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Linköping, Sweden. Phone +46 (0)13 282415, fax +46 (0)13 142231

bDepartment of Computer and Information Science, Linköping University, SE-581 83
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Abstract

Temporal reasoning problems arise in many areas of AI, including planning,
natural language understanding, and reasoning about physical systems. The
computational complexity of continuous-time temporal constraint reasoning
is fairly well understood. There are, however, many different cases where
discrete time must be considered; various scheduling problems and reasoning
about sampled physical systems are two examples. Here, the complexity of
temporal reasoning is not as well-studied nor as well-understood. In order to
get a better understanding, we consider the powerful Horn Disjunctive Lin-
ear Relations (Horn DLR) formalism adapted for discrete time and study its
computational complexity. We show that the full formalism is NP-hard and
identify several maximal tractable subclasses. We also ‘lift’ the maximality
results to obtain hardness results for other families of constraints. Finally,
we discuss how the results and techniques presented in this paper can be
used for studying even more expressive classes of temporal constraints.

Keywords: Temporal reasoning, discrete time, computational complexity

1. Introduction

Reasoning about time is ubiquitous in artificial intelligence and many dif-
ferent branches of computer science. Noteworthy examples include planning,
diagnosis, and temporal databases. For a general overview of temporal rea-
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soning, see, for instance, the survey by Chittaro & Montanari [11], the hand-
book edited by Fisher et al. [16], or the handbook edited by Rossi et al. [37].
The temporal constraint satisfaction problem is very well-studied and there
has lately been substantial progress in understanding the complexity of this
problem. Bodirsky and Kára [8] have presented a complete classification of
the temporal constraint problem for relations that are first-order definable
in the structure (Q;<). This result subsumes a large portion of previous
work on qualitative (that is, the case where we cannot refer to individual
time points in the underlying time structure) temporal constraints based on
time points; one may note that this result does not cover formalisms such as
the Allen algebra (which is intrinsically based on non-degenerate intervals
instead of points). There are no such unifying result for metric temporal
constraints, but many partial results are known, cf. Barber [2], Jonsson &
Bäckström [22], Krokhin et al. [27], and Wetprasit & Sattar [39].

The situation is very different if we turn our attention to discrete tem-
poral constraints where the set of time points is some subset of the set of
integers Z. There are some scattered complexity results (see, for example,
[3, 25, 30]) but a coherent picture is lacking. This is unsatisfactory since
reasoning about discrete time is an important part of AI: let us just men-
tion temporal logics, plan generation, and discrete time Markov chains as
three concrete examples. Reasoning about discrete time is also inevitable
in many ‘industrial’ settings: for systems that are repeatedly sampled (for
monitoring or other purposes), we are implicitly forced to assume that the
underlying model of time is discrete. Our goal with this paper is to initiate
a systematic study of temporal constraint satisfaction under the assumption
that time is discrete instead of continuous. The focus will be on the compu-
tational complexity of such problems; more precisely, we aim at identifying
restricted classes of constraints such that the corresponding constraint sat-
isfaction problem can be solved in polynomial time. Obtaining a full clas-
sification of hard and easy cases is of course highly desirable — it gives us
a very powerful tool for studying the complexity of problems that can be
modelled within the language. Since temporal constraint reasoning appears
as a subproblem in many different types of automated reasoning, we expect
such results to be useful in many other contexts, too. For instance, note that
discrete semilinear relations (to be defined later on) have been used inten-
sively for a long time in, for example, constraint databases [25, 35], formal
verification [10], distributed computing [1], automata therory [34], and in
the study of Presburger arithmetic and other logical formalisms [19]. We
also note that results of this kind may be interesting for satisfiability modulo
theories (SMT), i.e. the satisfiability problem for logical formulas over differ-
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ent background theories. The article by Nieuwenhuis et al. [31] or Gansesh’s
dissertation [17] may serve as introductions to this highly interesting topic.

We divide the rest of this introduction into three parts: we introduce
temporal constraint problems in the first, we briefly discuss computational
complexity in the second, and give an outline of the article in the third.

1.1. Temporal constraint problems

In order to introduce temporal constraint reasoning formally, we first
define the general constraint satisfaction problem.

Definition 1. Let Γ be a set of finitary relations over some set D of values.
The constraint satisfaction problem over Γ (CSP(Γ)) is defined as follows:

Instance: A set V of variables and a set C of constraints R(v1, . . . , vk) where
k is the arity of R, v1, . . . , vk ∈ V and R ∈ Γ.
Question: Is there a total function f : V → D such that (f(v1), . . . , f(vk)) ∈
R for each constraint R(v1, . . . , vk) in C?

The set Γ is referred to as the constraint language. Observe that we do
not require Γ to be a finite set. Given a set D, we let Γ|D denote Γ restricted
to D, i.e. Γ|D = {R∩Dn | R ∈ Γ and R has arity n}. We sometimes slightly
abuse notation to avoid unnecessary clutter. For instance, we may say ‘the
relation x = y + z’ instead of ‘the relation {(x, y, z) ∈ Z3 | x = y + z}.’

Let us now turn our attention to temporal constraint problems. We
let D ⊆ R denote a set of time points. Let the set SD contain all relations
{(x1, . . . , xn) ∈ Dn | C1∧. . .∧Ck} where each clause Ci denotes a disjunction
(p1r1c1 ∨ . . . ∨ pmrmcm). Here, cj is an integer, rj ∈ {<,≤,=, 6=,≥, >} and
pj(x1, . . . , xn) is a linear polynomial (i.e. the degree of p equals one) with
integer coefficients. The relations P1, Q1, and R1 below are examples of
members in SD.

• P1(x, y, z) ≡ (x = 1 ∨ y = 1) ∧ (x = 0 ∨ z = 1),

• Q1(x, y) ≡ 5x+ 3y ≤ 8 ∧ 3x+ 5y ≥ 8, and

• R1(x, y, z) ≡ x+ y + z ≤ 0 ∨ x 6= 1 ∨ y 6= 1 ∨ z 6= 1.

We adopt a simple representation of relations in SD: every relation R in
SD is represented by its defining formula where each coefficient is written
in binary. One may note that all possible choices of the relation rj are not
necessary for defining the set SD; for example, x 6= y ⇔ x < y ∨ x > y.
However, it simplifies the definition of the forthcoming classes of relations.
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Let DD ⊆ SD contain the relations that are defined by a single clause. Let
HD ⊆ DD contain the relations that are defined by a single clause that con-
tains at most one relation that is not of the type p(x̄) 6= c. The names S, D,
and H are chosen to reflect the names given to the corresponding relations
in the literature: the relations in SD are called semilinear relations, the rela-
tions in DD are called disjunctive linear relations (DLRs), and the relations
in HD are called Horn DLRs. DLRs and Horn DLRs were introduced in
[22, 26] but only for continuous time structures (in fact, only for the set R

of real numbers). To make things more concrete, HZ contains for example
the following relations:

• P2(x, y, z) ≡ x− y + z ≥ 0 ∨ y 6= 1 ∨ z 6= 0,

• Q2(x) ≡ x = 17, and

• R2(x, y, z) ≡ x 6= 0 ∨ y 6= 0 ∨ z 6= 0.

It is worth noting that the clauses are not Horn clauses in the classical
meaning of the word, but the name Horn DLRs is choosen because they are
structurally similar. Just like ordinary Horn clauses, a Horn DLR clause
can be considered an implication since

p(x̄) r c ∨ q1(x̄) 6= d1 ∨ . . . ∨ qk(x̄) 6= dk

is equivalent to

(q1(x̄) = d1 ∧ . . . ∧ qk(x̄) = dk) → p(x̄) r c.

Horn DLRs have appeared in different guises several times in the literature;
see [22, 26] for examples and references. We also note that the modelling
power (in continuous time) of HR is quite high; many tractable fragments
described in the literature are within HR [22, 26]. This indicates that HZ

may be interesting from a modelling point of view, too.

1.2. Computational complexity

When studying constraint satisfaction problems with infinite constraint
languages, one often makes a distinction between local and global properties,
cf. Bodirsky and Grohe [6].

Definition 2. A constraint satisfaction problem CSP(Γ) is globally tractable
if CSP(Γ) is in P and locally tractable if CSP(Γ′) is in P for every finite
set Γ′ ⊆ Γ. Similarly, CSP(Γ) is globally NP-hard if CSP(Γ) is NP-hard
and locally NP-hard if CSP(Γ′) is NP-hard for some finite set Γ′ ⊆ Γ.
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It is clear that global tractability implies local tractability. Something
far less obvious is that there are infinite constraint langauges that are glob-
ally NP-hard but locally tractable. We will discuss the implications of this
in Section 6.2, and also present a concrete temporal language with this prop-
erty.

The separation of local and global tractability/NP-hardness is, among
other things, motivated by Theorem 3 below. We need some machinery to
state this result. Given a constraint language Γ, we say that a relation R
has a positive primite definition (pp-definition) in Γ if it can be defined by a
first-order formula over Γ without using disjunction and negation, and with
only existential quantification. As an example, consider the language

Θ = {{(x, y, z) ∈ Z3 | x = y + z}, {(x, y) ∈ Z2 | x 6= y}, {1}}

and note that the relations x 6= y + 2 and x = 5y can be pp-defined in Θ:

• x 6= y + 2 ⇔ ∃v,w, z.w = 1 ∧ z = w + w ∧ v = y + z ∧ x 6= v

• x = 5y ⇔ ∃v,w.v = y + y ∧ w = v + v ∧ x = w + y

Let 〈Γ〉 (the closure or co-clone of Γ) denote all relations that are pp-
definable in Γ. The following theorem is due to Jeavons [21].

Theorem 3. For every finite Θ ⊆ 〈Γ〉, CSP(Θ) is polynomial-time reducible
to CSP(Γ). Furthermore, if R ∈ 〈Γ〉, then CSP(Γ ∪ {R}) and CSP(Γ) are
polynomial-time equivalent problems.

An immediate consequence is that if CSP(Γ) is globally tractable, then
CSP(〈Γ〉) is locally tractable. This theorem will be very important in the
sequel since it gives us a convenient method for proving many different
complexity results.

We continue by providing some complexity results for different temporal
formalisms. For a, b, c ∈ Z, define Ta,b = {(a, a, b), (a, b, a), (b, a, a)} and
T ′

a,b,c(x, y) ≡ {a, b, c}2 \ {(a, a), (b, b), (c, c)}.

Proposition 4. CSP({Ta,b}) and CSP({T ′
a,b,c}) are NP-hard problems when-

ever a, b, c are distinct numbers in Z.

Proof. CSP({Ta,b}) is an NP-hard problem since it corresponds to 1-in-

3-Sat restricted to clauses without negated literals (see problem LO4 in
Garey & Johnson [18]). The problem CSP({T ′

a,b,c}) is NP-hard problem
since it corresponds to 3-Colourability (see problem GT4 in Garey &
Johnson [18]).
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Theorem 5. CSP(HR) is globally tractable while CSP(HZ) is locally NP-
hard. Furthermore, CSP(DD) and CSP(SD) are locally NP-hard when D ∈
{Z,R}.

