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Abstract. We study techniques for deciding the computational complexity of infinite-
domain constraint satisfaction problems. For certain basic algebraic structures ∆, we
prove definability theorems of the following form: for every first-order expansion Γ of ∆,
either Γ has a quantifier-free Horn definition in ∆, or there is an element d of Γ such that
all non-empty relations in Γ contain a tuple of the form (d, . . . , d), or all relations with a
first-order definition in ∆ have a primitive positive definition in Γ. The results imply that
several families of constraint satisfaction problems exhibit a complexity dichotomy: the
problems are either polynomial-time solvable or NP-hard depending on the choice of the
allowed relations. As concrete examples, we investigate fundamental algebraic constraint
satisfaction problems. The first class consists of all relational structures with a first-order
definition in (Q; +) that contain the relation {(x, y, z) ∈ Q3 | x+ y = z}. The second class
is the affine variant of the first class. In both cases, we obtain full dichotomies by utilising
our general methods.

1. Introduction

Constraint satisfaction problems (CSPs) are computational problems that appear in al-
most every area of computer science such as artificial intelligence, graph algorithms, sched-
uling, combinatorics, and computer algebra. Depending on the type of constraints that
are allowed in the input instances of a CSP, the computational complexity of a CSP is
usually polynomial (and we will call such CSPs tractable) or NP-hard. In the last decade,
a lot of progress was made to find general criteria that imply that a CSP is tractable, or
that it is NP-hard. Such results have been obtained for constraint languages over finite
domains [10, 12, 13, 19], but also for constraint languages over infinite domains that are
ω-categorical (for formal definitions of these concepts see Section 2). For example, it has
been shown that for every structure Γ with a first-order definition in (Q;<), the problem
CSP(Γ) is in P if it falls into one of nine classes, and it is NP-hard otherwise [7].

Lately, many researchers have been fascinated by a conjecture due to Feder and Vardi [16]
which is known as the dichotomy conjecture. This conjecture says that every CSP with a
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finite domain constraint language is either tractable (i.e., in P) or NP-complete. According
to a well-known result by Ladner [22], there are NP-intermediate computational problems,
i.e., problems in NP that are neither tractable nor NP-complete (unless P=NP). But the
problems that are given in Ladner’s construction are extremely artificial. It is a curious fact
that there are so few candidates for natural NP-intermediate problems.

Any outcome of the dichotomy conjecture is probably surprising: a negative answer
would finally provide relatively natural NP-intermediate problems, which would be of inter-
est in complexity theory. A positive answer probably comes with a criterion which describes
the NP-hard CSPs (and it would probably even provide algorithms for the tractable CSPs).
But then we would have a rich catalogue of computational problems where the computa-
tional complexity is known. Such a catalogue would be a valuable tool for deciding the
complexity of computational problems in the mentioned application areas: since CSPs are
abundant, one might derive algorithmic results by reducing the problem of interest to a
known tractable CSP, and one might derive hardness results by reducing a known NP-hard
CSP to the problem of interest.

In this article, we study two fundamental classes of infinite domain constraint languages,
and show that the corresponding CSPs do exhibit a complexity dichotomy. To the best of
our knowledge, this is the first systematic complexity result for classes of structures that
are not ω-categorical.

The first class consists of all first-order relational expansions of (Q; {(x, y, z) ∈ Q3 | x+
y = z}); by a first-order relational expansion of Γ we mean the structure obtained from Γ
by adding relations to Γ that are first-order definable in Γ. The second class is an affine
version of the first class: it consists of all relational first-order expansions of the structure
(Q; {(x, y, z, w) ∈ Q4 | x − y + z = w}}. That none of these structures is ω-categorical
follows from the theorem by Engeler, Ryll-Nardzewski, and Svenonius (cf. Theorem 6.3.1
in [18]). It is even the case that the corresponding CSPs cannot be formulated by any
ω-categorical template: the basic proof idea is presented in [1, Proposition 1]; also see [4].

Our results follow from theorems about primitive positive definability: we show that for
every relation R with a first-order definition in (Q; +), either R has a quantifier-free Horn
definition in (Q; +, 0), or R contains the tuple (0, . . . , 0), or all relations with a first-order
definition in (Q; +) have a primitive positive definition in (Q; +, R). The analogous result
also holds for the affine case. The techniques that we use to prove these two definability
theorems are more general than the two classification results, and they are very different
in nature. One technique applies for structures ‘that have little structure’; to be precise,
for all structures Γ where = and 6= are the only primitive positive definable non-trivial
binary relations (Section 5). In particular, they apply to structures with a 2-transitive
automorphism group. The other technique applies for structures ‘with a lot of structure’;
informally, it applies whenever we can find a primitive positive definition for the line between
two points in Qk (Section 4).

We would like to mention that the authors have recently also shown a complexity
dichotomy for (semi-linear or semi-algebraic) expansions of the structure (R; {(x, y, z) ∈
R3 | x+ y = z},≤, {1}) (the constraint language of linear program feasibility), which might
look similar [5]. However, there are some important differences between this result and
the results presented here. The first is that the constraint satisfaction problems in [5] are
more expressive since they contain the unary relation {1} (which together with the relation
{(x, y, z) ∈ R3 | x + y = z} allows us to express all rational constants) and inequality
(inequality makes those structures much more unwildly from a model-theoretic point of
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view), and that they are over the real numbers and not the rationals (which makes a real
difference when we look at semi-algebraic expansions of the structure above). Also, the
results in [5] do not come with a ‘Horn versus full first-order’ definability result in the
sense of this article. However, the most important difference between [5] and the results in
this article is the completely different proof technique: the proofs here are based on logic
definability, whereas the proofs in [5] are based on geometric arguments.

The rest of this article is organised as follows: in Section 2, we provide some background
material on constraint satisfaction and logic. A tractability result for templates that have a
quantifier-free Horn definition in (Q; +, 0) is presented in Section 3. The classification result
for (Q; +, 0) can be found in Section 4 while the results for the affine case are collected in
Section 5. Finally, a number of open questions and directions for future work can be found
in Section 6. It may seem peculiar that we consider the structure (Q; +, 0) instead of (Q; +).
This is due to certain technicalities concerning quantifier elimination and the details will
be explained in Section 4.2.

2. Preliminaries

A first-order formula is called primitive positive1 if it is of the form

∃x1, . . . , xn.ψ1 ∧ . . . ∧ ψm

where ψi are atomic formulas, i.e., formulas of the form x = y or R(xi1 , . . . , xik) with R the
relation symbol for a k-ary relation from Γ. We call such a formula a pp-formula. As usual,
formulas without free variables are called sentences.

Let Γ = (D;R1, . . . , Rn) be a relational structure with domain D (which will usually be
infinite) and finitely many relations R1, . . . , Rn. The constraint satisfaction problem for Γ
(in short CSP(Γ)) is the computational problem to decide whether a given primitive positive
sentence Φ involving relation symbols for the relations in Γ is true in Γ. The conjuncts in
a pp-formula Φ are called the constraints of Φ. We refer to Γ as the constraint language (it
is also often called the template) of CSP(Γ).

