
Limitations of Acyclic Causal Graphs for Planning

Anders Jonsson

Dept. Information and Communication Technologies

Universitat Pompeu Fabra

Roc Boronat 138

08018 Barcelona, Spain

Peter Jonsson, Tomas Lööw

Department of Computer Science

Linköping University

SE-581 83 Linköping, Sweden

Abstract

Causal graphs are widely used in planning to capture the internal structure of

planning instances. Researchers have paid special attention to the subclass

of planning instances with acyclic causal graphs, which in the past have

been exploited to generate hierarchical plans, to compute heuristics, and to

identify classes of planning instances that are easy to solve. This naturally

raises the question of whether planning is easier when the causal graph is

acyclic.

In this paper we show that the answer to this question is no, proving

that in the worst case, the problem of plan existence is PSPACE-complete

even when the causal graph is acyclic. Since the variables of the planning

instances in our reduction are propositional, this result applies to Strips

planning with negative preconditions. We show that the reduction still holds

Email addresses: anders.jonsson@upf.edu (Anders Jonsson),
peter.jonsson@liu.se (Peter Jonsson), tomas.loow@liu.se (Tomas Lööw)

Preprint submitted to Artificial Intelligence December 15, 2013

if we restrict actions to have at most two preconditions.

Having established that planning is hard for acyclic causal graphs, we

study two subclasses of planning instances with acyclic causal graphs. One

such subclass is described by propositional variables that are either irre-

versible or symmetrically reversible. Another subclass is described by vari-

ables with strongly connected domain transition graphs. In both cases, plan

existence is bounded away from PSPACE, but in the latter case, the prob-

lem of bounded plan existence is hard, implying that optimal planning is

significantly harder than satisficing planning for this class.

Keywords: planning, computational complexity

1. Introduction

The causal graph offers insight into the interdependence among the vari-

ables of a planning instance. A sparse causal graph characterizes a planning

instance with few variable dependencies, potentially making it easier to de-

termine when and how to change the value of some variable. Acyclic causal

graphs have been of particular interest, implying an asymmetry: while chang-

ing the value of some variable v, we do not have to worry about dependencies

that other variables might have on v. This knowledge has been exploited in

a variety of ways among the planning community.

Among other things, acyclic causal graphs have been exploited to decom-

pose planning instances into action hierarchies (Knoblock, 1994; Bacchus

and Yang, 1994), to compute domain-independent heuristics for planning

(Helmert, 2004), and to identify classes of planning instances that are easy

to solve (Williams and Nayak, 1997; Jonsson and Bäckström, 1998; Braf-

2

man and Domshlak, 2003; Giménez and Jonsson, 2008; Jonsson, 2009). In

each case, the resulting algorithm or procedure will not work if the causal

graph is not acyclic. Thus one may be led to believe that planning is easier

when the causal graph is acyclic. However, the exact complexity of plan-

ning over acyclic causal graphs has remained unknown: several researchers

have shown that it is NP-hard (Domshlak and Dinitz, 2001; Brafman and

Domshlak, 2003; Giménez and Jonsson, 2009), while planning is known to

be PSPACE-complete in the general case of Strips (Bylander, 1994) and

Sas+ (Bäckström and Nebel, 1995).

In this paper we close this complexity gap, establishing that the complex-

ity of planning is PSPACE-complete for the class Acyc of planning instances

with acyclic causal graphs. This result holds both for plan existence, the

problem of determining whether there exists a solution to a given planning

instance, and bounded plan existence, the problem of determining whether

there exists a solution of bounded length. The results also holds for both

Strips and Sas+ planning, although in the case of Strips our reduction

requires the use of negative preconditions (when only positive preconditions

are allowed, plan existence is known to be in P and bounded plan existence

is NP-complete). As a consequence of our result, planning is no easier when

the causal graph is acyclic, at least not in the worst case.

We also study two subclasses of Acyc: the class ISR-Acyc of planning

instances with propositional variables that are either irreversible or symmet-

rically reversible, and the class SC-Acyc of planning instances with strongly

connected domain transition graphs. We show that plan existence is NP-

complete for ISR-Acyc and in P for SC-Acyc; i.e. in both cases, planning

3

becomes easier when we impose additional restrictions. We also show that

bounded plan existence is PSPACE-hard for SC-Acyc, implying that optimal

planning is significantly harder than satisficing planning for this class.

The work presented in this paper was previously published in the pro-

ceedings of the 2013 International Conference on Automated Planning and

Scheduling (ICAPS). Compared to the conference publication, the present

paper includes the following novel content:

• An encoding of the reduction from Qbf-Sat to plan existence for Acyc

in PDDL, effectively translating quantified Boolean formulae to plan-

ning instances.

• A modification of the reduction such that actions have at most two

preconditions, strengthening a previous result of Bylander (1994).

• An analysis showing that plan existence is NP-complete for the sub-

class ISR-Acyc of Acyc.