Proof. Global tractability of CSP(HR) and local NP-hardness of CSP(DR)
and CSP(SR) follows from [22]. For the remaining cases, it is sufficient to
prove local NP-hardness of CSP(HZ). Simply note that we can pp-define
T0,1 in HZ by

T0,1(x, y, z) ≡ x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 0 ∧ x+ y + z = 1

and thereafter apply Proposition 4 and Theorem 3.

One should also note that CSP(SZ) (and, consequently, the problems
CSP(DZ) and CSP(HZ)) are in NP; this is a folklore result that can be
proven without too much effort by using Papadimitriou’s [32] observation
that integer programming is in NP. Since CSP(HZ) is locally NP-hard, it
makes sense to start looking for tractable fragments within HZ, and this is
a natural first step in a bottom-up approach to classifying the complexity
of CSP(DZ) and CSP(SZ). We will concentrate on identifying tractable
fragments and study their maximality in the forthcoming sections. Given
constraint languages Γ ⊆ Θ, we say that Γ is maximally tractable in Θ if
CSP(Γ) is globally tractable and CSP(Γ∪{R}) is locally NP-hard for every
R ∈ Θ \ Γ. Maximality can obviously be defined in different ways with
respect to local and global properties but this definition is sufficent for our
purposes. Note that if a language Γ is maximal in Θ, then there may be a
language Θ′ such that Θ ⊆ Θ′ and Γ is not maximal in Θ′; it is in general
very important to state which set the maximality relates to. However, since
we are exclusively interested in maximal fragments of HZ in this article, we
allow ourselves to sometimes write ‘Γ is maximal’ instead of ‘Γ is maximal
in HZ’.

1.3. Outline

The main part of this article is devoted to four different types of tractable
temporal constraint problems.

Section 2. We consider problems where solutions can be ‘scaled’ to integer
solutions and we use this property for abstractly defining the contraint lan-
guage ΛZ. The polynomial-time algorithm for CSP(ΛZ) is simple: check if
there is a solution over the real numbers, and this can be done in polyno-
mial time by using an algorithm by Jonsson & Bäckström [22]. The abstract
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formulation is not quite useable in the maximality proof so we make an alter-
native concrete characterisation of ΛZ; we obtain this by using the concept
of reduced formulas [4]. Armed with this characterisation, we provide a max-
imality proof and also present a generalised hardness result for constraint
languages that are not necessarily subsets of HZ. Since the basic result on
scalability is applicable to a wide range of constraint languages, we conclude
this section by considering the problem of deciding whether a given relation
in DZ is scalable or not.

Section 3. In this section, we study a constraint language that is based on
linear equations extended with certain disjunctions. The polynomial-time
algorithm for this problem is based on a result on the solvability of linear
equations over integers [24] combined with a general technique for handling
disjunctions [12]. The maximality proof is once again based on exploiting
reduced formulas.

Section 4. If we do not count relations of the type p(x̄) 6= c, then the results
in Section 2 are mostly concerned with relations of the type p(x̄) ≥ c while
the results in Section 3 are concerned with relations of the type p(x̄) = c.
It is thus natural to study how these two types of relations can be mixed.
We give an example of such a ‘mixed’ class Ψ in this section. The tractable
algorithm for CSP(Ψ) is an extension of an algorithm by Bodirsky et al. [9].
The maximality proof is slightly more complicated than in the two previous
sections so we have divided it into several parts. The proof is based on fairly
complex pp-definitions so we use some elementary number theory and linear
algebra in order to simplify both the constructions and their presentations.

Section 5. A relation R is k-valid if the tuple (k, . . . , k) ∈ R. Obviously, the
constraint satisfaction problem over the set Γk ⊆ HZ of k-valid relations is
tractable. We show that Γk is a maximal tractable subclass of HZ for every
k ∈ Z, and this demonstrates that there are an infinite number of maximal
tractable fragments in HZ.

We conclude the paper by discussing the results and future research
directions. We address, for example, full complexity classifications of frag-
ments within SZ, certain issues arising when dealing with locally tractable
problems, and connections with finite-domain constraint satisfaction prob-
lems.

This article is a revised version of a conference paper [23]; one should
note that Section 2.3, Section 4 and most of Section 6 do not appear in the
earlier version.
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2. Scalable constraints

One way to start looking for tractable fragments of HZ is to ask under
which circumstances a solution to an instance I of CSP(HR) implies a so-
lution to the corresponding instance I|Z of CSP(HZ). In Section 2.1, we
begin by identifying such a condition (which we refer to as scalability) and
define ΛZ to be the scalable relations in HZ. We continue, in Section 2.2, by
proving that ΛZ is maximal in HZ. Finally, we show how to decide whether
a given relation R ∈ SZ is scalable or not in Section 2.3.

2.1. Scalability and the language ΛZ

Our starting point is the following result1.

Lemma 6. Let Γ be a constraint language over R such that the following
holds.

1. Every satisfiable instance of CSP(Γ) is satisfied by some rational point.

2. For each R ∈ Γ, it holds that if x̄ = (x1, x2, . . . , xk) ∈ R, then
(ax1, ax2, . . . , axk) ∈ R for all a ∈ {y ∈ R | y ≥ 1} \ X where X
is a (possibly empty) bounded set. The set X may depend on both R
and x̄.

3. CSP(Γ) is globally (or locally) tractable.

Then, the problem CSP(Γ|Z) is also globally (or locally) tractable.

Proof. Let I be an arbitrary satisfiable instance of CSP(Γ) with a rational
solution x̄ = (x1/y1, . . . , xk/yk) where x1, . . . , xk ∈ Z and y1, . . . , yk ∈ Z+ \
{0}. Let n =

∏k
i=1 yi and note that n ≥ 1.

For an arbitrary constraint R in I, we know that it is satisfied by ax̄ for
every a ∈ {y ∈ R | y ≥ 1} \ X where X is bounded. For every constraint
Ci in I, let Xi denote the set of ‘exception’ points, let ui = supXi, and let
u = maxm

i=1 ui (where m is the number of constraints in I).
It follows that there is an infinite number of a > u such that a is divisible

by n. Clearly ax̄ satisfies I. The vector ax̄ is integral by construction, which
concludes the proof.

1Lemma 6 strengthens the corresponding result in the conference version of this article;
instead of requiring that X is finite, we now only require that X is bounded. However,
this generalisation does not change the constraint language ΛZ. We do not exclude the
possibility that, in other cases, there may be differences when using the ‘old’ definition
compared with the ‘new’ definition.
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Intuitively, we are looking for CSPs where any rational solution can
be scaled by some factor so that we end up on an integer point. Hence,
we use the term scalability when referring to the second condition of the
lemma. To exemplify the concept of scalability, consider the following three
binary relations over R2: R1(x, y) ≡ x 6= 1 ∨ y 6= 2, R2(x, y) ≡ x + y =
0, and R3(x, y) ≡ x ≤ 2 ∨ y 6= 0. The relations R1 and R2 are both
scalable. We see that R1 = R2 \ {(1, 2)} and the sets of ‘exception’ points
are consequently always finite. In the case of R2, scalability follows from
the fact that the solutions to a homogeneous linear equation are invariant
under multiplication with arbitrary real constants. The relation R3 is, to the
contrary, not scalable since (1, 0) ∈ R but (a · 1, a · 0) 6∈ R whenever a > 2.
One may additionally note that every homogeneous equation is scalable.

We continue by showing that whenever one is working with relations in
SR, then condition 1 in Lemma 6 always holds. We need some mathemat-
ical preliminaries. Given a real vector x̄ = (x1, . . . , xk), let ||x̄|| denote its

Euclidean norm, i.e.
√
x2

1 + . . . + x2
k. Recall that ||x̄+ ȳ|| ≤ ||x̄||+ ||ȳ|| (i.e.

the triangle inequality) and ||αx̄|| = |α| · ||x̄|| (i.e. positive homogeneity) for
all real vectors x̄, ȳ and arbitrary α ∈ R. We also give a reminder concerning
the solution spaces of linear equations: every solvable linear system Ax̄ = b̄
(where A and b̄ are rational) has a rational solution and x̄ is a solution if
and only if it can be expressed as x̄ = c̄+ x1v̄1 + . . .+ xkv̄k where Av̄i = 0̄,
Ac̄ = b̄, c̄, v̄1, . . . , v̄k are rational vectors, and x1, . . . , xk are real numbers.
The existence of a rational solution follows from the fact that such a solu-
tion can be obtained by Gaussian elimination, and A and b̄ contain rational
entries only. Let c̄ denote any solution to Ax̄ = b̄. Then, the full set of
solutions to Ax̄ = b̄ equals the set {c̄ + v̄ | Av̄ = 0̄} [29, Th.6 in Ch. 1]
Furthermore, the set {v̄ | Av̄ = 0̄} is a linear subspace of Rn (known as the
null space) [29, Th. 12 in Ch. 2]. This subspace has a basis with at most
n vectors [29, Th. 12 in Ch. 4], say v̄1, . . . , v̄k. By once again exploiting
the fact that A is a rational matrix, we see that these vectors can be chosen
such that they are rational. This gives us that the set of solutions to Ax̄ = b̄
equals {c̄+x1v̄1 + . . .+xkv̄k | x1, . . . , xk ∈ R} where c̄, v̄1, . . . , v̄k are rational
vectors.

Theorem 7. If I is a satisfiable instance of CSP(SR), then I is satisfied by
at least one rational point.

Proof. Let r̄ be a satisfying real point. Assume I contains the constraints
{C0, . . . , Cn}. We may without loss of generality assume that each Ci is a
disjunction li1∨ li2∨ . . .∨ lik: if some constraint is a conjuction D1∧ . . .∧Dm,
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then we may split it into m disjunctions. There is (at least) one lij from each
Ci that is satisfied by r̄. Since a ≤ b ≡ a < b∨ a = b, a ≥ b ≡ a > b∨ a = b,
and a 6= b ≡ a < b ∨ a > b, we can without loss of generality assume that
either lij ≡ p(x̄) < c or lij ≡ p(x̄) = c. It is clearly sufficient to find a
rational satisfying point, q̄, that satisfies the formula l0j0 ∧ . . . ∧ lnjn

.
First consider literals of the type p(x̄) < c. The sets of satisfying points

to them are clearly open. Hence, there is some rational number δ > 0 so
that all points x̄ for which ||r̄ − x̄|| < δ satisfy these literals.

The remaining literals are of the form p(x̄) = c and we can view them
as a linear equation system Ax̄ = b̄. We know that every satisfiable system
of linear equations has a rational solution and a vector x̄ is a solution if and
only if it can be expressed as x̄ = c̄+x1v̄1+. . .+xkv̄k where Av̄i = 0̄, Ac̄ = b̄,
c̄, v̄1, . . . , v̄k are rational vectors, and x1, . . . , xk are real numbers. Since r̄
satisfies Ar̄ = b̄, it can be expressed as r̄ = c̄+ r1v̄1 + . . . rkv̄k. The rational
numbers are dense in the real numbers so there are rational numbers qi
satisfying |ri−qi| < δe for all i and for any δe > 0. Let q̄ = c̄+q1v̄1+. . .+qkv̄k

and we find that

||r̄ − q̄|| = ||(r1 − q1)v̄1 + . . .+ (rk − qk)v̄k|| ≤

|r1 − q1| · ||v̄1|| + . . .+ |rk − qk| · ||v̄k|| < δe · (||v̄1|| + . . .+ ||v̄k||).