We say that a first-order formula φ defines a relation R in Γ when φ(a1, . . . , ak) holds
in Γ iff (a1, . . . , ak) ∈ R. If φ is primitive positive, we call R primitive positive definable
(pp-definable) over Γ. The following simple but important result explains the importance of
primitive positive definability for constraint satisfaction problems; it was first stated in [20]
for finite structures Γ only, but the proof there also works for arbitrary infinite structures.

Lemma 2.1 (from [20]). Let Γ be a relational structure and Γ′ be an expansion of this
structure by a pp-definable relation R over Γ. Then CSP(Γ) is polynomial-time equivalent
to CSP(Γ′).

Lemma 2.1 will be used extensively in the sequel and we will not make explicit references
to it. Another important class of formulas are Horn formulas; a first-order formula whose
quantifier-free part is in conjunctive normal form is Horn if and only if each clause contains
at most one positive literal. A relation R is called quantifier-free Horn definable over Γ if
there exists a quantifier-free Horn formula that defines R in Γ. Note that Lemma 2.1 does
not hold if we replace ‘pp-definable’ with ‘Horn definable’.

1Our terminology is standard; all notions that are not explicitly introduced in the article can be found
in standard text books, e.g., in [18].
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By choosing an appropriate structure Γ, many computational problems that have been
studied in the literature can be formulated as CSP(Γ) (see e.g. [1,11,12]). It turns out very
often that the structure Γ can be chosen to be ω-categorical. A countable structure Γ is
called ω-categorical if all models of the set of first-order sentences that are true in Γ are
isomorphic to Γ. A famous example of an ω-categorical structure is (Q;<). The condition
of ω-categoricity is interesting for constraint satisfaction, because the so-called universal-
algebraic approach, which is currently intensively studied for finite constraint languages,
applies—at least in principle—also to ω-categorical structures (see e.g. [7] for an application
of the universal-algebraic approach to CSPs for constraint languages over infinite domains).
In this article, we demonstrate that systematic complexity classification can be performed
for constraint languages over infinite domains even if the constraint languages are not ω-
categorical.

Example. Let Γ denote the structure (Q;R) where

R = {(x, y, u, v) ∈ Q4 | (x = y ∨ y = u+ v) ∧ x 6= u}).

It is fairly straightforward (by an argument similar to the one presented in [1]) to show that
CSP(Γ) cannot be formulated with an ω-categorical template (in fact, there exists a general
result that completely characterises the CSPs that can be formulated with ω-categorical
templates [4]). One can show that the relations {(x, y) ∈ Q2 | x 6= y} and {(x, y, z) ∈
Q3 | x = y + z} have pp-definitions in Γ; merely note that x 6= u ⇔ ∃y, v.R(x, y, u, v) and
y = u+ v ⇔ ∃x.R(x, y, u, v)∧x 6= y. The computational complexity of CSP(Γ) can thus be
determined by our classification result (Corollary 4.6).

We will sometimes consider the automorphism group Aut(Γ) of a constraint language
Γ over a domain D, i.e., the group formed by the set of all automorphisms of Γ with respect
to functional composition. An orbit of Aut(Γ) on D2 is a set of the form {(α(a), α(b)) | α ∈
Aut(Γ)}, for some a, b ∈ D. We note that pairs from the same orbit satisfy the same
first-order formulas.

Let D be an arbitrary infinite set and arbitrarily choose an element d ∈ D. The
complexity of CSP(Γ) where Γ has a first-order definition in (D; =) (so-called equality
languages) has been classified in [6]. If R is first-order definable in (D; =) and (d, . . . , d) ∈ R,
then (d′, . . . , d′) ∈ R for every d′ ∈ D. Thus, the exact choice of d is irrelevant when stating
the following theorem.

Theorem 2.2 (from [6]). Let Γ be a constraint language with a first-order definition in
(D; =). Then, all relations in Γ have a quantifier-free Horn definition in (D; =), or all non-
empty relations in Γ contain the tuple (d, . . . , d), or else every first-order definable relation
in (D; =) has a pp-definition in Γ. In the last case, CSP(Γ) is NP-complete.

Instead of using Theorem 2.2 in its full generality, it will often be sufficient to use a
simple corollary. For any set D, let SD denote the relation

{(x, y, z) ∈ D3 | y 6= z ∧ (x = y ∨ x = z)} .

Corollary 2.3. Let D be an infinite set. Every first-order definable relation in (D; =) has
a pp-definition in (D;SD).

Proof. The relation SD has a first-order definition in (D; =) and does not contain the tuple
(d, d, d). It is easy to verify that SD has no quantifier-free Horn definition in (D; =) so every
first-order definable relation in (D; =) has a pp-definition in (D;SD) by Theorem 2.2.
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Note that we have defined the CSP only for templates with relational ; this is the
standard definition of CSPs in the literature. However, it will be convenient to also use
structures involving function symbols to state our results on primitive positive definability.
The reason is that with these functions, the algebraic structures under consideration have
quantifier elimination, which will be needed in our approach. Quantifier elimination is
discussed in detail in Section 4 and 5.

3. Tractability

For all structures Γ with finite relational signature and a quantifier-free Horn definition
in (Q; +, 0), the problem CSP(Γ) can be solved in polynomial time. This follows from
a more general algorithmic result in [21] combined with the observation that the solution
spaces considered in [21] always contain a rational point when they are non-empty. However,
the algorithm presented there solves a linear number of linear programs, and thus the best
known algorithms have a rather high worst-case running time. We present a more efficient
algorithm for the special case that is relevant in this article. We denote by O∼(f(N)) the
class of all functions of asymptotic growth at most f(N) up to poly-logarithmic factors.

Proposition 3.1. Let Γ be a relational structure whose relations have a quantifier-free Horn
definition in (Q; +, 0). Then there is an algorithm that solves CSP(Γ) in time O∼(N4) where
N is the size of the input.

The algorithm we present in the proof of Proposition 3.1 is a combination of general
techniques in constraint satisfaction [2,14] and a polynomial-time implementation of Gauss-
ian elimination on rational data. Since the input of CSP(Γ) consists of a primitive positive
sentence whose atomic formulas are of the form R(x1, . . . , xk) where R is quantifier-free
Horn definable over (Q; +, 0), we can as well assume that the input to our problem consists
of a set of Horn clauses over (Q; +, 0).

We have to make some remarks about the worst-case running time of the Gaussian
elimination algorithm. It is well-known that Gaussian elimination requires O(n2m) many
arithmetic operations on rational numbers, where m is the number of equations and n is
the number of variables. In our algorithm, we have to solve a linear number of linear
equation systems S1, . . . , Sm; however, system Si+1 is obtained from system Si by adding a
single linear equation. Since the Gaussian algorithm can be presented in such a way that it
computes a system in triangular form, adding successively equation by equation, the overall
costs for solving S1, . . . , Sm equals the cost to solve Sm with Gaussian elimination.

