(I, s) ≤ opt(F (I)) −m(F (I), s′) and γ = 1 is a valid parameter in
the L-reduction. Also note that no variable occurs more than 11 times in the
resulting instance F (I) of Max Sol(R). ut
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From now on, let the domain D = {0, . . . , d} be fixed and with d ≥ 2. By
combining the notion of max-cores and Lemma 17, we can prove APX-hardness
for all negative patterns of length at least two:

Lemma 18. If (−c1, . . . ,−ck) ∈ L, k ≥ 2, then Max Sol(ΓL) is APX-hard.

The proof of Lemma 18 is based on Lemmata 19 and 20.

Lemma 19. If (−a,−b) ∈ L where a < b, then Max Sol(ΓL)-11 is APX-
complete even if all variables have weight 1.

Proof. First recall that a < b < d. Membership in APX follows from the fact
that the all-b assignment is a d

b ≤ d approximate solution.
For APX-hardness, consider the operation f on D defined as follows:

f(x) =

a if x ≤ a,
b if a < x ≤ b
d if b < x ≤ d.

It is readily verified that f is an increasing endomorphism, and that R′ =
f(Rel(−a,−b)) is a max-core. More specifically,

R′ = {(a, a), (a, b), (b, a), (b, b), (a, d), (d, a), (d, b)}.

We know from Lemma 11 that Max Sol(R) is APX-hard if Max Sol(R′) is
APX-complete. We give an L-reduction (with parameters β = d and γ = 1)
from the APX-complete problem Max Sol(R)-11, where

R = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0), (2, 1)}

is the relation in Lemma 17, to Max Sol(R′).
Given an instance I of Max Sol(R), let F (I) be the instance of Max

Sol(R′) where all occurrences of R has been replaced by R′. For any feasible
solution s′ for F (I) let G(I, s′) be the solution for I where all variables assigned
a are instead assigned 0, all variables assigned b are assigned 1, and all variables
assigned d are assigned 2. We have, opt(F (I)) ≤ d · opt(I) and

opt(I)−m(I,G(I, s′)) ≤ opt(F (I))−m(F (I), s′),

so β = d and γ = 1 are valid parameters in the L-reduction. Thus, Max Sol(ΓL)
is APX-hard when (−a,−b) ∈ L and a < b. ut

We prove the next lemma by a reduction from the APX-complete problem
independent set restricted to graphs of maximum degree 3 [1].

Instance: Undirected graph G = (V,E) with maximum degree 3.
Solution: A set V ′ ⊆ V such that for all v, w ∈ V ′, (v, w) 6∈ E.
Measure: Cardinality of V ′.

We may additionally and without loss of generality assume that the graphs under
consideration do not contain any isolated vertices.
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Lemma 20. Max Sol(Γ{(−a,−a)})-3 is APX-complete even if all variables
have weight 1.

Proof. We begin by showing membership in APX. Let I = (V,D,C,w) be
an arbitrary instance of Max Sol(Γ{(−a,−a)})-3 such that all weights equal 1
and let d = maxD. If a > 0, then the all-1 assignment is a d-approximation
of I. If a = 0, then construct a graph (V,E) where (v, v′) ∈ E if and only
if (Rel((−0,−0), (v, v′))) ∈ C. Clearly, opt(I) = d · |M | where M ⊆ V is an
independent set in G of maximum size. Since the graph G is of maximum degree
3, the independent set problem can be approximated within 4/3 in polynomial
time [31, Theorem 13.7] and Max Sol(Γ{(−a,−a)})-3 can be approximated within
4d/3.

We continue by showing APX-hardness: consider the following operation f
on D:

f(x) =
{
a if x ≤ a,
d otherwise.

It can be seen that f is an increasing endomorphism, and that R′ = f(R) =
{(a, a), (a, d), (d, a)} is a max-core. We know from Lemma 11 that Max Sol(R)
is APX-hard if Max Sol(R′) is APX-complete.