• A proof that bounded plan existence for SC-Acyc is PSPACE-complete,

strengthening our previous result (which stated that it is #P-hard).

The rest of the paper is organized as follows. Section 2 introduces the no-

tation that we use in the paper. Section 3 describes how to define planning

instances that simulate nested loops over an arbitrary number of proposi-

tional variables. Section 4 shows how to use these ideas to reduce Qbf-Sat

to plan existence for Acyc, and describes a PDDL encoding of the reduction.

Section 5 shows how to modify the previous reduction such that actions have

at most two preconditions. Sections 6 and 7 study the complexity of the two

4

subclasses ISR-Acyc and SC-Acyc. Section 8 relates our results to previous

work in the field, while Section 9 concludes with a discussion.

2. Notation

In this paper we study the complexity of both Strips and Sas+ planning.

To simplify the notation, we use a common description of planning instances

that is valid for either formalism. The only difference between formalisms

is the size of the variable domains, which equals two for Strips planning

but is generally larger than two for Sas+ planning. For Strips planning,

since each variable v is propositional, we use literals v and v to describe the

possible values of v instead of an explicit domain such as {0, 1}.

Let V be a set of variables, and let D(v) be the finite domain of each

variable v ∈ V . A partial state p is a function on a subset of variables

Vp ⊆ V that maps each variable v ∈ Vp to a value p(v) ∈ D(v) in its domain.

A state s is a partial state such that Vs = V . The projection p | U of a

partial state p onto a subset of variables U ⊆ V is a partial state q such that

Vq = Vp ∩ U and q(v) = p(v) for each v ∈ Vq. The composition p ⊕ q of two

partial states p and q is a partial state r such that Vr = Vp ∪ Vq, r(v) = q(v)

for each v ∈ Vq, and r(v) = p(v) for each v ∈ Vp \ Vq. Composition is not a

commutative operation, but it is left associative.

When variables are propositional, we use sets of literals to define partial

states, where each literal simultaneously defines a variable and its value.

Given a subset U ⊆ V of propositional variables, let U = {u : u ∈ U} denote

the partial state with all variables in U negated.

A planning instance is a tuple P = 〈V, A, I, G〉 where V is a set of vari-

5

ables defined as above, A is a set of actions with unit cost, I is an initial

state, and G is a (partial) goal state. Each action a = 〈pre(a), post(a)〉 ∈ A

has precondition pre(a) and postcondition post(a), both partial states on V .

Action a is applicable in state s if s | Vpre(a) = pre(a), and applying a in s

results in a new state s′ = s ⊕ post(a).

A plan is a sequence of actions 〈a1, . . . , ak〉 such that a1 is applicable in

the initial state I and, for each 2 ≤ i ≤ k, ai is applicable in the state

I ⊕post(a1)⊕· · ·⊕post(ai−1). The plan solves P if the goal state is satisfied

after applying 〈a1, . . . , ak〉, i.e. if (I ⊕ post(a1) ⊕ · · · ⊕ post(ak)) | VG = G.

A landmark is a subgoal that must be achieved on every plan (in this paper

we only consider subgoals on single variables).

The causal graph of P is a directed graph G = (V, E) with the variables

of P as nodes. There is an edge (u, v) ∈ E if and only if there exists an

action a ∈ A such that u ∈ Vpre(a) ∪ Vpost(a) and v ∈ Vpost(a). In this paper we

focus on planning instances with acyclic causal graphs, implying that each

action a ∈ A is unary, i.e. satisfies |Vpost(a)| = 1, since two or more variables

in a postcondition would induce a cycle in the causal graph.

The domain transition graph (DTG) of a variable v is a directed graph

DTG(v) = (D(v), E) with the values in the domain D(v) of v as nodes, and

there is an edge (x, y) ∈ E if and only if x 6= y and there exists an action

a ∈ A such that post(a)(v) = y and either v /∈ Vpre(a) or pre(a)(v) = x.

DTG(v) is strongly connected if and only if there is a directed path between

x and y for each pair of values x, y ∈ D(v).

A propositional variable v ∈ V is irreversible if there exists no pair of

actions a, a′ ∈ A such that post(a) = {v} and post(a′) = {v}. Variable

6

v ∈ V is symmetrically reversible if for each action a ∈ A such that v ∈

Vpost(a), there exists an action a′ ∈ A such that post(a′) = post(a) and

pre(a′) | (Vpre(a) \ {v}) = pre(a) | (Vpre(a) \ {v}), i.e. a′ and a have opposite

effects but the same precondition on variables other than v.

We define three classes of planning instances whose complexity we study

in the paper:

• Acyc: planning instances with acyclic causal graphs.

• ISR-Acyc: the subclass of planning instances in Acyc with propositi-

tional variables that are either irreversible or symmetrically reversible.

• SC-Acyc: the subclass of planning instances in Acyc such that all vari-

ables have strongly connected DTGs.

Given an arbitrary planning instance P , we can check in polynomial time

whether it belongs to Acyc, ISR-Acyc, and/or SC-Acyc.