Also recall that the size of the numbers involved when performing the Gaussian elim-
ination algorithm might grow exponentially when implemented without care. However,
when we use the Euclidean algorithm to shorten the coefficients during the elimination
process, the Gaussian elimination algorithm can be shown to be polynomial [15]. We are
only interested in deciding solvability of linear equation systems, and not constructing so-
lutions, and so we even have linear bounds (in the input size) on the representation size
of all numbers involved in deciding solvability for linear equation systems over the rational
numbers with Gaussian elimination (see [25], proof of Theorem 3.3). Finally, we remark
that the most costly arithmetic operation that has to be performed on rational numbers
during the elimination process is multiplication, and multiplication can be performed in
time O(s log s log log s), where s denotes the representation size of the two rational num-
bers (in bits). Hence, the overall running time for solving S1, . . . , Sm with the discussed
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implementation of the Gaussian elimination algorithm is in O∼(N4), where N denotes the
representation size of the input.

We will show that our algorithm for CSP(Γ) can be implemented such that it has the
same overall asymptotic worst-case complexity.

Solve(Φ)
// Input: an instance Φ of CSP(Γ)
// where all relations in Γ have a quantifier-free Horn definition in (Q; +, 0)
// Output: satisfiable if Φ is true in Γ, unsatisfiable otherwise
Let C be the set of all Horn-clauses from each constraint in Φ
Let U be the subset of C that only contains clauses with a single positive literal.
If U is unsatisfiable then return unsatisfiable.
Do

For all negative literals ¬φ in clauses from C
If U implies φ, then delete the negative literal ¬φ from all clauses in C.

If C contains an empty clause, then return unsatisfiable.
If C contains a clause with a single positive literal ψ, then add {ψ} to U .

Loop until no literal has been deleted
Return satisfiable.

Figure 1: An algorithm for the constraint satisfaction problem for Γ when Γ has a quantifier-
free Horn definition in (Q; +, 0).

Proof of Proposition 3.1. We first discuss the correctness of the algorithm shown in Figure 1,
and then explain how to implement the algorithm such that it achieves the desired running
time.

When U logically implies φ then the negative literal ¬φ is never satisfied and can be
deleted from all clauses without affecting the set of solutions. Since this is the only way in
which literals can be deleted from clauses, it is clear that if one clause becomes empty the
instance is unsatisfiable.

If the algorithm terminates with satisfiable, then no negation of an inequality is implied
by U . If r is the rank of the linear equation system defined by U , we can use the Gaussian
elimination algorithm as described above to eliminate r of the variables from all literals in
the remaining clauses. By multiplying the equations with appropriate constants, we can
assume that all coefficients are integer. For each of the remaining inequalities, consider the
sum of absolute values of all coefficients. Let S be one plus the maximum of the this sum
over all the remaining inqualities. Then setting the i-th variable to Si satisfies all clauses.

To see this, take any inequality, and assume that i is the highest variable index in this
inequality. Order the inequality in such a way that the variable with highest index is on
one side and all other variables on the other side of the 6= sign. The absolute value on the
side with the i-th variable is at least Si. The absolute value on the other side is less than
Si − S, since all variables have absolute value less than Si−1 and the sum of all coefficients
is less than S − 1 in absolute value. Hence, both sides of the inequality have different
absolute value, and the inequality is satisfied. Since all remaining clauses have at least one
inequality, all constraints are satisfied.

We finally explain how to implement the algorithm such that it runs in time O∼(N4).
To decide whether U implies an equality φ, we compute in each iteration of the main loop
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the triangular normal form for the linear equation system determined by U as described
before the statement of the proposition. The overall time to do this is in O∼(N4).

We then maintain for each negative literal an equation where we eliminate as many
variables as possible using the computed triangular form. If one of the equations becomes
trivial (i.e. is of the form a = a) we conclude that the equation is implied by U . The total
time for doing this is also bounded by O∼(N4) by a very similar argument as given before
the statement of the proposition. With appropriate data structures, the time needed for
removing negated literals ¬φ from all clauses when φ is implied by U is linearly bounded in
the input size since each literal can be removed at most once.

4. The Rational Numbers with Addition

In this section we prove results about pp-definability in first-order expansions Γ of
(Q; +). Our first result in Section 4.1 says that if Γ contains a relation R such that
R(x, . . . , x) is false for any x ∈ Q, then 6= is pp-definable in Γ. We then show in Sec-
tion 4.2 that if 6= is pp-definable in Γ, then either every relation in Γ is quantifier-free Horn
definable in (Q; +, 0), or every relation with a first-order definition in (Q; +) is pp-definable
in Γ. From these results we can then derive in Section 4.3 a complexity classification of
CSPs for first-order expansions of (Q; {(x, y, z) ∈ Q3 | x+y = z}). For increased readability,
we let R+ denote the relation {(x, y, z) ∈ Q3 | x+ y = z}).

4.1. PP-definability of Inequality. We begin by identifying the unary relations that
have first-order definitions in (Q; +).

Lemma 4.1. For any structure Γ with a first-order definition in (Q; +), the first-order
definable unary relations in Γ are members of {Q,Q \ {0}, {0}, ∅}.

Proof. Let R be a unary relation with a first-order definition in (Q; +). The statement is
clear if R does not contain any element distinct from 0, so let a be from Q\{0}. We have to
show that R = Q or R = Q\{0}. Observe that for any c ∈ Q, c 6= 0, the mapping x 7→ cx is
an automorphism of Γ. Hence, for any b 6= 0 there is an automorphism of (Q; +) that maps
a to b. Automorphisms preserve first-order formulas, so b ∈ R and the claim follows.

Note that x = 0 is equivalent to x + x = x which implies that the relation {0} is
pp-definable over (Q; +); thus we can use 0 freely as a constant symbol in pp-definitions
over Γ.

Proposition 4.2. Let Γ be a first-order expansion of (Q; +) containing a non-empty relation
R such that R(x, . . . , x) is false for any x ∈ Q. Then 6= is pp-definable in Γ.

Proof. Observe that if the set Q \ {0} has a pp-definition φ(u) in Γ, then the pp-formula

∃u. φ(u) ∧ x+ u = y

defines x 6= y over Γ.
Let S be a non-empty pp-definable relation in Γ of minimal arity such that S(x, . . . , x)

defines the empty set. Let k be the arity of S. First, assume that S(x1, x2, . . . , xk)∧x1 = x2

is satisfiable. Then the (k−1)-ary relation S′(x2, . . . , xk) defined by S(x2, x2, . . . , xk) is non-
empty, and S′(x, . . . , x) defines the empty set; this is in contradiction to the choice of S.
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Assume next that S(x1, . . . , xk) ∧ x1 = x2 is unsatisfiable. Define the unary relation
T (x) by

∃x3, . . . , xk. S(x, 0, x3, . . . , xk)

and the unary relation U(y) by

∃x1, x3, . . . , xk. S(x1, y, x3, . . . , xk) .