We give an L-reduction (with β = 4b and γ = 1
b−a ) from the APX-complete

problem Independent Set-3 to Max Sol(R′). Given an instance I = (V,E) of
Independent Set-3, let F (I) = (V,D,C,w) be the instance of Max Sol(R′)
where, for each edge (vi, vj) ∈ E, we add the constraint R′(xi, xj) to C and let all
variables have weight 1. For any feasible solution s′ for F (I), let G(I, s′) = {v ∈
V | s′(v) = b} and observe that G(I, s′) is an independent set in the graph (V,E).
We have |V |/4 ≤ opt(I) and opt(F (I)) ≤ b|V | so opt(F (I)) ≤ 4bopt(I). Thus,
β = 4b is an appropriate parameter.

Let K be the number of variables being set to b in an arbitrary solution s′

for F (I). Then,

|opt(I)−m(I,G(I, s′))| = opt(I)−K

and

|opt(F (I))−m(F (I), s′)| = (b− a)(opt(I)−K)

so

|opt(I)−m(I,G(I, s′)| = 1
b− a

· |opt(F (I))−m(F (I), s′)|

and γ = 1
b−a is an appropriate parameter. Thus, Max Sol(R′) is APX-hard.

ut

By combining Lemma 7 with either Lemma 19 or Lemma 20, we see that all
negative patterns of length at least 2 are APX-hard and Lemma 18 is proved.
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3.3 Proof of Theorem 15

Proof. Arbitrarily choose a clausal language L. If a pattern (−c1,−c2, . . . ,−ck),
k ≥ 2, exists in L, then Max Sol(ΓL) is APX-hard by Lemma 18. Hence, we
can assume that for each P ∈ L such that |P | ≥ 2, it holds that P contains at
least one positive literal. If all patterns in L are of length 1, then Max Sol(ΓL)
is tractable since ΓL is invariant under the operation max. Thus, we assume that
L contains at least one pattern of length strictly greater than one. Let

u = min{maxU | U ⊆ D is definable by a pp-formula over ΓL, }

where maxU denotes the largest element in U . Let ψ be a pp-formula over ΓL

defining the set U , i.e. U(x) ≡pp ∃x : ψ(x,x) and maxU = u. If there exists a
pattern (+a1, . . . ,+ap,−b1, . . . ,−bq), q ≥ 2, and ai > u for all i, then there is a
pp-formula that implements the relation Rel((−b1, . . . ,−bq)):

(y1 ≤ b1 ∨ . . . ∨ yq ≤ bq) ≡pp

∃z : (z ≥ a1 ∨ . . . ∨ z ≥ ap ∨ y1 ≤ b1 ∨ . . . ∨ yq ≤ bq) ∧ U(z)

so Max Sol(ΓL) is APX-hard by Lemmata 6 and 18. If this is not the case,
then we show that ΓL is invariant under maxu and, by Lemma 16, that Max
Sol(ΓL) is tractable. Arbitrarily choose a pattern P ∈ L. If |P | ≥ 2, then
we have two cases: Assume first that P = (+a1, . . .) for some a1 ≤ u. Since
maxu(a, b) ≥ u for all choices of a, b, Rel(P ) is invariant under maxu. Otherwise,
P = (+a1, . . . ,+ap,−b1) and ai > u for all i. We see that b1 ≥ u by the definition
of u since Rel((−b1)) can be implemented by a pp-formula:

(y1 ≤ b1) ≡pp ∃z : (z ≥ a1 ∨ . . . ∨ z ≥ ap ∨ y1 ≤ b1) ∧ U(z)

Arbitrarily choose two tuples (t1, . . . , tp+1), (t′1, . . . , t
′
p+1) from Rel(P ). If there

exists a ti, 1 ≤ i ≤ p, such that ti ≥ ai, then the tuple

(maxu(t1, t′1), . . . ,maxu(tp+1, t
′
p+1))

is in Rel(P ). The situation is analogous if there exists a t′i, 1 ≤ i ≤ p, such that
t′i ≥ ai. Assume now that for all 1 ≤ i ≤ p, ti < ai and t′i < ai. This implies
that tp+1 ≤ b1 and t′p+1 ≤ b1. If max(tp+1, t