For each class of planning instances X, we define Pe(X), the decision

problem of plan existence for X, as follows:

Input: A planning instance P ∈ X.

Question: Does there exist a plan solving P?

We also define the decision problem Bpe(X), the decision problem of bounded

plan existence for X, as follows:

Input: A planning instance P ∈ X and an integer K.

Question: Is there a plan solving P of length at most K?

Note that Pe(X) is polynomially reducible to Bpe(X) since each solvable

planning instance must have a solution of length at most K =
∏

v∈V |D(v)|.

7

Any longer plan must revisit states, and such a plan can always be shortened

by removing all actions between a state and itself.

3. Loop Instances

In this section we introduce a novel mechanism for simulating nested

loops using planning instances with propositional variables and acyclic causal

graphs. There are examples in the literature of planning instances in Acyc

that iterate over all assignments to n variables (Bäckström and Nebel, 1995),

but none of these guarantee that assignments are not repeated, something

that is crucial in our work. We describe our novel mechanism separately for

two reasons: it is the most complicated part of our subsequent reductions,

and it might have uses beyond those exploited in this paper.

3.1. Single Variable Loops

Our mechanism for simulating loops is based on a simple idea that we

call loop instance, defined with respect to a specific planning instance.

Definition 1. Given a planning instance P = 〈V, A, I, G〉, a loop instance

is a subset U = {a, b, x, u1, u2} ⊆ V such that {u1, u2} ⊆ I and u2 is a

landmark of P , and the only actions on U are those in the set A(U) ⊆ A.

In other words, u1 and u2 are initially false, and either u2 ∈ G or u2 is a

precondition of some action required to reach the goal state G.

Figure 1 shows the actions in A(U), where v1, v2, etc. are the actions

affecting a variable v. The actions in A(U) may have preconditions other

than those appearing in the table, which is why we refer to them as partial

preconditions. The names of the variables in a loop instance may vary as

8

Action Partial precondition Postcondition

a1
∅ {a}

b1 {a} {b}

b2 {a} {b}

x1 {a, b} {x}

x2 {b} {x}

u1
1 {b, x} {u1}

u1
2 {b, x, u1} {u2}

a b x

u1 u2

Figure 1: The set of actions A(U) and the associated causal graph of a loop instance U .

long as the associated actions match those in the set A(U). Action x2 is

not strictly needed until later; its purpose in this section is to show that the

subsequent lemmas hold even when it is present.

Figure 1 also shows the causal graph of a loop instance, which is in general

a subgraph of the causal graph of its associated planning instance P . It is

easy to verify that the causal graph is acyclic; a topological ordering is given

by a → b → x → u1 → u2.

We proceed to prove several lemmas regarding loop instances. Although

the initial state only explicitly mentions variables u1 and u2, the remaining

9

variables have to be initially false for a loop instance to be solvable. Moreover,

the solution always contains a unique subsequence of actions.

Lemma 2. Given a planning instance P with associated loop instance U =

{a, b, x, u1, u2}, the following holds:

1. P is unsolvable unless the variables in {a, b, x} are initially false.

2. Any plan solving P contains the subsequence 〈u1
1, b

1, a1, x1, b2, u1
2〉.

Proof. We first assume that the variables in {a, b, x} are initially false and

prove the second part of the lemma. Since u2 is a landmark of P , any plan

solving P has to apply action u1
2 with precondition u1, requiring action u1

1

to appear before u1
2. The precondition {b, x} of u1

1 is satisfied in the initial

state, but to satisfy the precondition x of u1
2, action x1 has to appear between

u1
1 and u1

2. The precondition b of x1 requires b1 to appear between u1
1 and

x1, and the precondition b of u1
2 requires b2 between x1 and u1

2. Finally, the

precondition a of x1 and b2 requires a1 between b1 and x1. Taken together,

this results in the unique subsequence 〈u1
1, b

1, a1, x1, b2, u1
2〉.

We next show that the variables in {a, b, x} have to be false before ap-

plying action u1
1 for P to be solvable. If a is initially true, there is no action

making a false, rendering it impossible to satisfy the precondition a of b1

required to make b true between u1
1 and x1. If b is initially true, we have to

apply action b2 to satisfy the precondition {b, x} of u1
1, which in turn requires

a to be true. Finally, if x is initially true we have to apply action x2 to satisfy

the precondition {b, x} of u1
1, which in turn requires b to be true.

We also show that the values of the variables in the subset {a, b, x} are fixed

before action u1
1 and after action u1

2.

10

Lemma 3. No plan solving P can change the value of a variable in the subset

{a, b, x} before action u1
1 or after action u1

2.

Proof. In the proof of Lemma 2 we already showed that the variables in

{a, b, x} have to be false before applying action u1
1, implying that no action

can change the value of a variable in {a, b, x} before u1
1. The action sub-

sequence from Lemma 2 applies action u1
2 in the partial state {a, b, x}, in

which no action on {a, b, x} is applicable, making it impossible for any plan

to change the value of a variable in {a, b, x} after u1
2.