By Lemma 4.1, both T and U are from {Q,Q\{0}, {0}, ∅}. The relation T cannot be equal
to {0} or to Q since this contradicts the assumption that S(x1, x2, . . . , xk) ∧ x1 = x2 is
unsatisfiable. If T is equal to Q \ {0}, then by the initial observation 6= is pp-definable in Γ
and we are done. We conclude that T = ∅ and hence 0 /∈ U . Since U is non-empty, it must
be the case that U = Q\{0} and, again by the initial observation, 6= is pp-definable in Γ.

4.2. PP-definability in Non-Horn Expansions. The structure (Q; +, 0) admits quan-
tifier elimination, i.e., every relation with a first-order definition in (Q; +, 0) also has a
quantifier-free definition over (Q; +, 0). This follows from the more general fact that the
first-order theory of torsion-free divisible abelian groups admits quantifier elimination (see
e.g. Theorem 3.1.9 in [23]; the statement there is for the signature {+,−, 0}, but there is
an explicit comment that having − in the signature is not necessary). Having the constant
symbol 0 is a necessary technical detail here, since we cannot eliminate quantifiers for false
sentences in (Q; +), such as ∃x.x 6= x. (If we have the constant symbol 0, then this sentence
is equivalent to the sentence 0 6= 0, which is quantifier-free.)

The following lemma allows us to freely use certain expressions in pp-definitions over
(Q;R+).

Lemma 4.3. The relation {(x1, . . . , xl) | r1x1 + . . . + rlxl = 0} is pp-definable in (Q;R+)
for arbitrary r1, . . . , rl ∈ Q.

Proof. First observe that we can assume that r1, . . . , rl are integers, because we can multiply
the equation r1x1 + · · · + rlxl = 0 by the least common multiple of the denominators of
r1, . . . , rl and obtain an equivalent equation.

The proof is by induction on l. We first show how to express equations of the form
r1x1 + r2x2 = x3. By setting x1 and x2 to 0, this will solve the case l = 1, and by setting
x3 to 0 this will also solve the case l = 2 (recall that 0 is pp-definable in (Q;R+)).

For positive r1, r2, the formula r1x1 + r2x2 = x3 is equivalent to

∃u1, . . . , ur1
, v1, . . . , vr2

. u1 = x1 ∧
r1−1∧

i=1

x1 + ui = ui+1

∧ v1 = x2 ∧
r2−1∧

i=1

x2 + vi = vi+1

∧ ur1
+ vr2

= x3.

If we replace in this expression all atomic formulas of the form x+ y = z by R+(x, y, z), we
obtain the desired pp-definition. The cases that one or two of r1 and r2 are negative can
be handled analogously.

Now suppose that l > 2. By the inductive assumption, there is a pp-definition φ1 for
r1x1+r2x2 = u and a pp-definition φ2 for r3x3+· · ·+rlxl = v. Then ∃u, v.φ1∧φ2∧R+(u, v, 0)
is a pp-definition for r1x1 + · · · + rlxl = 0 in (Q;R+).
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We now consider the concept of reduced formulas; this idea was introduced in [3]. We
call a quantifier-free formula φ reduced if and only if it is not logically equivalent to any of
its subformulas, i.e., there is no formula ψ obtained from φ by deleting literals or clauses
such that ψ and φ are logically equivalent. Clearly, such a reduced definition of R always
exists because we can find one by successively removing literals and clauses from φ.

Recall that SQ was defined in Section 2 as {(x, y, z) ∈ Q3 | y 6= z ∧ (x = y ∨ x = z)}.

Lemma 4.4. If R is first-order, but not quantifier-free Horn definable in (Q; +, 0), then SQ

has a pp-definition in (Q;R,R+, 6=).

Proof. Let T (x, y) ( Q2 be the binary relation defined by x 6= 0∧ (y = 0∨ x = y). We first
prove that T has a pp-definition in (Q;R,R+, 6=). Let φ be a reduced first-order definition
of R, and let C be a clause of φ with two positive literals l1 and l2. Because φ is reduced,
there are p, q ∈ R such that p satisfies l1 and does not satisfy any other literal in C, and q
satisfies l2 but does not satisfy any other literal in C.

We claim that the following formula is logically equivalent to x 6= 0 ∧ (y = 0 ∨ x = y).

∃z1, . . . , zk. x 6= 0 ∧
k∧

i=1

zi = pix+ (qi − pi)y ∧

∧

l∈C\{l1,l2}

¬l ∧ R(z1, . . . , zk).

We note that this formula is equivalent to a primitive positive formula over (Q;R,R+, 6=)
by Lemma 4.3. Now, arbitrarily choose x 6= 0. Suppose that y = 0. Then the assignment
z1 = p1x, . . . , zk = pkx obviously satisfies the first line in the pp-formula. Recall that
p ∈ R and p does not satisfy any literal in C except for l1. The function f(a) = x · a is
in Aut(Q; +) whenever x 6= 0. Consequently, f ∈ Aut(Q;R,R+, 6=), too, and the second
line in the formula is satisfied as well. Now suppose that x = y. Then the assignment
z1 = q1x, . . . , zk = qkx obviously satisfies the first line in the pp-formula. By construction,
q ∈ R and q does not satisfy all literals in C except for l1. Again we conclude that the
second line in the formula is satisfied.

For the opposite direction, suppose that x, y ∈ Q satisfy the pp-formula. Because of the
first line of the formula, x 6= 0. Let z1, . . . , zk be the k elements whose existence is asserted
in the first line of the formula. Because the formula contains the conjunct R(z1, . . . , zk),
the clause C in φ is satisfied by z1, . . . , zk. Since z1, . . . , zk also satisfy the conjunction of
all negated literals in C except for the positive literals l1 and l2, at least one of these two
literals l1 and l2 must be satisfied by z1, . . . , zk.

Assume l1(x1, . . . , xk) ≡
∑k

i=1 cixi = 0 and l2(x1, . . . , xk) ≡
∑k

i=1 dixi = 0. By

the choice of p and q, we know that
∑k

i=1 cipi = 0,
∑k

i=1 ciqi 6= 0,
∑k

i=1 diqi = 0, and∑k
i=1 dipi 6= 0. Also note that zi = pi(x− y)+ qiy when 1 ≤ i ≤ k; this follows immediately

from the fact that zi = pix+ (qi − pi)y by the first line in the formula.