By choosing q̄ so that δe gets sufficiently small, we can achieve ||r̄− q̄|| < δ.
It follows that q̄ satisfies l0j0 ∧ l1j1 ∧ . . . ∧ lnjn

.

Thus, HR satisfies requirement 1) and 3) of Lemma 6. We let ΛZ ⊆ HZ

contain the relations that satisfy requirement 2) and have thus proved the
following.

Theorem 8. The problem CSP(ΛZ) is tractable.

A description of the relations in ΛZ will be given in the next section.

2.2. Maximality of ΛZ

We now verify that ΛZ is maximally tractable in HZ. To do this, we need
the concept of reduced formula [4]. Reduced formulas will play an important
rôle in Section 3, too.

Definition 9. Let θ(x1, . . . , xn) be a formula in conjunctive normal form.
We call θ reduced if it is not logically equivalent to any of its subformulas,
i.e. there is no formula ψ obtained from θ by deleting literals of clauses such
that θ(x̄) = ψ(x̄) for all x̄ ∈ Zn.
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Consider the formula ϕ ≡ x+y = 1∧(x 6= 2∨y 6= 0∨x+z ≤ 0). Assume
(x, y, z) ∈ R3 satisfies ϕ. If x 6= 2, then the second clause holds for any value
of z. If x = 2, then y has to be −1 (due to the first clause) and the second
clause holds for any value of z once again. Consequently, ϕ is not reduced
since it is logically equivalent to ϕ′ ≡ x + y = 1 ∧ (x 6= 2 ∨ y 6= 0). This
formula is not reduced either, though. If (x, y) ∈ R2 satisfies x+y = 1, then
it cannot be the case that x = 2 and y = 0. Consequently, ϕ′ ⇔ x + y = 1
and the formula x+ y = 1 is indeed reduced.

An important property of reduced formulas is that if R is defined by a
reduced formula l1 ∨ . . . ∨ ln, then for each li, we can find a vector x̄ that
satisfies li but not lj for all j 6= i. To see this, note that if such an x̄ does
not exist then there exists an li such that

∀x̄.li(x̄) → l1(x̄) ∨ . . . ∨ li−1(x̄) ∨ li+1(x̄) ∨ . . . ∨ ln(x̄)

which contradicts that the definition of R is reduced; the subformula li can
obviously be removed in this case.

Theorem 10. ΛZ is maximally tractable in HZ.

Proof. Let R be an arbitrary relation (of arity n) in HZ that does not satisfy
requirement 2) of Lemma 6. This implies that there exists a real n-vector ȳ
and an unbounded set S ⊆ R such that ȳ satisfies R but for every s ∈ S, sȳ
does not satisfy R. Assume without loss of generality that R(x̄) is defined
by a reduced formula l1 ∨ ... ∨ lk.

Suppose that some li ≡ p(x̄) 6= c where c 6= 0. If p(ȳ) 6= c, then p(kȳ) 6= c
for all k ∈ R+ except at most one, and the same holds for R(kȳ). If p(ȳ) = c,
then p(kȳ) 6= c for all k ∈ R+ except at most one, and the same holds for
R(kȳ). This leads to a contradiction and we can assume that if a literal
li ≡ p(x̄) 6= c, then c = 0.

If ȳ satisfies some literal li ≡ p(x̄) 6= 0, then p(kȳ) 6= 0 for all k ∈ R

except at most one, and the same holds for R(kȳ). Thus, ȳ can only satisfy
literals lj ≡ p(x̄)ra where r ∈ {<,≤,=,≥, >}. Observe that p(x̄) < a ⇔
p(x̄) ≤ a − 1; this holds since every coefficient in p is required to be an
integer. Hence, we may additionally assume that r ∈ {≤,=,≥}. Assume
without loss of generality that a ≥ 0; if a < 0, then consider the equivalent
inequality obtained by multiplying with −1. If r = (≥), then kȳ satisfies
R for all k ≥ 1. Thus, r ∈ {≤,=}. If p(ȳ) = 0, then kȳ satisfies R for all
k ∈ R so we can safely assume that a > 0. We conclude that R has one of
the following forms:

1. p(x̄) = a ∨ q1(x̄) 6= 0 ∨ . . . ∨ qn(x̄) 6= 0 or

11



2. p(x̄) ≤ a ∨ q1(x̄) 6= 0 ∨ . . . ∨ qn(x̄) 6= 0

where a > 0. Assume first that R is of type (1). In ΛZ ∪ {R}, we can
pp-define the following relation:

S(z) =∃x̄.(p(x̄) = a ∨ q1(x̄) 6= 0 ∨ . . . ∨ qn(x̄) 6= 0)∧

q1(x̄) = 0 ∧ . . . ∧ qn(x̄) = 0 ∧ p(x̄) = z.

The definition of R is reduced so there exists a vector x̄ such that p(x̄) =
a and qi(x̄) = 0, 1 ≤ i ≤ n. Thus, S(z) holds if and only if z = a; in other
words, we have defined a positive non-zero constant. This implies that we
can pp-define the constant 1 since

z = 1 ⇔ ∃x1, ..., xa, y.z = x1∧S(y)∧x1 ≥ 1∧ . . .∧xa ≥ 1∧y = x1 + . . .+xa.

It is now straightforward to pp-define the relation

T1,2(x, y, z) ≡ ∃w.w = 1 ∧ x+ y + z − 4w = 0 ∧ x ≥ 1 ∧ y ≥ 1 ∧ z ≥ 1

and it follows that CSP(Γ ∪ {R}) is locally NP-hard by Proposition 4.
We now consider the second case, i.e. when R is of type (2). Assume

that the coeffecient a is as small as possible, i.e. that the relation p(x̄) ≤
a ∨ q1(x̄) 6= 0 ∨ . . . ∨ qn(x̄) 6= 0 is not logically equivalent to a relation
p(x̄) ≤ α ∨ q1(x̄) 6= 0 ∨ . . . ∨ qn(x̄) 6= 0 for any α < a. In particular, we
note that if α ≤ 0, then the relation would in fact be a member of ΛZ.

Analogously to the construction of S, we construct a non-empty unary
relation S′ that is upper bounded by a as follows:

S′(z) =∃x̄.(p(x̄) ≤ a ∨ q1(x̄) 6= 0 ∨ . . . ∨ qn(x̄) 6= 0) ∧

q1(x̄) = 0 ∧ . . . ∧ qn(x̄) = 0 ∧ p(x̄) = z.

Thus, S′ contains a largest element b. If b > 0, then the constant b can be
pp-defined since z = b⇔ S(z) ∧ z ≥ b and z ≥ b is a member of ΛZ. In this
case, the proof proceedes as in the first part of the proof. Assume instead
that b ≤ 0. Then, by the definition of b,

p(x̄) ≤ a ∨ q1(x̄) 6= 0 ∨ . . . ∨ qn(x̄) 6= 0

is logically equivalent to

(p(x̄) ≤ b ∧ q1(x̄) = 0 ∧ . . . ∧ qn(x̄) = 0) ∨ q1(x̄) 6= 0 ∨ . . . ∨ qn(x̄) 6= 0

which, in turn, is logically equivalent to

p(x̄) ≤ b ∨ q1(x̄) 6= 0 ∨ . . . ∨ qn(x̄) 6= 0.

This leads to a contradiction since b < a.

12



The maximality proof can be generalised to a hardness result for con-
straint languages that are not necessarily subsets of HZ.

Corollary 11. Let Γ be a constraint language over Z such that the relations
x = y + z and x ≥ 1 are in 〈Γ〉. Then, Γ ∪ {R} is NP-hard whenever
R ∈ HZ \ ΛZ.

Proof. By Theorem 3, we may without loss of generality assume that x =
y + z and x ≥ 1 are members of Γ. By inspecting the proof of Theorem 10,
we see that the hardness proof requires that we pp-define a finite number
(that only depends on the constraint language Γ) of homogeneous equations
and, if the relation R is of type (2), the relation x ≥ a for some a ∈ Z+.
We first show that any homogeneous equation can be pp-defined in Γ. Note
that we can inductively pp-define the relation Mk(x, y) ≡ y = kx for any
k ∈ Z+ with

Mk(x, y) ≡ ∃y′.Mk/2(x, y
′) ∧ y = y′ + y′

if k is even and

Mk(x, y) ≡ ∃y′.M(k−1)/2(x, y
′) ∧ y′′ = y′ + y′ ∧ y = y′′ + x

otherwise. The base case is given by M1(x, y) ≡ y = x+ 0, and for negative
k we can define Mk(x, y) ≡ ∃y′.0 = y + y′ ∧M−k(x, y

′)
For a given set a1, . . . , an of integers, we can now pp-define

Em(x1, . . . , xm, y) ≡
∑

1≤i≤m

aixi = y

by the following inductive construction: for any 1 ≤ m ≤ n, let

Ei(x1, . . . , xi, y) ≡∃z1, z2.Ei−1(x1, . . . , xi1 , z1) ∧

Mai
(xi, z2) ∧ y = z1 + z2

Clearly, the homogeneous equation
∑

1≤i≤m aixi = 0 is equivalent to
∃y.En(x1, . . . , xn, y) ∧ y = 0.

We can also pp-define every relation x ≥ a with a ≥ 0 since

x ≥ a⇔ ∃y1, . . . , ya.x = y1 + . . .+ ya ∧ y1 ≥ 1 ∧ ... ∧ ya ≥ 1.

where the equation x = y1 + . . . + ya is homogeneous. This concludes the
proof.
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2.3. A test for scalability in DR

Since Lemma 6 is applicable to a wide range of constraint languages, it
would be desirable to have a method for deciding whether a given relation is
scalable or not. A fully general method for this problem is out of the scope
of this article, but we will sketch a method for checking whether a given
relation in DR is scalable or not.

Arbitrarily choose a relation R in DR. The relation R can be written as
a disjuction of simpler terms, i.e. R ≡ l1 ∨ ... ∨ lk where li, 1 ≤ i ≤ k, is of
the form p(x̄)rc where p is a linear polynomial, r ∈ {<,≤,=, 6=,≥, >}, and
c is an integer. In this section, we will change our representation slightly by
repeatedly doing the following.

1. rewrite p(x̄) ≤ a as p(x̄) < a ∨ p(x̄) = a,

2. rewrite p(x̄) ≥ a as p(x̄) > a ∨ p(x̄) = a,

3. rewrite p(x̄) < 0 as −p(x̄) > 0,

4. rewrite p(x̄) < a as p(x̄) ≤ 0 ∨ [0 < p(x̄) < a] when a > 0,

5. rewrite p(x̄) 6= a as p(x̄) ≤ 0 ∨ [0 < p(x̄) < a] ∨ p(x̄) > a when a > 0,

6. rewrite p(x̄) 6= 0 as p(x̄) < 0 ∨ −p(x̄) < 0, and

7. rewrite p(x̄) 6= a as −p(x̄) 6= −a when a < 0.