′
p+1) ≤ u, then maxu(tp+1, t

′
p+1) = u

and Rel(P ) is invariant under maxu since b1 ≥ u. If max(tp+1, t
′
p+1) > u, then

maxu(tp+1, t
′
p+1) = max(tp+1, t

′
p+1) and Rel(P ) is invariant under maxu also in

this case.
We are left with the unary patterns in L. Assume that P = (+r) for some

r; in this case, Rel(P ) is trivially invariant under maxu. If P = (−r), then
r must satisfy r ≥ u by the definition of u. Arbitrarily choose two elements
a, b ∈ Rel((−r)). If max(a, b) ≤ u, then maxu(a, b) = u and Rel(P ) is invariant
under maxu since r ≥ u. If max(a, b) > u, then maxu(a, b) = max(a, b) and
Rel(P ) is invariant under maxu. ut

By inspecting the previous proof, we see that a constraint language ΓL is invari-
ant under maxu, u ∈ D, if and only if each pattern P ∈ L satisfy at least one of
the following conditions:

15



1. P = (+a1, ...) and a1 ≤ u;
2. P = (+a1, . . . ,+ap,−b1), a1, . . . , ap > u, and b1 ≥ u;
3. P = (+a); or
4. P = (−a) and a ≥ u.

This makes it easy to check whether Max Sol(ΓL) is tractable or not: test if
the condition above holds for some u ∈ D. If so, Max Sol(ΓL) is tractable and,
otherwise, Max Sol(ΓL) is APX-hard by Theorem 15. Obviously, this test can
be performed in polynomial time in the size of L and D. A simple algorithm that
is polynomial in the size of ΓL

1 also exists, but note that ΓL can be exponentially
larger than L and D.

4 Approximability of Min Sol

We now turn our attention to the problem Min Sol, i.e. the minimisation version
of Max Sol We recall that, for instance, Min Sol((+1,+1)) (over the domain
D = {0, 1}) is the same problem as the minimum vertex cover problem:

Instance: Undirected vertex-weighted graph G = (V,E,w).
Solution: A vertex cover for G, i.e. a subset V ′ ⊆ V such that, for each edge

(u, v) ∈ E, at least one of u and v belongs to V ′.
Measure: Weight of the vertex cover, i.e.

∑
v∈V ′ w(v).

Obviously, the tractability results for Max Sol can be transferred to the
Min Sol setting with only minor modifications: If ΓL is invariant under minu

for some u ∈ D, then Min Sol(ΓL) is in PO: we define minu : D2 → D, u ∈ D,
such that

minu(a, b) =
{
u if min(a, b) ≥ u
min(a, b) otherwise

By combining this with a hardness result for Min Sol(Γ{(+b1,...,+bq)}), q ≥ 2,
one can prove the following:

Theorem 21. Min Sol(ΓL) is in PO if ΓL is invariant under minu for some
u ∈ D. Otherwise, Min Sol(ΓL) is APX-hard.

The structure of the proof of this theorem is similar to the corresponding proof
for Max Sol(ΓL), and thus follows from the following lemmata. Note that it
easy to check whether Min Sol(ΓL) is tractable or not: the algorithm is similar
to the algorithm for checking tractability of Max Sol(ΓL). We proceed with a
simple hardness result; the straightforward proof is omitted.

1 The size of a constraint language Γ over a finite domain D is roughly
P

R∈Γ |R| ·
log |D| · ar(R).
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Lemma 22. Let (P,x) be the constraint

(x1 ≥ a1 ∨ · · · ∨ xi ≥ ap ∨ xi+1 ≤ b1 ∨ · · · ∨ xj ≤ bq)

and let (P ,x) be the constraint

(x1 ≤ d− a1 ∨ · · · ∨ xi ≤ d− ap ∨ xi+1 ≥ d− b1 ∨ · · · ∨ xj ≥ d− bq)

where d = maxD. Then, an assignment s satisfies (P,x) if and only if (P ,x) is
satisfied by s where s(x) = d− s(x) for all x ∈ x.

In the next proof, we will exploit approximability results for the minimum vertex
cover problem.

Lemma 23. Min Sol(Γ{(+a,+b)})-11 is APX-hard even if all variables have
weight 1.

Proof. Let d = maxD, R = Rel((+a,+b)), and R = Rel((−(d−a),−(d−b)). We
give an L-reduction from Max Sol(R) to Min Sol(R) with parameters β = 12d
and γ = 1. If a 6= b, then Max Sol(R)-11 is APX-complete by Lemma 19 and
if a = b, then Max Sol(R)-3 is APX-complete by Lemma 20. Hence, we prove
APX-hardness by an L-reduction from Max Sol(R)-11.