The name “loop instance” derives from the fact that variable x is false before

action u1
1 and true after u1

2, causing any solution to “iterate” over the two

possible values of x. Another direct consequence of Lemma 2 is that the

variables in {a, b, x} have to be false in the initial state; we can therefore say

that a loop instance U has implicit initial state U .

3.2. Nested loops on two variables

In this section we show how to combine loop instances to represent nested

loops on two variables. Consider a planning instance P2 = 〈V, A, I, G〉 with

the following components:

• V = {a1, b1, x1, u10, u11, u12, u13} ∪ {a2, b2, x2, u21, u22},

• I = V ,

• G = {u13}.

Table 1 shows the actions of the planning instance P2. It is easy to verify

that U1 = {a1, b1, x1, u11, u12} is a loop instance: the actions on these vari-

ables match those in Figure 1, u11 and u12 are initially false, and u12 is a

11

Action Precondition Postcondition

a1
1 ∅ {a1}

b11 {a1} {b1}

b21 {a1} {b1}

x1
1 {a1, b1} {x1}

x2
1 {b1} {x1}

a1
2 ∅ {a2}

b12 {a2} {b2}

b22 {a2} {b2}

x1
2 {a2, b2} {x2}

x2
2 {b2} {x2}

u1
10 {u21, u22} {u10}

u1
11 {b1, x1} ∪ {u10, u22} {u11}

u1
12 {b1, x1, u11} ∪ {u21, u22} {u12}

u1
13 {u12, u22} {u13}

u1
21 {b2, x2} {u21}

u1
22 {b2, x2, u21} {u22}

a2
2 {b1} {a2}

u2
21 {b1} {u21}

u2
22 {b1} {u22}

Table 1: The actions of the planning instance P2.

precondition of the only action u1
13 that adds the goal u13. For clarity, we

have separated the partial preconditions of actions u1
11 and u1

12 that match

those in Figure 1.

12

The subset U2 = {a2, b2, x2, u21, u22} is also similar to a loop instance, but

if we compare to Figure 1, P2 has three additional actions a2
2, u2

21, and u2
22,

each with precondition b1 and making the corresponding variable false. We

refer to U2 as a conditional loop instance: whenever b1 is false, the actions on

U2 are exactly those of a loop instance, but when b1 is true, the properties

of a loop instance no longer hold.

Definition 4. Given a planning instance P = 〈V, A, I, G〉, a conditional loop

instance U = {a, b, x, u1, u2} is a loop instance with three additional actions

a2 = 〈{v}, {a}〉, u2
1 = 〈{v}, {u1}〉, and u2

2 = 〈{v}, {u2}〉, where v /∈ U . We

say that U is conditional on v and activated whenever v is false.

A secondary function of loop instances is to activate and deactivate other,

conditional, loop instances. For example, the loop instance U1 of P2 regulates

the conditional loop instance U2 by means of the variable b1. Lemma 3 implies

that b1 is false before action u1
11 and after action u1

12; as a consequence,

conditional loop instance U2 is activated at those portions of the plan.

Let us study the structure of a plan for P2. Due to Lemma 2 and the

fact that U1 is a loop instance, any plan for P2 contains the subsequence

〈u1
11, b

1
1, a

1
1, x

1
1, b

2
1, u

1
12〉. The precondition u10 of u1

11 requires action u1
10 to

appear before u1
11, and action u1

13, needed to achieve the goal u13, has to

appear after u1
12 because of its precondition u12.

As a consequence, any plan solving P2 contains the action subsequence

〈u1
10, u

1
11, b

1
1, a

1
1, x

1
1, b

2
1, u

1
12, u

1
13〉. Actions u1

10 and u1
12 both have precondition

{u21, u22}, and u1
11 and u1

13 have precondition {u22}. As previously men-

tioned, Lemma 3 implies that b1 is false before u1
11 and after u1

12, causing the

conditional loop instance U2 to be activated.

13

To apply the two pairs of actions (u1
10, u

1
11) and (u1

12, u
1
13), we have to make

u22 true starting from {u21, u22} while U2 is activated. This corresponds

to a partial planning instance P ′

2 = 〈U2, A(U2), U2, {u22}〉 with associated

loop instance U2, where U2 is the implicit initial state required for P ′

2 to be

solvable. Lemma 2 implies that any plan solving P ′

2 contains the subsequence

ω2 = 〈u1
21, b

1
2, a

1
2, x

1
2, b

2
2, u

1
22〉. In a plan solving the original instance P2, ω2 has

to be appended between u1
10 and u1

11, and between u1
12 and u1

13.

When we apply action u1
11, the partial state on U2 is {a2, b2, x2, u21, u22}.

Prior to applying action u1
12, we have to reset the variables in U2 to false to

achieve the implicit initial state U2 of P ′

2. When b1 is true, the action sequence

ρ2 = 〈a2
2, b

1
2, x

2
2, a

1
2, b

2
2, a

2
2, u

2
21, u

2
22〉 first resets the variables in {a2, b2, x2} to

false, and then variables u21 and u22.