The resulting definition of R will only consist of the following three kinds
of terms: p(x̄) = b, p(x̄) > a and the ‘special’ term [0 < p(x̄) < a] where
a, b ∈ Z and a ≥ 0. The special term is introduced since it simplifies the
forthcoming presentation. We will now decompose R(x̄) into its terms and
then group these terms into ‘good’ terms and ‘bad’ terms.

If we consider each type of possible term, we see that the following terms

• p(x̄) = 0, and

• p(x̄) > a with a ≥ 0

are scalable. Let Rg(x̄) be the disjunction of all terms of these types that
occur in R(x̄). Scalability is on the other hand not satisfied by the terms

• p(x̄) = a with a 6= 0, and

• [0 < p(x̄) < a] with a > 0.

Let Rb(x̄) be the disjunction of the terms of these forms in R(x̄). We
now have a unique decomposition R(x̄) ≡ Rg(x̄) ∨ Rb(x̄). We note that if
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x̄ ∈ Rb then there is some K ∈ Z+ such that lx̄ 6∈ Rb for any l ≥ K, but if
x̄ ∈ Rg then kx̄ ∈ Rg for all k ∈ Z+ \ S where S is a bounded set.

We now assume that R is scalable and let x̄ be a satisfying point. Clearly
either Rg(x̄) or Rb(x̄) ∧ ¬Rg(x̄) hold.

If x ∈ Rg then we know from the above that kx̄ ∈ Rg ⊆ R for all but
a bounded set of values of k. Assume instead that Rb(x̄) ∧ ¬Rg(x̄) holds.
Since R is scalable, it follows that Rb(kx̄)∨Rg(kx̄) must hold for all k ≥ K
for some integer K, but we know by construction that Rb(kx̄) will be false
for large enough values of k so it must hold that kx̄ ∈ Rg. Hence, R is
scalable if there exists a K such that

∀k ≥ K.(Rb(x̄) ∧ ¬Rg(x̄)) ⇒ Rg(kx̄)

We see that if ¬Rg(x̄) ∧ Rg(kx̄), then clearly no term in Rg is satisfied
by x̄ but at least one of them is satisfied by kx̄ for sufficiently large k. By
considering the types of terms that may appear in Rg, we find that the only
terms for which this can happen is p(x̄) > a when a ≥ 0. Consider the term
p(x̄) = 0. If p(x̄) 6= 0 and there exists a k ∈ Z+ such that p(kx̄) = 0, then
linearity gives that p(x̄) = 0/k = 0 which leads to a contradiction. Hence,
consider the term p(x̄) > a instead. If p(kx̄) > a, then it follows by linearity
that p(x̄) > a/k. If this is to hold for all but a finite number of k, then we
conclude that a = 0 and the term is p(x̄) > 0.

We conclude that we can verify whether a relation satisfies the scalability
condition or not by checking whether ¬Rg(x̄) ∧ Rb(x̄) imply p1(x̄) > 0 ∨
p2(x̄) > 0 ∨ · · · ∨ pk(x̄) > 0 where the polynomials pi(x̄) are the left hand
sides from the clauses of the type pi(x̄) > ai in Rg(x̄).

Example 12. As a simple example, consider a relation R that excludes a
rectangle from R2, that is,

R(x, y) ≡ x < lx ∨ x > ux ∨ y < ly ∨ y > uy

where lx ≤ ux and ly ≤ uy. Assume without loss of generality that lx, ly, ux, uy

are all positive. We begin by decomposing relation R:

R(x̄) ≡ Rg(x̄) ∨Rb(x̄) where

Rg(x̄) ≡ x > ux ∨ y > uy ∨ x < 0 ∨ x = 0 ∨ y < 0 ∨ y = 0 and

Rb(x̄) ≡ [0 < x < lx] ∨ [0 < y < ly]

Next, we compute ¬Rg(x̄)∧Rb(x̄) and get (x ≤ ux∧y ≤ uy ∧x ≥ 0∧x 6=
0 ∧ y ≥ 0 ∧ y 6= 0) ∧ ([0 < x < lx] ∨ [0 < y < ly]). Finally, we check if
this relation implies x > 0 ∨ y > 0—this is of course true in this case. We
conclude that R satisfies the scalability condition.
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So what is the complexity of checking whether a given relation R in
DR is scalable or not? First note that decomposing it into good and bad
parts can be done in polynomial time. Hence, we may assume that R(x̄) ≡
Rg(x̄) ∨ Rb(x̄) where Rg(x̄) ≡

∨n
i=1 gi(x̄) and Rb(x̄) ≡

∨m
i=1 bi(x̄). We now

rewrite Rb(x̄) ∧ ¬Rg(x̄) as

m∨

i=1

bi(x̄) ∧ ¬g1(x̄) ∧ · · · ∧ ¬gn(x̄).

Rewriting the formula in this way obviously takes polynomial time, too.
Let g1(x̄), . . . , gt(x̄), t ≤ n, be the good terms that are inequalities,

i.e. gi(x̄) ≡ pi(x̄) > ai. For each i, 1 ≤ i ≤ m, we want to check if
(bi(x̄) ∧ ¬g1(x̄) ∧ · · · ∧ ¬gn(x̄)) implies p1(x̄) ≥ 0 ∨ · · · ∨ pt(x̄) ≥ 0. This is
equivalent with testing if

(bi(x̄) ∧ ¬g1(x̄) ∧ · · · ∧ ¬gn(x̄)) ∧ p1(x̄) < 0 ∧ · · · ∧ pt(x̄) < 0

is not satisfiable. It is not hard to see that this is an instance of CSP(HR):
merely note that each term in this conjunction is a of the form p(x̄)rc where
p is a polynomial of degree one, c is an integer and r ∈ {<,≤,=,≥, >, 6=}.

Hence, testing the scalability condition can be done in polynomial time
since CSP(HR) is a polynomial-time solvable problem.

3. General linear equations

In the previous section, we found a large maximally tractable subset ΛZ

of HZ. Clearly, ΛZ does not contain any linear equations p(x̄) = a with
a 6= 0. We will now consider fragments of HZ that contain such equations.
Similar fragments have been considered before: it is known that finding in-
teger solutions to linear equation systems is a tractable problem [24], and
other related problems have been discussed in [7]. We will now work ‘back-
wards’ compared to the previous section; instead of starting with HZ and
removing relations, we will extend the set of linear equations.

The algorithmic part will use results from Cohen et al. [12] and, in
particular, exploit a property known as 1-independence. We note that the
original definitions by Cohen et al. are slightly more general than those
presented here; they do not restrict themselves to constraint languages. By
the notation CSP∆≤k(Γ ∪ ∆), we mean the CSP problem with constraints
over Γ∪∆ but where the number of constraints over ∆ is less than or equal
to k.
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Definition 13. For two constraint languages Γ and ∆, we say that ∆ is k-
independent with respect to Γ if the following condition holds: any instance
I of CSP(Γ∪∆) has a solution provided every subinstance of I belonging to
CSP∆≤k(Γ ∪ ∆) has a solution.

1-independence gives us a way to handle disjunctions efficiently. For
constraint languages Γ and ∆, let the constraint language Γ×

∨∆∗ contain all
relations R(x̄) ≡ c(x̄)∨ d1(x̄)∨ . . .∨ dn(x̄), n ≥ 0, where c(x̄) is a constraint
over Γ and d1(x̄), . . . , dn(x̄) are constraints over ∆. Cohen et al. have proved
the following result.

Theorem 14. Let Γ and ∆ be constraint languages. If CSP∆≤1(Γ ∪ ∆) is
globally tractable and ∆ is 1-independent with respect to Γ, then CSP(Γ×

∨∆∗)
is globally tractable.

Let Γ ⊆ HZ denote all relations p(x̄) = b and ∆ ⊆ HZ denote all relations
p(x̄) 6= b. We will now prove that CSP(Γ×

∨∆∗) is globally tractable (Theo-
rem 15) and that it is a maximal tractable fragment of HZ (Theorem 16).
We will also extend the maximality result in a way similar to Corollary 11;
this result can be found in Corollary 17.

Theorem 15. CSP(Γ×

∨∆∗) is globally tractable.

Proof. We first prove that ∆ is 1-independent with respect to Γ. Let IΓ be
an instance of CSP(Γ) and I∆ an instance of CSP(∆). Assume that IΓ∪{di}
is satisfiable for each di ∈ I∆ with di ≡ pi(x̄) 6= ci.

We will perform an induction on the size of I∆. If |I∆| = 1, then satisfi-
ability follows from the assumptions. Assume that |I∆| = d, d > 1, and that
the statement holds for all I ′∆ ⊂ I∆. We show that IΓ ∪ I∆ is satisfiable,
too.

Let Ii
∆ = I∆ \ {pi(x̄) 6= ci} and consider the instance IΓ ∪ Ii

∆ for each i.
Let Di, 1 ≤ i ≤ d, be the set of satisfying points to these subproblems. The
sets D1, . . . ,Dd are non-empty due to the induction hypothesis. Arbitrarily
choose an element x̄i ∈ Di for each i. If x̄i ∈ Dj for any j 6= i, then it
is a solution to the entire instance and we are done. We can consequently
assume that pi(x̄i) = ci for all i.

Take two points x̄1 ∈ D1 and x̄2 ∈ D2 and define x̄k = kx̄1 + (1 − k)x̄2

for k ∈ Z. Observe that x̄k satisfies IΓ for all k. We will now show that there
is a k such that x̄k ∈ Di for all i; by the previous comment, it is sufficient
to consider the disequations.

For i = 1 we note that p1(x̄
k) 6= c1 ⇔ kp1(x̄1) + (1 − k)p1(x̄2) 6= c1 ⇔

(1 − k)(p1(x̄2) − c1) 6= 0 and since p(x̄2) 6= c1 this is true for all k 6= 1. In
the same way, we see that x̄k ∈ D2 when k 6= 0.
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For i 6= 1, 2, we note that if pi(x̄1) = d1 6= ci and pi(x̄2) = d2 6= ci, then
pi(x̄

k) = k(d1 − d2) + d2. If d1 = d2, then the disequation is always true;
otherwise, there is at most one value for k such that pi(x̄

k) = ci. Hence,
each disequation is not satisfied by x̄k for at most one value of k, and we
conclude that there is some k′ such that x̄k′

∈ Di for all i. It follows that
IΓ ∪ I∆ is satisfiable for any size of I∆.