Suppose first that l1 is satisfied by z1, . . . , zk, i.e.
∑k

i=1 cizi = 0. Now,
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k∑

i=1

cizi =

k∑

i=1

ci(pix− piy + qiy)

=x ·
k∑

i=1

cipi − y ·
k∑

i=1

cipi + y ·
k∑

i=1

ciqi = y ·
k∑

i=1

ciqi.

Consequently, y ·
∑k

i=1 ciqi = 0. The point q does not satisfy l1, so
∑k

i=1 ciqi 6= 0. Thus,
y = 0 and we are done in this case.

Suppose instead that l2 is satisfied by z1, . . . , zk, i.e.
∑k

i=1 dizi = 0. We see that

k∑

i=1

dizi =

k∑

i=1

di(pix− piy + qiy) = (x− y) ·
k∑

i=1

dipi

and (x− y) ·
∑k

i=1 dipi = 0. Hence, x− y = 0 and y = x.
Finally, we prove that SQ(u, v,w) has the following pp-definition in (Q;R+, T ):

∃x, y. R+(x, v,w) ∧ R+(y, v, u) ∧ T (x, y).

Assume first that (u, v,w) ∈ SQ. Note that x = w − v is not equal to 0 because v 6= w. If
u = v, then y = 0, and if u = w, then x = w − v = u− v = y so T (x, y) is satisfied.

Conversely, suppose that (x, y) ∈ Q2 satisfies the pp-formula above. The formula
T (x, y) implies that x 6= 0 and hence w 6= v. Moreover, T (x, y) implies that y = 0 or x = y.
If y = 0, then u = v and (u, v,w) ∈ SQ. If x = y, then w − v = u − v and hence u = w.
Again (u, v,w) is in SQ.

We will now use Lemma 4.4 in order to prove the following definability result.

Theorem 4.5. Let Γ be first-order expansion of (Q; +). Then, either

• Γ has a quantifier-free Horn definition in (Q; +, 0), or
• every non-empty relation of Γ contains a tuple of the form (0, . . . , 0), or
• every first-order definable relation in (Q; +) has a pp-definition in Γ.

Proof. Suppose that there is a non-empty k-ary relation R of Γ that does not contain the
tuple (0, . . . , 0). Then the (k + 1)-ary relation R′(x1, . . . , xk+1) defined by R(x1, . . . , xk) ∧
xk+1 = 0 is non-empty, and the relation defined by R′(x, . . . , x) is empty. So we can apply
Proposition 4.2 and find that 6= is pp-definable in (Q; +, R′) and hence also in Γ. So assume
in the following without loss of generality that Γ contains the relation 6=.

Suppose that one of the relations of Γ does not have a quantifier-free Horn definition in
(Q; +, 0). Lemma 4.4 implies that the relation SQ has a pp-definition in Γ, and Corollary 2.3
implies that every relation with a first-order definition in (Q; =) has a pp-definition in Γ.

Let R be a relation with a first-order definition in (Q; +). We have already remarked
that R has a quantifier-free definition φ in (Q; +, 0). To find a pp-definition for R in Γ,
we introduce for every atomic formula s = t of φ two new variables xs and xt. We then
replace s = t by xs = xt. The resulting formula consists of a boolean combination of atomic
formulas of the form x = y, which we know has a pp-definition φ′ in Γ. Consider the
conjuntion of φ′ with xs = s and xt = t over all atomic formulas of the form s = t in φ, and
let φ′′ be the formula obtained from this conjunction by existentially quantifying over all
new variables. It is straightforward to verify that the resulting formula is a pp-definition of
R in Γ.
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4.3. Complexity Classification. Theorem 4.5 has consequences for the computational
complexity of constraint satisfaction.

Corollary 4.6. Let Γ be a first-order expansion of (Q;R+). Then, CSP(Γ) is in P if
all relations in Γ have a quantifier-free Horn definition over (Q; +, 0), or if all non-empty
relations contain a tuple of the form (0, . . . , 0). Otherwise, CSP(Γ) is NP-hard.

Proof. If all relations in Γ have a quantifier-free Horn definition over (Q; +, 0), then Propo-
sition 3.1 implies that CSP(Γ) is in P. If all non-empty relations contain a tuple of the form
(0, . . . , 0), CSP(Γ) is also in P, since it suffices to test on a given input whether it contains
a constraint that denotes the empty relation in Γ, in which case the input is unsatisfiable.
Otherwise, the input has the solution that maps every variable to 0.

If neither of these two conditions holds, consider the expansion of Γ by the function
+. Theorem 4.5 implies that SQ has a pp-definition φ in this expansion. Note that when t
is a term that appears in φ, then the expression x = t has a pp-definition ψ over (Q;R+)
by Lemma 4.3. We replace t by a new variable x in φ, add ψ as a conjunct to φ, and
existentially quantify x. We repeat this procedure until φ contains no more occurrences of
the function symbol +, and obtain a primitive positive definition of SQ in Γ. It follows from
Theorem 2.2 that the constraint satisfaction problem for Γ is NP-hard.

5. Affine Structures over the Rational Numbers

We will now consider affine additive structures over Q, i.e., structures with a first-order
definition in (Q; f) where f : Q3 → Q is given by f(a, b, c) = a−b+c. This structure is very
similar to the structure of Section 4: we begin by studying the definability of 6= (Section 5.1)
and of the relation SQ (Section 5.2). Using quantifier-elimination for non-sentences in (Q; f),
we combine these results to obtain a certain result on pp-definability (Section 5.3). Finally,
we completely classify the complexity of the corresponding CSPs (Section 5.4). The main
proof in Section 5.2, however, is very different from the corresponding proof in Section 4.2.

5.1. PP-definability of Inequality. In affine structures, there are only four first-order
definable binary relations.

Lemma 5.1. Let Γ be a structure with a first-order definition in (Q; f). Then there are
four first-order definable binary relations: the empty relation, the full relation, the relation
6=, and the relation =.

Proof. Since first-order formulas are preserved by automorphisms, it suffices to show that
Aut(Γ) has precisely two orbits on Q2, namely

O1 = {(x, x) | x ∈ Q} and O2 = {(x, y) | x, y ∈ Q, x 6= y} .

These two orbits clearly partition Q2. It is obvious that O1 is an orbit, because for every
c ∈ Q, the mapping x 7→ x+ c is an automorphism of (Q; f) and hence of Γ. To see that O2

is an orbit of pairs of rationals, we apply linear interpolation: let (a, b) ∈ O2 and (c, d) ∈ O2

be arbitrarily chosen. The mapping x 7→ c−d
a−b

(x − a) + c maps (a, b) to (c, d) and it is an

automorphism of (Q; f), and hence of Γ.
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In the proof of Lemma 5.1 we have in fact verified that the automorphism group of Γ
is 2-transitive; a structure Γ is called k-transitive, for k ≥ 1, if there is only one orbit of
k-tuples having pairwise distinct entries with respect to the componentwise action of the
automorphism group of Γ on k-tuples.