Summarizing, a plan for P2 is of the form

〈u1
10, ω2, u

1
11, b

1
1, ρ2, a

1
1, x

1
1, b

2
1, u

1
12, ω2, u

1
13〉.

Some actions can change places, but ω2 has to appear between u1
10 and u1

11

and between u1
12 and u1

13. Likewise, ρ2 has to appear between b11 and b21 (where

b1 is true). A plan for P2 describes a nested loop on x1 and x2: variable x1

is false before u1
11 and true after u1

12 and, for each of the two values on x1,

variable x2 is false before u1
21 and true after u1

22 in the subsequence ω2.

Note that if variables u10, . . . , u13 are initially false, all other variables in

V have to be false for P2 to be solvable. Since U1 is a loop instance, the

variables in {a1, b1, x1} have to be initially false due to Lemma 2. Since b1

is false before action u1
11, conditional loop instance U2 is activated, and to

apply the action pair (u1
10, u

1
11) we have to solve the partial planning instance

P ′

2 with implicit initial state U2.

14

a1 b1 x1

a2 b2 x2

u21 u22

u10 u11 u12 u13

Figure 2: The causal graph of the planning instance P2.

Figure 2 shows the causal graph of the planning instance P2. The sub-

graphs on U1 and U2 are those of a loop instance. There are edges from b1

to a2, u21, and u22 due to U2 being a loop instance conditional on b1, and

edges from u21 and u22 to u10, . . . , u13 due to actions u1
10, . . . , u

1
13. By stacking

a1, b1, x1 at the top and u10, . . . , u13 at the bottom, a topological ordering is

given by scanning variables left-to-right in each row, starting from the top.

3.3. Nested loops on n variables

We next show how to extend the idea from the previous section to simulate

nested loops on any number n of variables. Consider a planning instance

Pn = 〈V, A, I, G〉 with the following components:

• V =
⋃n

i=1 (Xi ∪ Vi),

• Xi = {ai, bi, xi} for each 1 ≤ i ≤ n,

15

• Vi = {ui0, ui1, ui2, ui3} for each 1 ≤ i ≤ n,

• I = V ,

• G = {u13}.

Table 2 shows the actions of the planning instance Pn for 1 < i ≤ n and

0 ≤ k ≤ 3. For each 1 ≤ i ≤ n, let Ui = {ai, bi, xi, ui1, ui2}, let Ai ⊆ A

be the subset of actions on variables in Xi, and let Bi ⊆ A be the actions

on Vi. The actions are defined such that U1 is a loop instance and, for each

1 < i ≤ n, Ui is a loop instance conditional on bi−1.

Compared to the planning instance P2 from the previous section, the set

Vi, 1 < i ≤ n, contains additional variables ui0 and ui3 with associated actions

in Bi. Consequently, actions u1
(i−1)0 and u1

(i−1)2 have partial precondition

{ui0, ui1, ui2, ui3}, and actions u1
(i−1)1 and u1

(i−1)3 have partial precondition

{ui3}. These extra variables are not strictly needed for i = n but including

them makes action definitions uniform (and hence more compact).

For each 1 ≤ i ≤ n, define a partial planning instance P ′

i = 〈V ′

i , A
′

i, I
′

i, G
′

i〉

with components

• V ′

i =
⋃n

j=i (Xj ∪ Vj),

• A′

i =
⋃n

j=i (Aj ∪ Bj) \
⋃i

j=2{a2
j , u

2
j1, u

2
j2},

• I ′

i = V
′

i,

• G′

i = {ui3}.

Lemma 5. For each 1 ≤ i ≤ n, any solution to P ′

i iterates over all possible

assignments to variables xi, . . . , xn.

16

Action Precondition Postcondition

a1
1 ∅ {a1}

b11 {a1} {b1}

b21 {a1} {b1}

x1
1 {a1, b1} {x1}

x2
1 {b1} {x1}

a1
i ∅ {ai}

b1i {ai} {bi}

b2i {ai} {bi}

x1
i {ai, bi} {xi}

x2
i {bi} {xi}

u1
(i−1)0 {ui0, ui1, ui2, ui3} {u(i−1)0}

u1
(i−1)1 {bi−1, xi−1} ∪ {u(i−1)0, ui3} {u(i−1)1}

u1
(i−1)2 {bi−1, xi−1, u(i−1)1} ∪ {ui0, ui1, ui2, ui3} {u(i−1)2}

u1
(i−1)3 {u(i−1)2, ui3} {u(i−1)3}

u1
n0 ∅ {un0}

u1
n1 {bn, xn} ∪ {un0} {un1}

u1
n2 {bn, xn, un1} {un2}

u1
n3 {un2} {un3}

a2
i {bi−1} {ai}

u2
ik {bi−1} {uik}

Table 2: The actions of the planning instance Pn for 1 < i ≤ n and 0 ≤ k ≤ 3.