By Theorem 14, it is now sufficient to prove that CSP∆≤1(Γ∪∆) is tractable.
Let I be an instance of CSP∆≤1(Γ ∪ ∆). We view I as an equation system
Ax̄ = b̄ together with a disequation p(x̄) 6= c. We start by finding a satisfying
integer point x̄ to Ax̄ = b̄; this is tractable by [24]. If no such point exists,
then I is not satisfiable. If the found solution x̄ also satisfies p(x̄) 6= c, then
we have found a solution to I, too. Otherwise, note that if ȳ 6= x̄ and Aȳ = b̄,
then A(ȳ− x̄) = b̄− b̄ = 0̄. By letting x̄h = ȳ− x̄, we see that any satisfying
point z̄ can be written as z̄ = x̄+ x̄h for some x̄h such that Ax̄h = 0̄. Since
p(x̄) = c, we note that p(z̄) 6= c ⇔ p(x̄) + p(x̄h) 6= c ⇔ p(x̄h) 6= 0. From
this we conclude that we can find a solution to I if and only if we can find
a point x̄h such that Ax̄h = 0̄ and p(x̄h) 6= 0.

Now we solve the system Ax̄ = 0̄ ∧ p(x̄) = 1 over the rational numbers.
If this system has no solution, then there is no point x̄h since some rational
multiple of x̄h would have been a solution. If we find a solution x̄q to this
system, then there exists an integer k 6= 0 such that kx̄q is an integer point
satisfying Akx̄q = 0̄ and p(kx̄q) = k 6= 0. We see that we can let x̄h = kx̄q

and conclude that I is satisfiable. As this only requires solving two linear
systems, one over the integers and one over the rational numbers, this is a
polynomial-time algorithm for solving CSP∆≤1(Γ ∪ ∆).

Theorem 16. Γ×

∨∆∗ is maximally tractable in HZ.

Proof. Arbitrarily choose a relation R ∈ HZ \ (Γ×

∨∆∗) such that R ≡ p(x̄) ≤
c∨
∨n

i=1(qi(x̄) 6= ai) and R has arity m. Note that we do not have to consider
relations with < separately since those are always equivalent to a relation
using ≤. We assume without loss of generality that the definition of R is
reduced.

We will now show how to pp-define Tz0,z1
for some z0 6= z1 in Z. By

reasoning as in the proof of Theorem 10, we see that we can pp-define a
unary relation S(z) that is a subset of {z ∈ Z | z ≤ c} by

S(z) ≡ ∃x̄.(z = p(x̄)) ∧ (p(x̄) ≤ c ∨

n∨

i=1

(qi(x̄) 6= ai)) ∧ (

n∧

i=1

(qi(x̄) = ai)).

18



We first prove that |S| > 1. The definition of R is reduced so there exists
an integral vector x̄ such that p(x̄) ≤ c and q1(x̄) = a1, . . . , qn(x̄) = an.
Consequently, |S| > 0. If |S| = 1, then

(
n∧

i=1

qi(x̄) = ai

)
⇒ p(x̄) = d ∨ p(x̄) > c

for some d ≤ c. Hence,

R(x̄) ≡ p(x̄) = d ∨

n∨

i=1

(qi(x̄) 6= ai)

which leads to a contradiction since R 6∈ Γ×

∨∆∗. We have thus shown that
|S| > 1.

Let z0 = max{z | S(z)} and z1 = max{z | S(z), z 6= z0} and recall that
both x = z0 and x = z1 are members of Γ. Now,

Tz0,z1
(x, y, z) ⇔ S(x) ∧ S(y) ∧ S(z) ∧ x+ y + z = (2z0 + z1)

so Tz0,z1
is pp-definable in (Γ×

∨∆∗) ∪ {R} and NP-hardness follows from
Theorem 3 and Proposition 4.

Corollary 17. Let Γ be a constraint language over Z such that the relations
x = y + z and x = 1 are in 〈Γ〉. Then, Γ ∪ {R} is NP-hard whenever
R ∈ HZ \ (Γ×

∨∆∗).

Proof. By Theorem 3, we may without loss of generality assume that x =
y+z and x = 1 are members of Γ. By inspecting the proof of Theorem 16, we
see that the hardness proof requires that we pp-define a finite number (that
only dependes on the constraint language Γ) of homogeneous equations and
relations x = a where a ∈ Z.

By the proof of Corollary 11, we know that we can pp-define every ho-
mogeneous linear equation in Γ by using the relation x = y+z. We can also
pp-define x = a for any integer a since x = a⇔ ∃y.y = 1∧x = y+y+ · · ·+y
where the sum contains a terms. Similarly, if a is negative, then x = a ⇔
∃y, z.y + y = y ∧ z = a ∧ x+ z = y.

4. Binary linear equations

As a third fragment we will consider the language of binary equations
combined with unary inequalities and unary disequations. We will refer to
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this language as Ψ. The language Ψ is a strict extension of the language
studied by Bodirsky et al. [9] since it does not allow constraints of the type
x 6= c.

Definition 18. Let Ψ be the smallest constraint language containing all
binary equations, unary inequalities and unary disequations, ie. {(x, y) ∈
Z2 | ax + by = c} ∈ Ψ, {x ∈ Z | x ≤ u} ∈ Ψ, {x ∈ Z | x ≥ l} ∈ Ψ and
{x ∈ Z | x 6= l} ∈ Ψ for arbitrary a, b, c, u, l ∈ Z.

Our goal is once again to verify that Ψ is a maximal tractable subclass
of HZ, and we start by showing that CSP(Ψ) is tractable.

Lemma 19. The problem CSP(Ψ) is solvable in polynomial time.

Proof. Let (V,C) be an arbitrary instance of CSP(Ψ). Let C2 ⊆ C denote
the set of binary constraints in C. Construct a graph (V,E) as follows:

(x, y) ∈ E if and only if ax+ by = c in C2.

First determine the connected components of this graph; they can easily
be identified in polynomial time. The subproblems corresponding to the
connected components can clearly be solved independently so we assume,
without loss of generality, that there is exactly one component.

We now consider the system of equations that contains variables from
this component; denote this system Ax = b. Bodirsky et al. [9] have shown
the following:

• either there is no x̄ ∈ Zn such that Ax̄ = b, or

• there are two vectors ā, h̄ ∈ Zn such that Ax̄ = b (with x̄ ∈ Zn) if and
only if x̄ ∈ {ā+ th̄ | t ∈ Z}.

Furthermore, ā and h̄ can be computed in polynomial time given integral
A and b. It follows that every variable can be written as xi = ai + thi for
any integer t, and this implies that every unary relation on xi can be viewed
as a unary relation on t. It is now easy to compute lower and upper bounds
(l, u), l, u ∈ Z∪{−∞,∞}, on t by using the unary inequalities. Assume, for
instance, we have the inequality xi ≤ b. We know that xi = ai + thi and,
consequently, that t ≤ b−ai

hi
.

Suppose now that we have derived that t is in the set {l, l+1, . . . , u−1, u}
with l, u ∈ Z. Given a disequality xi 6= b, it can exclude at most one possible
value for t since xi 6= b ⇔ t 6= b−ai

hi
when xi = ai + thi. Hence, if the
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given instance contains k disequalities, then we need to keep track of at
most k excluded values {m1, . . . ,mk} and check that {l, l+1, . . . , u− 1, u}\
{m1, . . . ,mk} is non-empty. If l = −∞ or u = ∞, then we see that we do
not even have to do this test since the k disequalitites cannot exclude an
infinite number of points. We conclude that CSP(Ψ) is a polynomial-time
solvable problem.

We continue by showing that Ψ is a maximal tractable subclass of HZ.
The somewhat lengthy proof is divided into three parts (Sec. 4.1–4.3) where
we consider equations, inequalities, and disjunctive relations, respectively.
It is easy to see that all possible cases are covered by these three cases and
this gives us the desired result.

4.1. Ternary equations

We now consider equations of arity 3 or higher. We need some basic
number theory.

Lemma 20 (Bezout’s identity). Given two integers a, b with gcd(a, b) = 1,
then for any integer k there exists integers x, y such that k = ax+ by.

For a proof see for example Corollary 3.8.1 in [36]. Also remember that
gcd(a, b, c) = gcd(a, gcd(b, c)) (Lemma 3.2. in [36]). This identity generalizes
to three or more variables as well.

Lemma 21. Given three integers a, b, c with gcd(a, b, c) = 1, then for any
integer k there exists integers x, y, z such that k = ax+ by + cz.

Proof. Since gcd(a, b, c) = gcd(a, gcd(b, c)), it follows by Lemma 20 that we
can find integers x,w such that ax+ gcd(b, c)w = k and then find integers
y, z such that by + cz = gcd(b, c). Combining these equations gives us
ax+ (by + cz)w = ax+ (bw)y + (cw)z = k.

It is well-known that the integers x, y, z above can be computed in poly-
nomial time (in the size of k, a, b, and c) by using Euclid’s algorithm re-
peatedly, cf. Lemma 3.2 in [36].

We will now consider the language Ψ∪{R(x, y, z)} where R is defined by
a ternary equation. We exhibit a serie of pp-definitions that show that the
relation T0,1 can be pp-defined in Ψ ∪ {R(x, y, z)} and, consequently, that
CSP(Ψ ∪ {R}) is NP-hard by Proposition 4.

Lemma 22. Let p(x, y, z) = ax+ by+ cz and R(x, y, z) ≡ p(x, y, z) = d for
some a, b, c, d ∈ Z with a 6= 0, b 6= 0, and c 6= 0. If R 6= ∅, then the problem
CSP(Ψ ∪ {R}) is NP-hard.

21



Proof. If gcd(a, b, c) = k 6= 1, then we rewrite the definition of R such that

R(x, y, z) ≡
a

k
· kx+

b

k
· ky +

c

k
· kz =

d

k
· k

where a
k ,

b
k ,

c
k are integers. We divide by k to get the following equivalent

definition:

R(x, y, z) ≡
a

k
· x+

b

k
· y +

c

k
· z =

d

k

If k does not divide d (i.e. d
k is not an integer), then R = ∅ since the

left-hand side is integral for every choice of x, y, z ∈ Z. Otherwise,

R(x, y, z) ≡ a′x+ b′y + c′z = d′

where a′ = a
k , b

′ = b
k , c

′ = c
k , d

′ = d
k and gcd(a′, b′, c′) = 1. Hence, we can

assume that gcd(a, b, c) = 1 without loss of generality.
Recall that all relations of the type x = x′ + dx (where dx ∈ Z) are in Ψ,

and we can therefore pp-define the relation

R′(x, y, z) ≡ ∃x′y′z′.R(x′, y′, z′) ∧

x′ = x+ dx ∧

y′ = y + dy ∧

z′ = z + dz

for any dx, dy , dz ∈ Z. We see that R′(x, y, z) ≡ p(x + dx, y + dy, z + dz) =
d⇔ R′(x, y, z) ≡ p(x, y, z) = d− (adx + bdy + cdz).

It follows from Lemma 21 that we can choose values for dx, dy , dz so that
adx + bdy + cdz = k for any k. In particular, we can choose the values so
that R′(x, y, z) ≡ p(x, y, z) = abc.

We continue by pp-defining the relation

Q(x, y, z) ≡ ∃x′y′z′.R′(x′, y′, z′) ∧

ax′ = abcx ∧

by′ = abcy ∧

cz′ = abcz.