Lemma 5.2. Let R be a non-empty relation that is first-order definable in (Q; f). If
(0, ..., 0) 6∈ R, then 6= is pp-definable in {R}.

Proof. Let m denote the arity of R. By 2-transitivity, it follows that (x, . . . , x) 6∈ R for any
x ∈ Q. Since R is non-empty, we conclude that m > 1. Consider the following pp-definitions
of binary relations R1, . . . , Rm.

R1(x, y) ≡ ∃z1, . . . , zm−2.R(x, y, z1, . . . , zm−2)

R2(x, y) ≡ ∃z1, . . . , zm−3.R(x, x, y, z1, . . . , zm−3)

R3(x, y) ≡ ∃z1, . . . , zm−4.R(x, x, x, y, z1, . . . , zm−4)

...

Rm−3(x, y) ≡ ∃z1, z2.R(x, . . . , x, y, z1, z2)

Rm−2(x, y) ≡ ∃z1.R(x, . . . , x, y, z1)

Rm−1(x, y) ≡ R(x, . . . , x, y)

Rm(x, y) ≡ R(x, . . . , x)

Let i be the least number such that Ri is empty; such an i exists since Rm is empty.
Note that i > 1 since R and, consequently, R1 are non-empty. Now consider the relation
Ri−1 and note that it is non-empty due to the choice of i. We know (from Lemma 5.1)
that the binary relations that are pp-definable in {R} is a subset of Q2, 6=, =, and ∅. If
Ri−1 equals Q2 or the equality relation, then Ri would be non-empty which leads to a
contradiction. Hence Ri−1 equals the relation 6=.

5.2. PP-definability in Non-Horn Expansions. The central step of the classification
is the following result concerning pp-definability.

Lemma 5.3. Let Γ be a relational structure over an infinite domain D such that the set
of pp-definable binary relations in Γ is exactly {D2, 6=,=, ∅}. Suppose that Γ contains a
relation Q such that there are pairwise distinct 1 ≤ i, j, k, l ≤ n for which the following
conditions hold:

(1) Q(x1, . . . , xn) ∧ xi 6= xj is satisfiable;
(2) Q(x1, . . . , xn) ∧ xk 6= xl is satisfiable;
(3) Q(x1, . . . , xn) ∧ xi 6= xj ∧ xk 6= xl is unsatisfiable.

Then SD has a pp-definition in Γ.

We simplify the proof of Lemma 5.3 by first proving a slightly restricted version:

Lemma 5.4. Let Γ be a relational structure over an infinite domain D such that such that
the pp-definable binary relations in Γ are exactly {D2, 6=,=, ∅}. Suppose that Γ contains a
relation Q such that there are 1 ≤ i, j, k ≤ n for which the following conditions hold:

(1) Q(x1, . . . , xn) ∧ xi 6= xj is satisfiable;
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(2) Q(x1, . . . , xn) ∧ xi 6= xk is satisfiable;
(3) Q(x1, . . . , xn) ∧ xi 6= xj ∧ xi 6= xk is unsatisfiable.

Then SD has a pp-definition in Γ.

Proof. The indices i, j, k must be pairwise distinct, so suppose for the sake of notation that
i = 1, j = 2, k = 3. Consider the relation R defined by

R(x1, x2, x3) ≡ ∃x4, . . . , xn.Q(x1, . . . , xn) ∧ x2 6= x3.

We first note that R is a non-empty relation: Q(x1, . . . , xn) is satisfiable so the only way of
making R empty is that every tuple (s1, . . . , sn) in Q satisfies s2 = s3. This is impossible
since we know that there exists a tuple (s1, . . . , sn) ∈ Q such that s1 6= s2. This implies
s1 6= s3 and contradicts the third condition.

By condition (3), it is clear that R ⊆ SD. Define R′(x1, x3) to be R(x1, x1, x3). By
conditions (2) and (3), R(x1, x2, x3) ∧ x1 6= x3 is satisfiable while R(x1, x2, x3) ∧ x1 6=
x2 ∧ x1 6= x3 is not satisfiable. Thus, R(x1, x2, x3) ∧ x1 = x2 has to be satisfiable and R′ is
non-empty. Furthermore, R′ ⊆ (6=) since if (a, a) ∈ R′, then (a, a, a) ∈ R which contradicts
the definition of R. By Lemma 5.1, R′ = (6=) so, for all a 6= b, R(a, a, b) holds. Similarly,
R(a, b, a) holds for all a 6= b by considering R′′(x, y) ≡ R(x, y, x). We have shown that
R = SD.

Proof of Lemma 5.3. Assume for notational simplicity that i = 1, j = 2, k = 3, and l = 4.
Define the 4-ary relation R by

R(x1, x2, x3, x4) ≡ ∃x5, . . . , xn.Q(x1, . . . , xn)

and consider the formula φ = R(x, y, x′, y′)∧R(z′, y′, z, y)∧x′ 6= z′. We claim that φ∧x 6= y
and φ ∧ y 6= z are satisfiable while φ ∧ x 6= y ∧ y 6= z is not satisfiable. Then we can apply
Lemma 5.4 and are done. First we make an observation:

Observation 1. Define relation R1 such that

R1(u, v) ≡ ∃x, y.R(x, y, u, v) ∧ x 6= y.

We know that R(x, y, u, v) ∧ x 6= y is satisfiable so R1 is a non-empty relation. Since
R1(u, v)∧u 6= v is not satisfiable, we conclude that R1 is a non-empty subset of the equality
relation. Consequently, R1 is the equality relation. Analogously, define R2 such that

R2(u, v) ≡ ∃z, y.R(u, v, z, y) ∧ z 6= y

and note that R2 is the equality relation, too.

We now prove that φ ∧ x 6= y ∧ y 6= z is not satisfiable. By using Observation 1, it follows
that any solution s satisfies x′ = y′ and y′ = z′ — this is impossible due to the clause
x′ 6= z′.

Next, we prove that φ ∧ x 6= y is satisfiable; the case φ ∧ y 6= z is symmetric. Consider
the relation

U(u, v) ≡ ∃w.R(w, u, v, v) ∧ w 6= u.

By the conditions on R, we know that U is non-empty. Since U is binary, we also know that
U either is the equality relation, the inequality relation, or the full relation. We conclude
that U is non-empty and symmetric.

By Observation 1, the clause x 6= y has the effect that every solution s must satisfy
x′ = y′. By the definition of φ, the solution also has to satisfy x′ 6= z′ which implies that
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y′ 6= z′. Observation 1 now tells us that z = y and we conclude that every solution satisfies
x′ = y′ and z = y. We define

φ′ = R(x, y, x′, x′) ∧R(z′, y′, z, z) ∧ x′ 6= z′ ∧ x 6= y

Thus, φ′ is satisfiable if and only if φ∧x 6= y is satisfiable. We will now construct a concrete
satisfying assignment s to the variables of φ′.