Proof. With {a2
i , u

2
i1, u

2
i2} removed, the actions of Ui are exactly those of

a loop instance. Variable ui2 is a precondition of the only action u1
i3 that

17

achieves the goal ui3, and ui1 and ui2 are initially false. Lemma 2 states that

any plan solving P ′

i contains the action subsequence 〈u1
i1, b

1
i , a

1
i , x

1
i , b

2
i , u

1
i2〉.

We now prove the lemma by induction on i. For i = n, since Un is a loop

instance for P ′

n, any plan solving P ′

n iterates over the two possible values of

xn. For i < n, because of the way actions are defined, u1
i0 has to appear before

u1
i1, and u1

i3 has to appear after u1
i2. The action pairs (u1

i0, u
1
i1) and (u1

i2, u
1
i3)

each requires achieving u(i+1)3 starting from {u(i+1)0, u(i+1)1, u(i+1)2, u(i+1)3}.

Due to Lemma 3, variable bi is false while doing so, causing conditional

loop instance Ui+1 to be activated. This corresponds to solving the partial

planning problem P ′

i+1, which has implicit initial state V
′

i+1 since variables

in {ai+1, bi+1, xi+1} have to be false for P ′

i+1 to be solvable due to Lemma 2

and, if i + 1 < n, we recursively have to satisfy the implicit initial state V
′

i+2

of P ′

i+2 to apply the action pair (u1
(i+1)0, u

1
(i+1)1) while bi+1 is false.

Let ωi+1 be a plan solving P ′

i+1. By hypothesis of induction, ωi+1 iterates

over all possible values to variables xi+1, . . . , xn. A plan for P ′

i is given by

〈u1
i0, ωi+1, u

1
i1, b

1
i , ρi+1, a

1
i , x

1
i , b

2
i , u

1
i2, ωi+1, u

1
i3〉,

where ρi+1 is an action sequence resetting the variables in V ′

i+1 to false.

Since ωi+1 appears before u1
i1 and after u1

i2, this plan iterates over all possible

assignments to variables xi+1, . . . , xn, first for xi false, then for xi true. This

corresponds exactly to iterating over all assignments to xi, . . . , xn.

We omit the causal graph of Pn, which has the same structure as the

causal graph of P2: a topological ordering is given by

a1 → b1 → x1 → · · · → an → bn → xn →

→ un0 → un1 → un2 → un3 → · · · → u10 → u11 → u12 → u13.

18

It is possible to verify that no action on a variable v has a precondition on a

variable u appearing after v in this ordering.

3.4. Case Study: Reducing Unsat to Pe(Acyc)

In this section, we show how to use loop instances to reduce the decision

problem Unsat to Pe(Acyc). Prior to our work, it was not known how to

do this, not even for Sas+ planning. Using loop instances, the reduction is

almost trivial.

Let φ = (c1 ∧ · · · ∧ cm) be a 3SAT formula on n variables x1, . . . , xn

where, for each 1 ≤ j ≤ m, cj = ℓ1j ∨ ℓ2j ∨ ℓ3j is a 3-literal clause on x1, . . . , xn.

The decision problem Unsat consists in determining whether or not φ is

unsatisfied for all assignments to x1, . . . , xn.

Given φ, we construct (in polynomial time) a planning instance in Acyc

by modifying the planning instance Pn from the previous section. The only

modification is replacing actions u1
n1 and u1

n2 with m actions each, corre-

sponding to the clauses c1, . . . , cm of φ. For each 1 ≤ j ≤ m, the actions uj
n1

and uj
n2 associated with cj have additional precondition {ℓ

1

j , ℓ
2

j , ℓ
3

j} where, for

each 1 ≤ k ≤ 3, ℓ
k

j = xi if ℓkj = xi for some variable xi, and ℓ
k

j = xi if ℓkj = xi.

Technically, a loop instance on Un should only have one action u1
n1 and one

action u1
n2, but Un still shares all the properties of a loop instance since each

of the new actions has the same precondition as the original u1
n1 or u1

n2.

Lemma 6. The modified planning instance Pn has a solution if and only if

φ is unsatisfiable.

Proof. Lemma 5 states that a plan solving Pn iterates over all possible as-

signments to variables x1, . . . , xn. Since the innermost loop is over xn, for

19

each such assignment we have to apply one of the actions uj
n1 or uj

n2. If φ

is unsatisfied, for each assignment to x1, . . . , xn there exists an unsatisfied

clause cj, making uj
n1 or uj

n2 applicable. On the other hand, if there exists

an assignment to x1, . . . , xn that satisfies φ, none of the actions uj
n1 or uj

n2

are applicable, breaking the chain and rendering Pn unsolvable.

4. The Complexity of Planning for Acyc

In this section we show that the decision problem Pe(Acyc) is PSPACE-

complete by reduction from Qbf-Sat. The reduction makes heavy use of

the loop instances introduced in the previous section. We first introduce the

decision problem Qbf-Sat and describe a general strategy for solving it. We

then show how to construct a planning instance in Acyc that simulates this

strategy, and finally prove that the reduction is correct.