Given an instance I = (V,D,C,w) of Max Sol(R)-11 where all variables
have weight 1, let F (I) be the instance of Min Sol(Γ{(+a,+b)}) where all oc-
currences of R are replaced by R and all variables are given weight 1. Given a
solution s to F (I), let G(I, s) be the solution to I defined as follows: G(I, s)(x) =
d−s(x) for all variables x. Consider an arbitrary constraint Ci = (xi ≤ a1∨xj ≤
b1), then, by Lemma 22, an assignment s satisfies Ci if and only if the assignment
s = G(I, s), satisfies Ci = (xi ≥ d− a1 ∨ xj ≥ d− b1).

Since no variable occurs more than 11 times in I we have opt(I) ≥ |V |
12 ,

opt(F (I)) ≤ 12d ·opt(I), and β = 12d is a valid parameter in the L-reduction.
Moreover, given a solution s to F (I), we have m(F (I), s) = |V |d−m(I,G(I, s)).
Furthermore, we have opt(F (I)) = |V |d−opt(I). By these identities, it follows
that:

opt(I)−m(I,G(I, s)) = |V |d− opt(I)− (|V |d−m(I,G(I, s))) =

= m(F (I), s)− opt(F (I)),

and |opt(I)−m(I,G(I, s))| ≤ |opt(F (I))−m(F (I), s)|. Thus, γ = 1 is a valid
parameter in the L-reduction. ut

Lemma 24. If (+b1, . . . ,+bq) ∈ L and q ≥ 2, then Min Sol(ΓL) is APX-hard.

Proof. APX-hardness follows from Lemmata 7 and 23. ut
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5 Approximability of Max AW Sol

We continue by presenting a dichotomy result for the approximability of Max
AW Sol.

Theorem 25. Max AW Sol(ΓL) is in PO if ΓL is invariant under both max
and min. Otherwise, Max Sol(ΓL) does not admit a Ptas unless P=NP.

The tractability part is proved in Section 5.1 and the remaining parts can be
found in Section 5.2. Note that, in contrast to earlier sections, we do not prove
APX-hardness results in this section. The reason is that we will now be forced
to handle instances with negative optimal measure and APX-hardness and AP -
reductions are only defined for problems with positive measure. However, it is
still possible to rule out the existence of polynomial-time approximation schemes.
For ordinary approximation problems, we say that a solution s is r-approximate
if

opt(I)
r

≤ m(I, s) ≤ opt(I) · r.

This does not work for problems with negative optima since in this case opt(I)
r ≥

opt(I) · r. Hence, it is important to check whether an optimum is positive or
negative. With this in mind, we say that Π admits a Ptas if there exists an
algorithm A satisfying the following property: for any instance I of Π and any
rational value r > 1, A(I, r) returns a solution s such that

m(I, s) ∈ [opt(I)/r, r · opt(I)]

in time polynomial in |I|.

5.1 Tractability results

The polynomial-time algorithm is based on supermodular optimisation so we
begin by giving some preliminaries. A partial order on a set X is called a lattice
if every two elements, a, b ∈ X have a greatest common lower bound a u b
(meet) and a least common upper bound a t b (join). Then every lattice can be
considered as an algebra L = (X,u,t) with operations meet and join.

A function f : X → R is said to be supermodular on L if

f(a) + f(b) ≤ f(a u b) + f(a t b)

for all a,b ∈ L. A function f is called submodular if the reverse inequality holds,
and modular if it is both super- and submodular (that is, the above inequality
is an equality).

Given a finite set V , a ring family is a collection V of subsets of V such that
V is closed under intersection and union. Clearly, every ring family is a lattice.
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Theorem 26. [34]2 Let V be a ring family over a finite set V and let f : V → R
be a polynomial-time computable supermodular function on the lattice (V,∩,∪).
Assume the following is known:

1. for each v ∈ V , the maximal set Mv in V that contains v (if any);
2. the maximal set M in V.

Then, the set V ∗ ∈ V that maximises f can be found in polynomial time.

Lemma 27. Max AW Sol(ΓL) is in PO if ΓL is invariant under both max
and min.