Arbitrarily choose a tuple (a, b) ∈ U and let s(y) = a, s(x′) = b. By the conditions on U ,
there exists an element c such that (c, a, b, b) ∈ R and c 6= a; we let s(x) = c. Furthermore,
we know that s(x′) = s(y′) and s(z) = s(y) so s(y′) = b and s(z) = a. At this point, we see
that the assignment s satisfies the clauses R(x, y, x′, x′) and x 6= y.

We know that (a, b) ∈ U so (b, a) ∈ U , too, and there exists a value d such that
(d, b, a, a) ∈ R and d 6= b. Now, let s(z′) = d and note that R(z′, y′, z, z) is satisfied by s.
Finally, s(x′) = b 6= d = s(z′) so the clause x′ 6= z′ is satisfied and the proof is completed.

5.3. Classification Result. We are now almost ready to prove our pp-definability result
for affine structures. However, we first need to prove that we can eliminate quantifiers
in (Q; f) for formulas that have at least one free variable (‘non-sentences’). We have been
unable to find a reference for this fact; however, this should be considered to be well-known.
We give the argument here for the convenience of the reader. We say that a first-order theory
T has quantifier-elimination for non-sentences if for every first-order formula φ with at least
one free variable, there exists a quantifier-free formula ψ such that T |= ∀x̄. φ(x̄) ⇔ ψ(x̄).

Theorem 5.5 (Theorem 8.4.7 in [17]). A theory T has quantifier-elimination for non-
sentences if and only if for all models Γ and ∆ of T , and for all non-empty sequences ā
from Γ and embeddings e from the substructure of Γ generated by ā into ∆, there exists an
extension ∆′ of ∆ that satisfies T and an embedding of Γ into ∆′ that extends e.

Let T be the first-order theory of (Q; f). In every model of T , say with domain G,
if we arbitrarily fix a point (the precise choice of the point is not of importance since
(Q; f) is 1-transitive) and make it the constant 0, we can define a binary function + by
x+ y = f(x, 0, y) in (Q; f, 0). It is straightforward to verify that the structure (G; +, 0) is a
torsion-free divisible abelian group, and that (x, y, z) 7→ x−y+z defines f in (G; +, 0). Let
Γ and ∆ be two models of T , and let (G; +, 0) and (D; +, 0) be two torsion-free divisible
abelian groups obtained from Γ and ∆ as above. Let e be an embedding of a substructure
of Γ generated by a non-empty sequence ā of elements of Γ into ∆.

We choose an element a0 from ā, and let b̄ be the sequence given by bi = ai−a0. Define
g to be the function x 7→ e(x+ a0)− e(a0) from the substructure of Γ generated by b̄ to ∆.
Note that g is in fact a function defined on the substructure generated by b̄ in (G; +, 0), and
moreover g is an embedding from this substructure into (D; +, 0). Since torsion-free divisible
abelian groups have quantifier-elimination, and by the reverse implication of Theorem 5.5,
there exists a torsion-free divisible abelian group (D′; +, 0) and an extension g′ of g that
is an embedding of (G; +, 0) into (D′; +, 0). Let ∆′ be the model of T that is definable in
(D′; +, 0). Then e′ given by e′(x) = g′(x) + e(a0) is an extension of e that embeds Γ into
∆′. This proves quantifier-elimination for non-sentences for T via Theorem 5.5.

Theorem 5.6. Let Γ be a first-order expansion of (Q; f). Then, either

• every at least unary relation in Γ has a quantifier-free Horn definition in (Q; f), or
• every non-empty relation of Γ contains a tuple of the form (0, . . . , 0), or
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• every first-order definable relation in (Q; f) has a pp-definition in Γ.

Proof. Suppose that there is a non-empty k-ary relation R in Γ that does not contain the
tuple (0, . . . , 0). Lemma 5.2 shows that 6= is pp-definable in Γ We therefore assume in the
following without loss of generality that Γ contains the relation 6=.

Let R be an n-ary relation in Γ, for n ≥ 1, that does not have a quantifier-free Horn
definition in (Q; f). Since (Q; f) has quantifier-elimination for non-sentences, there is a
reduced definition φ(x1, . . . , xn) of R in (Q; f) (see Section 4). There must be a clause C
in φ with at least two positive literals l1 and l2, where l1 is of the form t1 = t2 and l2 is of
the form t3 = t4 for terms t1, t2, t3, t4 involving the function symbol f and variables. Let
S(x1, . . . , xn, xn+1, xn+2, xn+3, xn+4) be the relation defined by

φ(x1, . . . , xn) ∧
∧

l∈C\{l1,l2}

¬l

∧ xn+1 = f(t1, t2, xn+3) ∧ xn+2 = f(t3, t4, xn+4) ,

To see that the relation S is pp-definable in Γ, note that the formula ¬l, where l is of
the form s1 = s2 for terms s1, s2, has a pp-definition ∃u, v. u = s1 ∧ v = s2 ∧ u 6= v. We
claim that S is non-empty. Arbitrarily choose an assignment s : {x1, . . . , xn} → Q that
satisfies φ(x1, . . . , xn) ∧

∧
l∈C\{l1,l2}

¬l, and that satisfies the literal l1, but not the literal l2
(such an s exists since φ is reduced). Let d3 be the value of t3 under the assignment s, and
d4 the value of t4 under s. Then the extension s′ of s that maps (xn+1, xn+2, xn+3, xn+4)
to (0, d3, 0, d4) satisfies the entire formula: xn+1 = f(t1(x1), t2(x2), xn+3) is satisfied by s′

because 0 = t1 − t2 + 0, which holds since s′ satisfies literal l1. The assignment s′ also
satisfies xn+2 = f(t3, t4, xn+4), because d3 = t3 − t4 + d4 due to the choice of d3 and d4.

We claim that S satisfies the conditions of Lemma 5.3 (which is applicable due to
Lemma 5.1) with respect to the arguments indexed by n+1, n+3, n+2, and n+4. By the
argument above, it is easy to see that S(x1, . . . , xn+4) ∧ xn+1 6= xn+3 is satisfiable: merely
observe that d3 6= d4 since s does not satisfy literal l2. Analogously, S(x1, . . . , xn+4)∧xn+2 6=
xn+4 is satisfiable, too.

Let φ′ be the formula S(x1, . . . , xn+4)∧ xn+1 6= xn+3 ∧xn+2 6= xn+4. If φ′ is satisfiable,
then there exists a solution s : {x1, . . . , xn+4} → Q. It satisfies either l1 or l2. Assume first
it satisfies literal l1. Hence, s satisfies that t1 = t2, and the constraint xn+1 = f(t1, t2, xn+3)
then implies that xn+1 = xn+3, in contradiction with the constraint xn+1 6= xn+3. Similarly,
we obtain a contradiction when s satisfies l2. Therefore φ′ is not satisfiable. We can now
apply Lemma 5.3 and obtain that SQ is pp-definable over (Q;S, 6=). The relation S is
pp-definable over (Q;R, f, 6=) and, consequently, SQ is pp-definable over Γ.