4.1. The Decision Problem Qbf-Sat

A quantified Boolean formula, or QBF, is a conjunction of clauses such

that the variables are bound by quantifiers, either existential or universal.

The decision problem Qbf-Sat is to determine whether a given QBF F is

satisfiable, and is known to be PSPACE-complete (Stockmeyer and Meyer,

1973), even when F is in prenex normal form, i.e. the quantifiers alternate

between existential and universal. Although the reduction from Qbf-Sat to

Pe(Acyc) can be implemented for any QBF, the resulting planning instance

in Acyc is significantly simpler when the QBF is in prenex normal form.

A QBF in prenex normal form is a formula F = ∀x1∃x2 · · · ∀xn−1∃xn · φ,

where n is an even integer, φ = (c1 ∧ · · · ∧ cm) is a 3SAT formula, and

20

1 function QSat(i, pi)

2 if i = n then

3 return Check(pi ∪ {xi}) or Check(pi ∪ {xi})

4 else if i is odd then

5 return QSat(i + 1, pi ∪ {xi}) and QSat(i + 1, pi ∪ {xi})

4 else

6 return QSat(i + 1, pi ∪ {xi}) or QSat(i + 1, pi ∪ {xi})

Figure 3: Algorithm QSat that checks if Fi(pi) is satisfiable.

cj = ℓ1j ∨ ℓ2j ∨ ℓ3j is a 3-literal clause for each 1 ≤ j ≤ m. In what follows we

describe a general algorithm for determining whether F is satisfiable.

For each 1 ≤ i ≤ n, let pi be a partial state representing an assignment to

the variables x1, . . . , xi−1. Let Fi(pi) = Qixi · · · ∀xn−1∃xn · φ(pi) denote the

partial QBF obtained from F by removing the quantifiers on x1, . . . , xi−1 and

replacing x1, . . . , xi−1 in φ with the respective truth values in pi. Figure 3

describes a recursive algorithm QSat that checks whether Fi(pi) is satisfiable

for any arbitrary 1 ≤ i ≤ n and pi. The algorithm Check(pn+1) returns true

if and only if the 3SAT formula φ is satisfied by the assignment pn+1. Note

that F1(p1) = F1(∅) = F , so the following lemma implies that F is satisfiable

if and only if QSat(1,∅) returns true.

Lemma 7. The algorithm QSat runs in polynomial space on input (i, pi) and

returns true if and only if Fi(pi) is satisfiable.

Proof. The recursive algorithm QSat essentially performs a nested loop on

the variables xi, . . . , xn with the body in the inner loop described by a call

21

to Check. The proof follows directly from the meaning of each quantifier. If

i = n, the quantifier on xi is existential, and Fn(pn) is satisfiable if and only

if φ is satisfiable for either of the assignments pn ∪ {xn} or pn ∪ {xn}. If i

is odd, xi is universal, so Fi(pi) is satisfiable if and only if Fi+1(pi ∪ {xi})

and Fi+1(pi ∪ {xi}) are satisfiable. Otherwise xi is existential, so Fi(pi) is

satisfiable if and only if Fi+1(pi ∪ {xi}) or Fi+1(pi ∪ {xi}) is satisfiable.

By sharing the memory needed to store pn+1 (which requires O(n) space),

each recursive call only needs O(log i) = O(log n) memory to represent i, and

a single bit of memory to remember the outcome of Check or QSat for pi∪xi.

Checking whether an assignment pn+1 satisfies φ requires O(n + m) space

where m is the number of clauses, and the recursive calls require a total of

O(n log n) space since there are never more than n such calls on the stack.

Thus QSat runs in O(n log n + m) space, which is polynomial in F .

4.2. Construction

In this section we show how to reduce the decision problem Qbf-Sat to

Pe(Acyc). Specifically, for any QBF F in prenex normal form, we construct

a planning instance in Acyc that is solvable if and only if F is satisfiable.

Let F = ∀x1∃x2 · · · ∀xn−1∃xn · φ be the QBF in prenex normal form with

φ = (c1 ∧ · · · ∧ cm) and cj = ℓ1j ∨ ℓ2j ∨ ℓ3j for each 1 ≤ j ≤ m. Given F , we

construct a planning instance PF = 〈VF , AF , IF , GF 〉 where

• VF =
⋃n

i=1 (Xi ∪ Vi) ∪ S,

• Xi = {ai, bi, xi} for each 1 ≤ i ≤ n,

• Vi = {ui0, ui1, ui2, ui3, vi1, vi2, vi3} for each 1 ≤ i ≤ n,

22

Action Pre Post

s1j {ℓ1j , sj−1} {sj}

s2j {ℓ2j , sj−1} {sj}

s3j {ℓ3j , sj−1} {sj}

s4j {bn} {sj}

tj {ℓ
1

j , ℓ
2

j , ℓ
3

j} {t}

tm+1 {bn} {t}

Table 3: Actions in the set AS for 1 ≤ j ≤ m. The precondition sj−1 is omitted for j = 1.