We see that Q(x, y, z) ≡ abcx+ abcy + abcz = abc so

Q(x, y, z) ≡ x+ y + z = 1.
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Since all unary inequalities are in Ψ, we can now pp-define the relation
T0,1 by the following construction:

T0,1(x, y, z) ≡x ≤ 1 ∧ x ≥ 0 ∧

y ≤ 1 ∧ y ≥ 0 ∧

z ≤ 1 ∧ z ≥ 0 ∧

Q(x, y, z)

It follows from Theorem 3 that CSP(Ψ∪{R}) is NP-hard since CSP(T0,1)
is NP-hard by Proposition 4.

It is straightforward to generalise this result to equations of higher arity.

Corollary 23. Let p(x̄) =
∑n

i=1 aixi with ai ∈ Z \ {0} and n ≥ 3, and let
R(x̄) ≡ p(x̄) = d for some d ∈ Z. If R 6= ∅, then the problem CSP(Ψ∪{R})
is NP-hard.

Proof. The relation R has at least one satisfying point d̄ = (d1, d2, . . . dn)
by assumption. The relations xi = di, 4 ≤ i ≤ n, are in Ψ so we pp-define

T (x, y, z) = ∃x4x5 . . . xn.R(x, y, z, x4, x5, . . . , xn) ∧

x4 = d4∧, x5 = d4 ∧ · · · ∧ xn = dn.

The relation T is non-empty by the choice of d̄. Furthermore, T (x, y, z) ≡
p(x, y, z) = d where p is a ternary equation. Since T is pp-definable in
Ψ ∪ {R}, it follows from Theorem 3 and Lemma 22 that CSP(Ψ ∪ {R}) is
NP-hard.

4.2. Binary inequalities

We will now consider relations of the form ax+by ≤ c. It has been noted
by Hochbaum & Naor [20] that NP-hardness of the following problem is a
consequence of Theorem C in Lagarias [28].

Monotone System Integer Feasibility

Instance. Integral matrix A such that each row contains at most one entry
> 0 and at most one entry < 0, integral vector b̄.
Question. Is there an integral vector x̄ such that Ax̄ ≤ b̄?

This problem will provide the basis for our next hardness result.

Lemma 24. Let R be a binary relation defined such that R(x, y) ≡ ax+by ≤
c with a, b ∈ Z \ {0}, c ∈ Z. Then, the problem CSP(Ψ ∪ {R}) is NP-hard.
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Proof. Assume that we are given R(x, y) ≡ ax + by ≤ c as above. If
gcd(a, b) = k 6= 1, then R can be equivalently defined as

R(x, y) ≡
a

k
· x+

b

k
· y ≤ ⌊

c

k
⌋

so we assume that gcd(a, b) = 1 without loss of generality.
First we show that it is possible to pp-define the relation Rk(x, y) ≡

ax + by ≤ k for any k ∈ Z. Arbitrarily choose dx, dy ∈ Z and consider the
following pp-definition:

R′(x, y) = ∃x′y′.R(x′, y′) ∧ x′ = x+ dx ∧ y′ = y + dy.

Clearly, R′(x, y) = ax+ by ≤ c− adx − bdy. It follows from Lemma 20 that
there are dx, dy such that adx + bdy = c − k and Rk can, consequently, be
pp-defined for any k ∈ Z.

We now extend this idea and show that we can pp-define an arbitrary
binary inequality px+ qy ≤ r for any p, q, r ∈ Z. Let

Q(x, y) = ∃x′y′.Rrab(x
′, y′)∧

ax′ = pabx∧

by′ = qaby

We see that Q(x, y) ≡ pabx + qaby ≤ rab ≡ px + qy ≤ r and any given
binary inequality can be pp-defined in Ψ ∪ {R}. We also note that this
pp-definition can be computed in polynomial time in the size of a, b, p, q, r.
First note that the integers dx, dy (which are used in defining Rrab) can be
computed in polynomial time in the size of a,b and r; this follows from the
fact that they can be computed by Euclid’s algorithm. All other constants
can be computed by applying elementary arithmetic operations to a, b, p, q,
and r. We conclude that the pp-definition can be computed in polynomial
time (in the size of a, b, p, q, r).

We will now prove NP-hardness by a polynomial-time reduction from
Monotone System Integer Feasibility. Let (A, b̄) denote an arbitrary
instance of this problem and consider the system Ax̄ ≤ b̄. Each ‘row’ in this
system corresponds to a relation of the type px − qy ≤ r where p, q ∈ Z+

and r ∈ Z. We have seen that each such inequality can, in polynomial time,
be converted into a equivalent pp-definition over Ψ∪{R}. We conclude that
CSP(Ψ ∪ {R}) is NP-hard.
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4.3. Disjunctive relations

We divide the remaining relations into three types. Let R ∈ HZ be a
relation of arity k strictly greater than one.

type 1: R(x1, . . . , xk) ≡ P (x1, . . . , xk) ∨ xi 6= c where P (x̄) is either
p(x̄) = d or p(x̄) ≤ d for a linear polynomial p and integer d.

type 2: R(x1, . . . , xk) ≡ (l1∨. . .∨lm) where l1 ≡ x1 6= c and l2 ≡ x2 6= d

type 3: R(x1, . . . , xk) ≡ (l1 ∨ . . . ∨ lm) where l1 ≡ p(x1, . . . , xk) 6= c
and p is a linear polynomial such that at least two coeffecients in p are
non-zero.

We first show that every relation in HZ \ Ψ that is not covered by the
previous two sections are covered by relations in the list above. Hence, let
R ∈ HZ \ Ψ be chosen such that it has arity k and not being covered by
the previous two sections. If R is defined by an equation, then this equation
must be of arity less than or equal to two (otherwise, it would be covered
by the results in Section 4.1). However, this is impossible since this implies
that R ∈ Ψ. If R is defined by an inequality, then this inequality must be of
arity one (otherwise, it would be covered by the results in Section 4.2). Once
again, R ∈ Ψ which leads to a contradiction. If R is defined by a disequality,
then this disequality must have arity strictly greater than one and then R
is of type (3). We conclude that R has to be defined by a disjunction.

Assume now that

R(x̄) ≡ P (x̄) ∨Q1(x̄) ∨ . . . ∨Qm(x̄)

where Q1, . . . , Qm denote disequality constraints and P is either the con-
straint false or a constraint that is not a disequality. We assume without
loss of generality (since p(x̄) < a ⇔ p(x̄) ≤ a − 1 when we work over the
integers and all coeffecients are integers) that the relation in P is either
(=) or (≤). If there is an 1 ≤ i ≤ m such that two coeffecients in Qi are
non-zero, then R is of type (3). Hence, we may assume that

R(x̄) ≡ P (x̄) ∨ xi1 6= ci1 ∨ . . . ∨ xin 6= cin

for some set of indices I = {i1, . . . , in} ⊆ {1, . . . , k}. If |I| ≥ 2, then R is of
type (2). If |I| = 1 and P (x̄) ≡ false, then R is a member of Ψ which leads
to a contradiction. If P (x̄) 6≡ false, then R is of type (1).

We finally note that a relation may simultaneously have several types
but this will not cause any troubles in the following proofs.
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4.3.1. Relations of type 1

Define the relation

Xa1,a2
(x1, x2) ≡ x1 6= a1 ∨ x2 6= a2

for arbitrary integers a1, a2.

Lemma 25. The problem CSP(Ψ ∪ {Xa1,a2
}) is NP-hard for all choices of

a1, a2 ∈ Z.

Proof. For arbitrary integers b1, b2, we can pp-define

Xb1,b2(x, y) ≡ x− b1 = x′ − a1 ∧ y − b2 = y′ − a2 ∧Xa1,a2
(x′, y′).

We can therefore pp-define T ′
0,1,2 by

T ′
0,1,2(x, y) ≡x ≥ 0 ∧ x ≤ 2 ∧ y ≥ 0 ∧ y ≤ 2 ∧

X0,0(x, y) ∧X1,1(x, y) ∧X2,2(x, y).

which shows that CSP(Ψ ∪ {Xa1,a2
}) is NP-hard by Proposition 4.

We are now ready to show that CSP(Ψ ∪ {R}) is NP-hard whenever
R ∈ HZ \ Ψ is a relation of type 1.

Lemma 26. Let R be a relation (of arity k > 1) such that its reduced
definition is

R(x̄) ≡ p(x̄)rc ∨ xi 6= d

where p is a linear polynomial, r ∈ {=,≤} and c, d ∈ Z. Then, the problem
CSP(Ψ ∪ {R}) is NP-hard.

Proof. Since k > 1, there is some variable xj, j 6= i, that occurs in p(x̄)
with a non-zero coeffecient. Assume without loss of generality that j < i
and that the coeffecient is positive. We know that R(x̄) is not equivalent to
xi 6= d due to its reduced definition, and this implies that there is a point
d̄ = (d1, . . . , dk) ∈ R such that di = d. We now pp-define the following
binary relation

R′(x, y) ≡ R(d1, . . . , dj−1, y, dj+1, . . . , di−1, x, di+1, . . . , dk).

We see that R′(x, y) ≡ y ≤ a ∨ x 6= d or R′(x, y) ≡ y = a ∨ x 6= d
(depending on whether r = (≤) or r = (=)) for some constant a ∈ Z.
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Given the former case, we can pp-define a relation

R′′(x, y) ≡ R′(x, y) ∧R′(x, z) ∧ z = 2a− y

and we see that

R′′(x, y) ≡ (y ≤ a ∨ x 6= d) ∧ (2a− y ≤ a ∨ x 6= d)

≡ (y ≤ a ∨ x 6= d) ∧ (a ≤ y ∨ x 6= d)

≡ y = a ∨ x 6= d

so we only need to consider the case where we have the equality relation in
the definition of R′. We can now pp-define the relation Xd,d(x, y) as follows:

Xd,d(x, y) ≡ ∃z,w,w′.0 ≤ z ∧ z ≤ 1 ∧

w = az ∧ w′ = a− w ∧

R′′(x,w) ∧R′′(y,w′)

Hence, it follows from Lemma 25 that CSP(Ψ ∪ {R}) is NP-hard.

4.3.2. Relations of type 2

Given a relation R ∈ HZ \ Ψ, we may without loss of generality assume
that its arity is strictly greater than one since every unary relation in HZ

is a member of Ψ. This observation immediately leads us to the following
hardness proof for relations of type 2.

Lemma 27. Arbitrarily choose a relation R ∈ HZ of arity k > 1 such that
R 6= Zk. If R is a relation of type 2, then CSP(Ψ ∪ {R}) is NP-hard.

Proof. Assume that R(x1, . . . , xk−2, y, z) ≡ (l1 ∨ . . . ∨ lm) where l1 ≡ y 6= c
and l2 ≡ z 6= d. There is some b̄ = (b1, b2, . . . , bk) 6∈ R since R 6= Zk. Now,
pp-define a binary relation R′ as

R′(y, z) ≡ ∃x1, . . . , xk−2.R(x1, . . . , xk−2, y, z) ∧ x1 = b1 ∧ · · · ∧ xk−2 = bk−2.