Proof. Let I = (X,D,C,w) be an instance of Max AW Sol(ΓL), where ΓL

is invariant under both max and min, and V = {x1, . . . , xn}. Consider the
lattice L = (A,u,t) where A ⊆ Zn are the solutions to I and for every
a = (a1, . . . , an),b = (b1, . . . , bn) ∈ A,

a u b = (min(a1, b1), . . . ,min(an, bn))

and

a t b = (max(a1, b1), . . . ,max(an, bn)).

We also see that the function f : Dn → Z defined such that

f(x1, . . . , xn) =
n∑

i=1

wi · xi

is modular (and consequently supermodular) on L: Arbitrarily choose a =
(a1, . . . , an),b = (b1, . . . , bn) ∈ A and note that max(ai, bi)+min(ai, bi) = ai+bi,
1 ≤ i ≤ n. Consequently,

f(a u b) + f(a t b) =
n∑

i=1

(wi ·min(ai, bi) + wi ·max(ai, bi)) =

=
n∑

i=1

wi · (ai + bi) = f(a) + f(b).

Finally, we construct a ring family V that represents L. We choose V = {(i, d) | 1 ≤
i ≤ n, d ∈ D} as base set and an element a = (a1, . . . , an) ∈ A is represented by

n⋃
i=1

{(i, d) | d ∈ D and d ≤ ai}.

It is easy to see that u corresponds to intersection and t to union. For each
v = (i, d) ∈ V , we can in polynomial time find the maximal element Mv ∈ V
2 The results are presented as the equivalent problem of minimising a submodular

function. See also [21].
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containing v as follows: define C ′ = C ∪ {(xi ≥ d)} and consider the Max Sol
instances

Ij = (X,D,C ′, wj)

where wj(xj) = 1 and wj(x) = 0 for all x 6= xj . These instances are solvable
in polynomial time since Max Sol(Inv(max)) is a tractable problem. If there
are no solutions to these problems, then s(xi) < d holds in every solution s that
satisfies (X,D,C) and Mv is not defined. Otherwise, define s∗ : X → D such
that

s∗(x) = max
1≤j≤n

sj(x)

for all x ∈ X. The function s∗ satisfies (X,D,C ′) since the constraints in C ′ are
invariant under max and it is easy to realise that

Mv = {(i, d) | 1 ≤ i ≤ n and d ≤ s∗(xi)}.

Similarly, the maximal element in V can be found in polynomial time; simply
replace the constraint set C ′ with C. Theorem 26 is thus applicable and the
result follows by noting that |V | = n · |D|. ut

Optimisation over max- and min-closed constraints has been considered in sev-
eral other contexts, cf. [7, 18].

5.2 Proof of Theorem 25

We begin this section by proving that clausal languages containing a clause
with at least 2 positive or 2 negative literals does not admit any Ptas unless
P=NP. Finally, we note that the remaining clausal languages are tractable by
the algorithm in the preceding section.

Lemma 28. If (−c1, . . . ,−cp,+d1, . . . ,+dq) ∈ L and p ≥ 2, then Max AW
Sol(ΓL) does not admit a Ptas unless P=NP.

Proof. If q = 0, then the result immediately follows from Lemma 18 so we
assume that q ≥ 1. Let c = c1, b = max(c2, . . . , cp) and e = min(d1, . . . , dq).
By applying Lemma 7, we see that it is sufficient to prove the result for the
constraint language L = {(−c,−b,+e)}. Assume now that Max AW Sol(ΓL)
admits a Ptas A and arbitrarily choose r > 1. We will now construct a Ptas for
Max Sol(Γ{(−c,−b)}). We recall that Max Sol(Γ{(−c,−b)}) is APX-hard (and
do not admit a Ptas unless P=NP) by Lemmata 19 and 20.

Let I = (V,D,C,w) be an arbitrary instance of Max Sol(Γ{(−c,−b)}). We
assume without loss of generality that w(x) = 1 for all x ∈ V . Assume that
V = {x1, . . . , xn}. We compute an instance F (I) = (V ′, D,C ′, w′) of Max AW
Sol(ΓL) as follows:

– let Y = {y1, . . . , y|C|} be a set of fresh variables and let V ′ = V ∪ Y ;
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– let C ′ = {(Rel((−c,−b,+e)), (xi, xj , yk)) | for each ck ∈ C where ck =
(Rel((−c,−b)), (xi, xj))}; and

– let w′(x) = −2 maxD if x ∈ Y and w(x) = 1 otherwise.