Let S be an arbitrary relation with a first-order definition φ in (Q; f). By quantifier-
elimination for (Q; f) there is a quantifier-free first-order definition φ of S over (Q; f). We
can now proceed in the same way as at the end of the proof of Theorem 4.5, using the
relation SQ and the function symbol f , to produce a pp-formula over Γ that is equivalent
to φ.

5.4. Complexity Classification. The next corollary is a direct consequence of Proposi-
tion 3.1, Theorem 2.2, and Theorem 5.3.
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Corollary 5.7. Let Γ be a structure with a first-order definition in (Q;Rf ). If every at
least unary relation in Γ has a quantifier-free Horn definition in (Q; f), or if every non-empty
relation contains a tuple of the form (0, . . . , 0), then CSP(Γ) is in P. Otherwise, CSP(Γ) is
NP-hard.

Proof. If every at least unary relation in Γ has a quantifier-free Horn definition in (Q; f),
then Proposition 3.1 implies that CSP(Γ) can be solved in polynomial time. If every non-
empty relation contains a tuple of the form (0, . . . , 0), then containment in P is trivial.
Suppose that some at least unary relation in Γ does not have a quantifier-free Horn definition
in (Q; f), and some non-empty relation does not contain a tuple of the form (0, . . . , 0).
Lemma 5.2 now shows that the relation 6= is pp-definable in Γ. Then, by Lemma 5.3, the
relation SQ has a pp-definition φ in Γ. Hardness of CSP(Γ) follows from Theorem 2.2.

6. Concluding Remarks

We have presented classification results for certain algebraic constraint satisfaction
problems, and the results are to a large extent based on dichotomy results for logical defin-
ability. We feel that the results and ideas presented in this article can be extended in many
different directions. Hence, it seems worthwhile to provide some concrete suggestions for
future work.

The results and proof techniques in Section 4 appear to be generalisable to many dif-
ferent templates defined over various structures. One example is the natural and important
class of structures that are definable in Presburger arithmetic [24], i.e., structures that are
first-order definable over (Z; +, 1). Studying the full theory of Presburger arithmetic is
probably too difficult with current methods, but it is possible to approach related theories.
For instance, the following result can be obtained by slightly modifying Corollary 4.6.

Corollary 6.1. Let Γ be a relational structure with a quantifier-free first-order definition
in (Z; +) that contains the relation {(x, y, z) ∈ Z3 | x+ y = z}. Then, CSP(Γ) is in P if all
relations in Γ have a quantifier-free Horn definition over (Z; +), or if all non-empty relations
contain a tuple of the form (0, . . . , 0). Otherwise, CSP(Γ) is NP-hard.

There is an important difference between this result and a full classification result:
we have replaced first-order definability with quantifier-free first-order definability in the
statement of the result, and the reason is that (Z; +) does not admit quantifier elimination.
Is there still a complexity dichotomy if we look at the class of CSPs with a template that
is first-order definable in (Z; +)? This appears to be a non-trivial question.

The results presented in Section 5 have strong connections with earlier work on the
complexity of disjunctive constraints [9, 14]. We say that 6= is 1-independent with respect
to a τ -structure Γ if and only if for every primitive positive τ -formula φ with free variables
x, y, z, w the following holds: if φ ∧ x 6= y and φ ∧ z 6= w are satisfiable, then so is φ ∧ x 6=
y ∧ z 6= w. Assume that CSP(Γ) is tractable and let Γ′ denote the set of all relations that
can be defined by (quantifier-free) conjunctions of disjunctions over Γ containing at most
one literal that is not of the form x 6= y. The following has been shown in [9, 14].

Theorem 6.2. Let Γ and Γ′ be defined as above, and assume that P 6= NP. Then CSP(Γ′)
is tractable if and only if 6= is 1-independent with respect to Γ.
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This result does not imply our result since it only makes a statement about a constraint
language Γ′ of the form described above.

We have already mentioned that the structures studied in this article are in general
not ω-categorical. However, torsion-free divisible abelian groups such as (Q; +) and all
structures first-order definable in such groups are strongly minimal (Corollary 3.1.11 in [23]),
i.e., every subset that is definable with parameters in Γ is either finite or cofinite. It follows
(see e.g. Corollary 6.1.12 in [23]) that all those structures are uncountably categorical, i.e.,
have only one model (up to isomorphism) for each uncountable cardinal. This is interesting
from a constraint satisfaction point of view because of the following preservation theorem.

Theorem 6.3 (from [4]). Let Γ be an uncountably categorical structure with a count-
able relational signature and a domain of cardinality larger than 2ω. Then a first-order
definable relation R has a pp-definition in Γ if and only if R is preserved by all infinitary
polymorphisms of Γ.

Note that this theorem is weaker than the corresponding theorem for ω-categorical
structures [8], because we have to assume that R is first-order definable, and that R is not
only preserved by the finitary, but also by the infinitary polymorphisms of Γ. Since our
classification result is purely in terms of primitive positive definability of first-order defin-
able relations, it is an interesting question to describe the polymorphisms that guarantee
tractability for structures Γ with a first-order definition in (R; +) (Theorem 6.3 shows that
such polymorphisms do exist).

Acknowledgements

We want to thank Barnaby Martin for comments on an earlier version of the article,
Martin Hils for discussions around quantifier elimination, and the anonymous reviewers for
constructive criticism. Peter Jonsson is partially supported by the Center for Industrial
Information Technology (Ceniit) under grant 04.01 and by the Swedish Research Council
(VR) under grants 2006-4532 and 621-2009-4431. Manuel Bodirsky has received funding
from the European Research Council under the European Community’s Seventh Framework
Programme (FP7/2007-2013 Grant Agreement no. 257039).

References

[1] M. Bodirsky. Constraint satisfaction problems with infinite templates. In H. Vollmer, editor, Complexity
of Constraints (a collection of survey articles), pages 196–228. Springer, LNCS 5250, 2008.

[2] M. Bodirsky, H. Chen, J. Kara, and T. von Oertzen. Maximal infinite-valued constraint languages.
Theoretical Computer Science, 410:1684–1693, 2009.

[3] M. Bodirsky, H. Chen, and M. Pinsker. The reducts of equality up to primitive positive interdefinability.
Journal of Symbolic Logic, 75(4):1249–1292, 2010.

[4] M. Bodirsky, M. Hils, and B. Martin. On the scope of the universal-algebraic approach to constraint
satisfaction. In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science (LICS-
2010), 2010.

[5] M. Bodirsky, P. Jonsson, and T. von Oertzen. Essential convexity and complexity of semi-algebraic
constraints. Preprint, 2010.

[6] M. Bodirsky and J. Kára. The complexity of equality constraint languages. Theory of Computing Sys-
tems, 43(2):136–158, 2008.
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