It is not hard to see that R′(y, z) = Z2 \ (b1, b2), i.e. R′(y, z) ≡ Xb1,b2(y, z),
and Lemma 25 implies that CSP(Ψ ∪ {R}) is NP-hard.

4.3.3. Relations of type 3

The hardness proof for relations of type 3 consists of three distinct parts.
In the two first parts (which can be found in Lemma 28), we only consider
binary relations. In the first part, we show that R falls into one of three
classes based on its definition. NP-hardness for the two first classes follows
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more or less immediately from the NP-hardness result for type 1 relations
(Lemma 26). The third class is a bit more difficult to tackle, though, and the
second part of Lemma 28 is devoted to proving NP-hardness in this case. In
the third and final step (Corollary 29), we generalize the result to relations
of higher arity.

Lemma 28. Arbitrarily choose a relation R ∈ HZ \ Ψ of arity 2 such that
R 6= Z2. If R is a relation of type 3, then CSP(Ψ ∪ {R}) is NP-hard.

Proof. Assume that R(x, y) ≡ (l1 ∨ . . . ∨ lk) where l1 ≡ p(x, y) 6= c and the
two coeffecients in p are non-zero. We note that we may view R as having
the definition

R(x, y) ≡ P (x, y) ∨ ¬

(
A

(
x
y

)
= c̄

)

for some matrix A, some vector c̄, and where P (x, y) is either p(x, y) = d or
p(x, y) ≤ d for a linear polynomial p and integer d, or P (x, y) ≡ false.

It follows from basic linear algebra that the set of solutions S to the
linear system A

(x
y

)
= c̄ are either the empty set, a single point, or all points

on a line L in R2. The first case is obviously ruled out since R 6= Z2.
Let S′ denote the set of integer points in S, i.e. S′ = S ∩ Z2. If S′ = ∅,

then R = Z2 which is not possible. Hence, S′ contains a single point s or all
integer points along L. This leaves us with two possibilities:

1. R = Z2 \ {s}, or

2. R = Z2 \ L′ where L′ is an infinite subset of L ∩ Z2.

The first case appears when S′ is a single point and the second case when
S′ contains the integer points along L. This is easy to see since the term P
will add at most one point if it is an equation or P = false, and it will add
all the points from a half-plane otherwise. If P defines a halfplane H, then
L′ 6⊆ H since this would imply that R = Z2. Thus, L′ will be an unbounded
and infinite set.

In the first case, we clearly have R = Xa,b for some a, b ∈ Z and it follows
from Lemma 25 that CSP(Ψ ∪ {R}) is NP-hard. In the second case, R can
be defined in one of the following ways

(1) R(x, y) ≡ P (x, y) ∨ x 6= b

(2) R(x, y) ≡ P (x, y) ∨ y 6= d

(3) R(x, y) ≡ P (x, y) ∨ ¬(∃t.x = at+ b ∧ y = ct+ d)
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where a, b, c, d ∈ Z and a, c 6= 0.
In case (1) and (2), the line L ∩ Z2 is parallel to one of the axes of Z2.

We concentrate on case (1) in the sequel; case (2) is obviously analogous.
Assume that for arbitrary α ∈ Z, (b, α) 6∈ R. This implies that R(x, y) ≡
x 6= b and, consequently, that R ∈ Ψ which leads to a contradiction. Hence,
we may assume that R has the reduced definition R(x, y) ≡ P (x, y) ∨ x 6= b
(with P (x, y) 6≡ false) and NP-hardness follows from Lemma 26.

In case (3), the line L∩Z2 is described in parametric form by the equa-
tions x = at + b and y = ct + d. Since a 6= 0 and c 6= 0, the line is not
parallel to any of the axes. We present an NP-hardness proof for this case
in the final part of the proof.

First, pp-define T (x, y) ≡ ∃x′, y′.R(x′, y′)∧x′ = ax+ b∧ y′ = cy+ d and
observe that

T (x, y) ≡ ∃x′, y′.[P (x′, y′) ∨ ¬(∃t.x′ = at+ b ∧ y′ = ct+ d)] ∧

∧ x′ = ax+ b ∧ y′ = cy + d

≡ P (ax+ b, cy + d) ∨ ¬(∃t.ax+ b = at+ b ∧ cy + d = ct+ d)

≡ P (ax+ b, cy + d) ∨ ¬(∃t.x = t ∧ y = t)

≡ P (ax+ b, cy + d) ∨ x 6= y.

We note, once again, that the term P will add at most one point if it is
an equation or P = false, and it will add all the points from a halfplane
otherwise. We conclude that there is some integer k such that (k, k) 6∈
T, (k + 1, k + 1) 6∈ T and (k + 2, k + 2) 6∈ T . We use this fact to finally
pp-define

T ′
k,k+1,k+2(x, y) ≡ T (x, y) ∧ x ≥ k ∧ x ≤ k + 2 ∧ y ≥ k ∧ y ≤ k + 2.

It follows that CSP(Ψ ∪ {R}) is NP-hard by Proposition 4..

Corollary 29. Arbitrarily choose a relation R ∈ HZ \Ψ of arity k > 2 such
that R 6= Zk. If R is a relation of type 3, then CSP(Ψ ∪ {R}) is NP-hard.

Proof. Assume that R(x̄) ≡ (l1 ∨ . . . ∨ lk) where l1 ≡ p(x̄) 6= c and at
least two coeffecients in p are non-zero. For simplicity, we assume that the
variables x1 and x2 have non-zero coeffecients in p. We note that there is
some b̄ = (b1, b2, . . . , bn) 6∈ R by assumption. We pp-define a binary relation
R′ as

R′(x1, x2) = ∃x3, x4, . . . , xn.R(x1, x2, . . . , xn) ∧ x3 = b3 ∧ · · · ∧ xn = bn.
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We see that R′ 6= Z2 since (b1, b2) 6∈ R′. We also see that R′ is of type
3; note that the literal l1 in the definition of R has been transformed into
αx + βy 6= γ (for integers α, β, γ where α, β are non-zero) in the definition
of R′. Lemma 28 implies that CSP(Ψ ∪ {R}) is NP-hard.

5. Constraints that are k-valid

We will now demonstrate that there are an infinite number of distinct
maximally tractable fragments within HZ. This fact makes complexity clas-
sifications harder since a description of the tractable cases must be more
elaborate than just listing the maximally tractable fragments.

A relation R is said to be k-valid (for some k ∈ Z) if (k, . . . , k) ∈ R.
A constraint language Γ is k-valid if every relation in Γ is k-valid. Let
Γk, k ∈ Z, denote the set of k-valid relations in HZ together with the
empty relation. Clearly, Γi 6= Γj whenever i 6= j; Γi contains the relation
x = i but does not contain x = j and vice versa. Solving instances of
CSP(Γk) is obviously trivial (simply check whether some constraint is based
on the empty relation or not) but such classes have to be considered, too,
in order to obtain full complexity classifications. The maximality proof for
k-valid constraints differs slightly from the proofs in the preceeding sections.
There, we managed to construct explicit NP-hard constraint languages. This
proof is slightly non-constructive since we obtain a sequence of constraint
languages and prove that (at least) one of them is NP-hard. However, we
do not know which one.

Theorem 30. For each k ∈ Z, Γk is a maximal tractable language in HZ.

Proof. The problem CSP(Γk) is obviously globally tractable. To prove max-
imality, arbitrarily choose a relation R ∈ HZ that is not k-valid. Let m
denote the arity of R and consider the following relations:

U1(z) ≡ ∃y, x2, . . . , xm.R(z, x2, x3, . . . , xm) ∧ y = k

U2(z) ≡ ∃y, x3, . . . , xm.R(y, z, x3, x4, . . . , xm) ∧ y = k

...

Um(z) ≡ ∃y.R(y, y, y, . . . , y, z) ∧ y = k

Um+1(z) ≡ ∃y.R(y, y, y, . . . , y, y) ∧ y = k

The relations U1, . . . , Um+1 are pp-definable in Γk ∪ {R} since the relation
y = k is k-valid. We claim that there exists an index 1 ≤ j ≤ m such that
Uj 6= ∅ and k 6∈ Uj . Since R is not k-valid, it follows that Um+1 = ∅ so there
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exists a smallest index 2 ≤ j′ ≤ m + 1 such that Uj′ = ∅. Let j = j′ − 1.
Clearly, Uj is non-empty and if k ∈ Uj, then Uj+1 = Uj′ is non-empty which
leads to a contradiction.

We now let ca(z) ≡ z = a and show that we can pp-define the relation
ck′(z) for some k′ 6= k. Assume without loss of generality that there is
some element in Uj that is larger than k; if not, then there is some element
in Uj that is smaller than k and the reasoning is symmetric. Let k′ =
min{x ∈ Uj | x > k} and note that z = k′ ⇔ Uj(z) ∧ z ≥ k ∧ z ≤ k′.
The relations z ≥ k and z ≤ k′ are both k-valid so z = k is pp-definable in
Γk ∪ {R}. Using the relation z = k′, we conclude the proof by the following
pp-definition where we exploit that the relation (z = w ∨ x 6= y) is k-valid:

T ′
k−1,k,k+1(x, y) ≡∃z,w.(z = w ∨ x 6= y) ∧ ck(z) ∧ ck′(w)∧

k − 1 ≤ x ∧ x ≤ k + 1 ∧ k − 1 ≤ y ∧ y ≤ k + 1.

NP-hardness of CSP({T ′
k−1,k,k+1}) implies NP-hardness of CSP(Γk ∪ {R})

via Theorem 3 and Proposition 4.

6. Discussion

The results reported in this paper constitute a step towards a better un-
derstanding of the complexity of temporal reasoning in discrete time struc-
tures. Below, we discuss several different ways of continuing this work.

6.1. The complexity of Horn DLRs

Completely classifying the complexity of CSP(HZ) appears to be possible
with current techniques but it is by no means a trivial task. Consider the NP-
complete integer feasibility problem: given a system of inequalities Ax ≥ b,
decide whether there exists a satisfying integer vector x or not. Note that
each row α1x1 + . . . + αnxn ≥ β can be viewed as a relation in HZ. Thus,
a complete classification of CSP(HZ) would give us a classification of the
integer feasibility problem (parameterised by allowed row vectors). Such a
classification is not currently known and, in fact, there are no classifications
even if we restrict ourselves to finite domains or if we consider the closely
related integer optimisation problem.

One obvious difficulty when classifying CSP(HZ) is that we do not know
what algorithmic techniques will be needed. The results in this paper are,
to a large extent, based on either solving linear equations or solving linear

31



programming problems over the real numbers. Completely different methods
may be needed in other cases, though.

Another difficulty is that there are tractable cases where we have not
been able to prove maximality. One example is the following: for arbitrary
a, b ∈ {0, 1} and c ∈ Z, we let T=

a,b,c = {(x, y) ∈ R+ | ax − by = c},

T≤
a,b,c = {(x, y) ∈ R+ | ax−by ≤ c}, and ΣR = {T=

a,b,c, T
≤
a,b,c | a, b ∈ {0, 1}, c ∈

Z}. Define ΣZ analogously over the integers. Note that CSP(ΣZ) is not
the same problem as Monotone System Integer Feasibility since the
coefficients a, b are restricted to be members of {0, 1}. Now, consider the
following result:

Proposition 31. CSP(ΣZ) is a globally tractable problem.