We first note that opt(F (I)) ≥ opt(I) since any solution s to I can be
extended to a solution s′ to F (I) (of the same measure) by assigning 0 to all
the variables in Y . Furthermore, opt(F (I)) ≤ opt(I) since there is an optimal
solution s′ to F (I) such that s′(y) = 0 for all y ∈ Y , and hence this solution
restricted to the V variables is a solution for I. This follows from the following
observation: If s is an optimal solution for F (I) and s(y) > 0 (y ∈ Y ), then
construct a new solution as follows: Let (Rel((−c,−b,+e)), (xi, xj , y)) be the
unique constraint where y appears. Now, construct a modified solution s′ such
that s′(z) = s(z) if z ∈ V ′−{xi, xj , y} and s′(xi) = s′(xj) = s′(y) = 0 otherwise.
It is easy to see that s′ is still a feasible solution, and, furthermore, that

m(F (I), s′) = m(F (I), s) + 2s(y) maxD − s(xi)− s(xj) ≥

m(F (I), s) + 2s(y) maxD − 2 maxD =

m(F (I), s) + 2 maxD · (s(y)− 1) ≥ m(F (I), s).

Hence, opt(F (I)) = opt(I) and we have that

opt(F (I))/r ≤ m(F (I), A(F (I), r)) ≤ opt(F (I)) · r.

Now, let s′ = A(F (I), r) and define s to be the solution to I where s(xi) = 0
if xi occurs in a constraint Cj and yj > 0, and s(xi) = s′(xi), otherwise. By the
same argument as above, it is easy to verify that

opt(I)−m(I, s) ≤ opt(F (I))−m(F (I), s′)

and

m(I, s) ≥ m(F (I), s′)

since opt(I) = opt(F (I)). Finally, we see that

opt(I)
r

=
opt(F (I))

r
≤ m(F (I), s′) ≤ m(I, s) ≤ opt(I)

and Max Sol(Γ{(−c,−b)}) admits a Ptas.
ut

Lemma 29. If P = (+b1, . . . ,+bq) ∈ L and q ≥ 2, then Max AW Sol(ΓL)
does not admit a Ptas unless P=NP.

Proof. By Lemma 7, we may without loss of generality assume that q = 2,
P = (+b,+c) and D = {0, 1, . . . , d}. Assume to the contrary that Max AW
Sol(Γ{(+b,+c)}) admits a Ptas A. We will now construct a Ptas for the APX-
complete problem Min Sol(Γ{(+b,+c)}). Arbitrarily choose r > 1.

Let I = (V,D,C,w) be an arbitrary instance of Min Sol(Γ{(+b,+c)}) and
construct the instance I ′ = (V,D,C,w′) where w′(x) = −w(x) for all x ∈ V .
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We see that if s is a solution to I with measure K, then s′ (defined such that
s′(x) = −s(x) for all x ∈ V ) is a solution to I ′ with measure −K, and vice versa.
Now, let s′ = A(I ′, r) and define s(x) = −s′(x) for all x ∈ V . We have that

opt(I ′) · r ≤ m(I ′, s′) ≤ opt(I ′)
r

.

By multiplying this inequality with −1 we get

−opt(I ′) · r ≥ −m(I ′, s′) ≥ −opt(I ′)
r

and, consequently,

opt(I)/r ≤ m(I, s) ≤ opt(I) · r.

Since r was arbitrarily chosen, Min Sol(Γ{(+b,+c)}) admits a Ptas. ut

Lemma 30. If (−a1, . . . ,−ap,+b1, . . . ,+bq) ∈ L and q ≥ 2, then Max AW
Sol(ΓL) admits no Ptas unless P=NP.

Proof. If p = 0, then the result follows from Lemma 29 and if p ≥ 2, then the
result follows from Lemma 28 so we can assume that p = 1. By Lemma 7, it is
sufficient to consider the clausal language L = {(−a,+b,+c)}.