Proof. Given an instance I of CSP(ΣR), we see that I equivalently can be
viewed as a linear feasibility problem Ax ≤ b; merely note that each con-
straint T=

a,b,c(x, y) can be replaced by the two constraint T≤
a,b,c, T

≤
1−a,1−b,−c.

Obviously, CSP(ΣR) can be solved in polynomial time. By inspecting the
matrix A, we see that A only contains entries from the set {0,±1}, each row
contains at most two non-zero entries, and if a row contains two non-zero
entries, then they have opposite signs. This implies that A is totally uni-
modular (TUM)2; observe that A is TUM if and only its transpose is TUM
and apply Theorem 19.3(iv) in [38]. Hence, Ax ≤ b has a solution if and
only if it has an integral solution (see Theorem 19.1 in Schrijver [38]). We
have thus shown that CSP(ΣZ) is tractable.

One may note that ΣZ is closely connected to the simple temporal prob-
lem (STP) first described by Dechter et al. [14]. The STP can be defined as
follows: let Sab, a, b ∈ Z, denote the relation {(x, y) ∈ R2 | a ≤ x − y ≤ b}
and define STPR = {Sa,b | a, b ∈ Z}. Now, the simple temporal problem
equals CSP(STPR) and Dechter et al. [14] have proved that this problem
is tractable. Let CSP(STPZ) denote the simple temporal problem over the
integers. By Proposition 31, we see that CSP(STPZ) is tractable, too; each
constraint a ≤ x− y ≤ b can be viewed as a conjunction of two constraints
x− y ≤ b and y − x ≤ −a.

6.2. Local and global tractability

During our study of HZ, we have not encountered any globally NP-
hard language that are locally tractable. This is fortunate since such lan-

2An integer matrix A is TUM if det(B) ∈ {0,±1} for every square submatrix B.
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guages are problematic: their existence indicates that the number of max-
imally tractable sublanguages is infinite and that they potentially form an
intricate structure. To see this, let Γ = {R1, R2, . . .} be a constraint lan-
guage that is globally NP-hard and locally tractable. Consider the languages
Θi = {R1, R2, . . . , Ri} and note that CSP(Θi) is tractable for every i ≥ 1.
Arbitrarily choose a Θp, p ≥ 1, such that Θp is included in at least one
maximal tractable fragment of Γ. Assume (with the aim of reaching a con-
tradiction) that the set of maximal tractable fragments X that contains Θp

is finite, i.e. X = {X0, . . . ,Xk} for some k ≥ 0. For i > 0, define

ϕ(i) = {j ∈ N | Θj ⊆ Xi}.

Each set ϕ(i) contains at least one element (namely p) since X contains
every maximal tractable fragment that contains Θp. Suppose that the set
ϕ(i) is unbounded. This implies that

⋃

s∈ϕ(i)

Θs = Γ

due to the the choice of Θi. Hence, Xi = Γ which contradicts the fact that
CSP(Xi) is tractable. It follows that max(ϕ(i)) is a well-defined natural
number for every i ≥ 0. Let t = max

⋃k
i=1 ϕ(i) and note that t is a natural

number such that t ≥ p. Observe that Θt+1 is not included in any set in
X, and recall that X contains all maximally tractable sets that contain Θp.
This leads to a contradiction since Θp ⊆ Θt+1 and CSP(Θt+1) is a tractable
problem. Since X is an infinite set, the full set of maximally tractable
languages is an infinite set, too.

It is folklore within the CSP community that globally NP-hard languages
that are locally tractable exist when considering infinite-domain CSP, while
the existence of such languages in finite-domain CSPs is an important open
question. We will now present a concrete and simple example of such a
language within the temporal domain. This shows that additional compli-
cations are to be expected when studying temporal languages outside HZ.
We want to point out that such languages may exist within HZ, too; the
mere fact that we have not encountered them yet does not exclude their
existence.

We consider the conjunctive closure (also known as the weak co-clone)
〈HZ〉6∃ of HZ. Given a constraint language Γ, we define the conjunctive
closure 〈Γ〉6∃ such that R(x1, . . . , xk) ∈ 〈Γ〉6∃ if and only if there exist relations
R1, . . . , Rn ∈ Γ such that R(x1, . . . , xk) is equivalent to a conjunction of
applications of the relations R1, . . . , Rn to the variable set {x1, . . . , xk}. One
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may view this as a pp-definition where one is not allowed to use existential
quantification which explains the notation 〈·〉6∃. Clearly, 〈HZ〉6∃ appears to
have fairly limited expressive power compared to SZ.

We now show that there exists a constraint language Γ◦ = {R1, R2, . . .} ⊆
〈H〉6∃ that is globally NP-complete but locally tractable. For arbitrarily cho-
sen a, b, U ∈ N and c ∈ Z, we define relations Ma,b,c and Ma,b,c,U such that

Ma,b,c = {(x, y) ∈ Z2 | ax− by ≤ c and 0 ≤ x, y}

and

Ma,b,c,U = {(x, y) ∈ Z2 | ax− by ≤ c and 0 ≤ x, y ≤ U}.

We also define a number of constraint languages:

• Γ′ = {Ma,b,c | a, b ∈ N, c ∈ Z};

• Γ′
U = {Ma,b,c,U | a, b ∈ N, c ∈ Z} where U ∈ N;

• Γ◦ =
⋃∞

i=0 Γ′
i

We see that Γ′, Γ′
U , and Γ◦ are all subsets of 〈HZ〉6∃.

Theorem 32. CSP(Γ′) is globally NP-hard and CSP(Γ′
U ) is globally tractable

for any U ∈ N.

Proof. CSP(Γ′) is equivalent to the NP-hard problem Monotone Sys-

tem Integer Feasibility. The tractability result is due to Hochbaum
& Naor [20].

Obviously, we may view CSP(Γ′), CSP(Γ′
U), and CSP(Γ◦) as integer

program feasibility problems which implies that we can use the following
result for bounding solutions. A proof of this result can be found in, for
instance, Chapter 13.3 of Papadimitriou & Steiglitz [33].

Theorem 33. Let A be an integer n×m matrix and b an m-vector. If the set
X = {x ∈ Nn | Ax ≤ b} is non-empty, then there is an (x1, . . . , xn) ∈ X such
that 0 ≤ xi ≤ (n+m)(ma1)

2m+3(1+a2), 1 ≤ i ≤ n, where a1 = maxi,j{|aij |}
and a2 = maxi{|bi|}.

We now put the pieces together.

Theorem 34. CSP(Γ◦) is globally NP-hard but locally tractable.
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Proof. We first prove that CSP(Γ◦) is NP-hard by a polynomial-time reduc-
tion from CSP(Γ′). Let I = (V,N, C) be an arbitrary instance of CSP(Γ′).
Note that every constraint c ∈ C can be rewritten as at most three linear
inequalities. Hence, I can equivalently be viewed as the problem of decid-
ing non-emptiness of the set {x ∈ Zn | Ax ≤ b} where n = |V |, A is an
integral (n × 3|C|)-matrix, and b is an integral 3|C|-vector. If I has a so-
lution s : V → N, then 0 ≤ s(v) ≤ U for each variable v ∈ V and some
bound U that can be computed in polynomial time by Theorem 33. Con-
struct an instance I ′ = (V,N, C ′) of CSP(Γ◦) as follows: for each constraint
((x, y),Ma,b,c) ∈ C, add the constraint ((x, y),Ma,b,c,U ) to I ′. Obviously, I ′

has a solution if and only if I ′ has a solution and NP-hardness follows from
Theorem 32.

Next, we prove that CSP(Γ◦) is polynomial-time solvable whenever Γ̂

is a finite subset of Γ◦. Let T = max{U | Ma,b,c,U ∈ Γ̂◦} and note that

Γ̂◦ ⊆ Γ′
T . Thus, the existence of a solution can be checked in polynomial

time by Theorem 32.

6.3. Semilinear relations and DLRs

If we turn our attention to semilinear relations and DLRs, then we im-
mediately note that they give rise to a much richer class of CSPs than Horn
DLRs. The following is an important observation: for every finite constraint
language Γ over a finite domain D, there exists a finite set Γ′ ⊆ SZ such
that CSP(Γ) and CSP(Γ′) are polynomial-time equivalent. This can be
proved by using the following construction: given a relation R ⊆ Dk where
D = {d1, . . . , dm} is finite, define

R′(x1, . . . , xk) ≡ (x1 = d1∨. . .∨x1 = dm)∧. . .∧(xk = d1∨. . .∨xk = dm)∧

∧
∧

(t1,...,tk)∈Dk ,(t1,...,tk)6∈R

(x1 6= t1 ∨ . . . ∨ xk 6= tk)

It is now straightforward to see that R′ is a semilinear relation and
that CSP({R}) is polynomial-time equivalent to CSP({R′}). This idea is
straightforward to extend to constraint languages, so a complete classifi-
cation of CSP(SZ) would also constitute a complete classification of finite-
domain CSPs. Such a classification has for many years been a major open
question within the CSP community [15].

There appear to be other natural links between the complexity of tem-
poral reasoning and the complexity of finite-domain constraint satisfaction.
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One example is distance constraints, i.e. relations that are first-order de-
finable in (Z; succ) where succ denotes the successor relation succ(x, y) ≡
y = x + 1. Every relation that is first-order definable in (Z; succ) has a
quantifier-free first-order definition in (Z; +, 1) so every distance constraint
is a member of SZ. The constraint satisfaction problem for distance con-
straints has been thoroughly studied by Bodirsky et al. [5] and they identify
several tractable fragments, but they fail to provide a complete classifica-
tion. Interestingly, the complexity of distance constraints depends on the
complexity of certain finite-domain CSPs (those having a transitive group
of automorphisms.)

When studying the complexity of CSP(SZ) and CSP(DZ), one may ex-
pect to encounter fundamentally different tractable fragments when com-
pared to HZ. Consider, for instance, the relations that are first-order de-
finable over (Q;<). Every finite tractable constraint language has been
identified by Bodirsky and Kara [8]. Let Γ be a tractable language of theirs.
It is known that the relations in Γ have the scaling property so Lemma 6
is applicable and Γ|Z is tractable, too. Furthermore, the structure (Q;<)
admits quantifier elimination and we can consequently view each relation in
Γ as a member of SQ. Since the languages identified by Bodirsky and Kara
are a very diverse family of languages, the same will hold for the tractable
languages within SZ. We also observe that the constraint language Γ|Z is
typically not a subset of DZ. In fact, the simpler structure of DZ may very
well simplify the classification task. One may, for instance, note that the
finite-domain CSP problem for so-called clausal relations is completely clas-
sified [13]; a clausal constraint is a disjunction of inequalities of the form
x ≥ d or x ≤ d. If we instead consider the closely related class of relations
that are first-order definable in ({0, . . . , k},≤), then there is no correspond-
ing complete classification of complexity.
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