Let I = (V,D,C,w) be an arbitrary instance of Min Sol(Γ{(+b,+c)})-11
where all variables have weight 1 andD = {0, . . . , d}. By Lemma 23, this problem
is APX-hard and admits no Ptas unless P=NP. Define F (I) = (V ′, C ′, D,w′)
to be an instance of Max AW Sol(Γ{(−a,+b,+c)}) where V ′ = V ∪ Y and Y =
{yi | Ci ∈ C}, and all constraints Ck = (Rel((+b,+c)), (xi, xj)) have been
replaced by (Rel((−a,+b,+c)), (yk, xi, xj)). Moreover, let w′(x) = −1 for all
x ∈ V and w′(y) = 2d for all y ∈ Y . We see that

m(F (I), s) = 2d ·
∑
y∈Y

s(y)−
∑
x∈V

s(x).

Next, we prove an upper bound on opt(F (I)): opt(F (I)) ≤ α where α =
132d2 · opt(I). We begin by proving that opt(F (I)) = 2d2|Y | − opt(I). To see
this, assume that s is an optimal solution to F (I) where s(y) < d for a variable
y ∈ Y . Let

(R,x) ≡ (y ≤ a ∨ xi ≥ b ∨ xj ≥ c)

be the unique constraint where y appears. Now construct a modified solution s′
such that s′(z) = s(z) if z ∈ V ′ \ {y, xi, xj}, s(xi) = s(xj) = d, and s(y) = d.
Obviously s′ is a solution to F (I) and

m(F (I), s′) = m(F (I), s) + 2d(d− s(y))− (2d− s(xi)− s(xj)) ≥ m(F (I), s)

so there is an optimal solution to F (I) such that d is assigned to all Y variables.
Thus, any optimal solution s to I yields an optimal solution s′ to F (I) by
letting s′(y) = d for all y ∈ Y and s′(x) = s(x) for all variables in V . Hence,
opt(F (I)) = 2d2|Y | − opt(I).
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We can now prove that opt(F (I)) ≤ α. LetNbh(v) denote the set of variables
(including v) that occur in a constraint where v occurs. Since no variable v ∈ V
occurs more than 11 times in I, we have |Nbh(v)| ≤ 12. Obviously, at least one of
the variables in Nbh(v) must be assigned a value > 0 since otherwise there will
be a constraint (v ≥ b ∨ v′ ≥ c) which is not satisfied (remember that b, c > 0).
Hence, opt(I) ≥ |V |/12 and the number of constraints in I is at most 11|V |

2

(i.e. |Y | ≤ 11|V |
2 ). The earlier result implies that opt(F (I)) = 2d2|Y | − opt(I)

so opt(F (I)) ≤ 2d2 · 11|V |
2 − opt(I). We also know that opt(I) ≥ |V |/12 so

opt(F (I)) ≤ α.

We assume that Max AW Sol(Γ{(−a,+b,+c)}) admits a Ptas A and arbitrarily
choose r > 1. We will now construct a Ptas for Min Sol(Γ{(+b,+c)}).

Let s = A(F (I), r) and recall that opt(F (I))/r ≤ m(F (I), s) ≤ opt(F (I)) ·
r. Let G(I, s) be the solution to I defined as: G(I, s)(x) = d if x occurs in a
constraint together with a y variable such that s(y) < d, and G(I, s)(x) = s(x)
otherwise. We prove that m(I,G(I, s)) − opt(I) ≤ opt(F (I)) − m(F (I), s).
Let Y ′ = {y ∈ Y | s(y) < d} and note that |Y ′| ≤ d|Y | −

∑
y∈Y s(y). By the

definition of G(I, s), we know that d is assigned to all variables x that occur
in an equation together with a variable y from Y ′. Denote the set of all such
variables by X ′. By the definition of G(I, s) and the fact that |X ′| ≤ 2|Y ′|, we
have,

m(I,G(I, s)) = d|X ′|+
∑

x∈V \X′

s(x) ≤ 2d|Y ′|+
∑

x∈V \X′

s(x).

It follows that

m(I,G(I, s))− opt(I) ≤

2d|Y ′|+
∑

x∈V \X′

s(x)− opt(I) ≤

2d|Y ′|+
∑
x∈V

s(x)− opt(I) ≤

2d2|Y | − 2d
∑
y∈Y

s(y) +
∑
x∈V

s(x)− opt(I) =

opt(F (I))−m(F (I), s).

Now, m(I,G(I, s))−opt(I) ≤ opt(F (I))−m(F (I), s) and since s = A(F (I), r),
we have

m(I,G(I, s))− opt(I) ≤ opt(F (I))− opt(F (I))
r

implying that

m(I,G(I, s)) ≤
(

1− 1
r

)
· opt(F (I)) + opt(I).
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By opt(F (I)) ≤ α, it now follows that

m(I,G(I, s)) ≤
(

1− 1
r

)
· α+ opt(I),

and as a consequence,

m(I,G(I, s)) ≤
((

1− 1
r

)
· 132d2 + 1

)
· opt(I).

Since r can be chosen arbitrarily close to 1, Min Sol(Γ{(+b,+c)})-11 admits a
Ptas. ut

We are left with the case when every pattern P in L contains at most one
positive and at most one negative literal. By Jeavons and Cooper [22, Theorem
5.2], if P is a pattern that contains at most one positive literal, then Rel(P ) is
invariant under max. Similarly, Rel(P ) is invariant under min if P contains at
most one negative literal. Thus, Max AW Sol(ΓL) is polynomial-time solvable
by Lemma 27. We also note that given a clausal language L, it is obvious how
to check (in polynomial time) whether Max AW Sol(ΓL) is polynomial-time
solvable or not.

6 Conclusions and Open Questions

We have presented dichotomy results for the approximability of Max Sol, Min
Sol, and Max AW Sol when they are restricted to constraint languages ex-
pressed by regular signed logic. The results were partly obtained by exploiting
certain algebraic methods that have previously not been widely used for study-
ing optimisation problems. In particular, the concept of a max-core seems to
be very useful when classifying the approximability of Max Sol(Γ ) for various
classes of constraint languages Γ .

It has been noted before that adding non-negative integer weights to com-
binatorial optimisation problems does not seem to change the complexity of
the problems. For example, the unweighted (all variables have weight 1) and
weighted versions of Max Ones(Γ ) and Min Ones(Γ ) have the same approx-
imability [26]. Therefore it is interesting to compare the dichotomies for Max
Sol(Γ ) and Max AW Sol(Γ ) and too see how drastically the situation changes
when negative weights are allowed.

We see at least three main ways of extending this work.
Extension 1: Provide a more fine-grained approximability analysis. In the

case of boolean domains, such an analysis has been performed by Khanna et
al. [26]; they prove that for any choice of allowed relations, the problem is either
(1) polynomial-time solvable, (2) APX-complete, (3) poly-APX-complete, (4)
finding a solution of measure > 0 is NP-hard; or (5) finding any solution is
NP-hard. Hence, a venue for future research is to perform a similar analysis for
optimisation problems over clausal constraints.
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Extension 2: Consider left-hand restrictions. By left-hand restrictions, we
mean restricting the way constraints are applied to variables (instead of restrict-
ing the allowed constraint types). Such problems have been extensively treated
in many different contexts [8, 12, 16, 17]. All known results on the complexity of
Max Sol(Γ ) indicates that there does not exist any Γ such that Max Sol(Γ )
has a polynomial-time approximation scheme but Max Sol(Γ ) is not in PO
([24, 26] and Theorem 15). Natural such classes exist, however, if one restricts
the way constraints are applied to variables. Maximum Independent Set (i.e.
Max Sol(Γ(−0,−0)) over domain D = {0, 1}) is one example: the unrestricted
problem is poly-APX-complete and not approximable within O(n1−ε) for any
ε > 0 (unless P=NP) [37], but the problem restricted to planar instances admits
a Ptas [4, 30].

Extension 3: Study optimisation over infinite domains. Such problems have
been intensively studied during many years since linear programming and integer
programming are examples of such problems. However, the constraint languages
are typically severely limited in various ways — for instance, being linear in-
equalities. Thus, we suggest to study constraint optimisation problem over other
kinds of constraints. In particular, it would be interesting to study the complex-
ity of Max SolN(Γ ) due to the additional challenges posed by the existence of
unbounded solutions. We note that constraint satisfaction problems over infi-
nite domains has attracted a great amount of interest. Such problems appear,
for instance, in temporal reasoning [14] and in connection with tree descrip-
tion languages (which have applications in linguistics [27] and computational
biology [35]). Many results on infinite-domain CSPs are collected in [5].
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