• S = {s1, . . . , sm, t},

• AF =
⋃n

i=1 (Ai ∪ Bi) ∪ AS,

• IF = V F ,

• GF = {u13}.

For each 1 ≤ i ≤ n, the set of actions Ai on Xi = {ai, bi, xi} are exactly those

of the planning instance Pn from the previous section.

However, if we compare to Pn, Vi contains additional variables vi1, vi2, vi3.

To implement the algorithm QSat in Figure 3, we need to remember whether

or not the partial QBF Fi(pi) is satisfiable. The variables in Vi constitute

a simple memory for doing so. As a consequence, we cannot immediately

apply the results regarding loop instances from the previous section.

The purpose of the variables in the set S is to implement the subroutine

Check, i.e. to verify whether the 3SAT formula φ is satisfied given the current

assignment pn+1 to the variables x1, . . . , xn. Table 3 shows the actions in the

23

associated set AS, with the precondition sj−1 of actions s1j , s2j , and s3j omitted

for j = 1. For each 1 ≤ j ≤ m, literals ℓ1j , ℓ2j , and ℓ3j should be replaced with

the corresponding variable among x1, . . . , xn, appropriately negated.

The actions in AS are defined such that starting from S, we can make sm

true if and only if φ is satisfied, and t true if and only if φ is unsatisfied. To

make t true, it is sufficient to find a clause cj that is unsatisfied by the current

assignment to x1, . . . , xn, and apply the associated action tj. To make sm

true, we have to verify that each clause is satisfied by the current assignment

to x1, . . . , xn. This is the reason why actions s1j , s2j , and s3j have precondition

sj−1. The purpose of actions s4j , 1 ≤ j ≤ m, and tm+1 is to reset the variables

in S to false when bn is true.

Table 4 shows the actions in the set B1 ∪ · · · ∪ Bn for 1 ≤ i < n and

0 ≤ k ≤ 3. For each 1 ≤ i ≤ n, the two subsets Ui1 = {ai, bi, xi, ui1, ui2} and

Ui2 = {ai, bi, xi, vi1, vi2} are similar to loop instances, conditional on bi−1 for

i > 1, but ui2 and vi2 are not always landmarks, violating the definition of

loop instances. In these cases, {ui2, vi2} is a disjunctive landmark, implying

that any plan has to use one of Ui1 and Ui2 to achieve the goal.

For 1 ≤ i ≤ n, let pi be an assignment to x1, . . . , xi−1. We define a partial

planning instance P ′

i1(pi) = 〈V ′

i , A
′

i, I
′

i, {ui3}〉 as follows:

• V ′

i = Z ′

i ∪ {x1, . . . , xi−1},

• Z ′

i =
⋃n

j=i (Xj ∪ Vj) ∪ S,

• A′

i =
⋃n

j=i (Aj ∪ Bj) ∪ AS \
⋃i

j=2{a2
j , u

4
j1, u

4
j2, v

4
j1, v

4
j2},

• I ′

i = Z
′

i ∪ pi.

24

Action Pre Post

u1
i0 V i+1 {ui0}

u1
i1 {bi, xi} ∪ {ui0, v(i+1)3} {ui1}

u1
i2 {bi, xi, ui1} ∪ V i+1 {ui2}

u1
i3 {ui2, v(i+1)3} {ui3}

v1
i1 {bi, xi} ∪ {ui0, u(i+1)3} {vi1}

v1
i2 {bi, xi, vi1} ∪ V i+1 {vi2}

v1
i3 {ui2, u(i+1)3} {vi3}

v2
i3 {vi2, v(i+1)3} {vi3}

v3
i3 {vi2, u(i+1)3} {vi3}

u1
n0 S {un0}

u1
n1 {bn, xn} ∪ {un0, t} {un1}

u1
n2 {bn, xn, un1} ∪ S {un2}

u1
n3 {un2, t} {un3}

v1
n1 {bn, xn} ∪ {un0, sm} {vn1}

v1
n2 {bn, xn, vn1} ∪ S {vn2}

v1
n3 {un2, sm} {vn3}

v2
n3 {vn2, t} {vn3}

v3
n3 {vn2, sm} {vn3}

u4
(i+1)k/v

4
(i+1)k {bi} {u(i+1)k}/{v(i+1)k}

Table 4: Actions in the set B1 ∪ · · · ∪ Bn for 1 ≤ i < n and 0 ≤ k ≤ 3.

Note that variables x1, . . . , xi−1 are static in P ′

i1(pi) and initialized to pi.

Actions in AS may have preconditions on x1, . . . , xi−1, which is the purpose

of including these variables. We define another partial planning instance

25

P ′

i2(pi) identical to P ′

i1(pi) except the goal is vi3 instead of ui3.

For each 1 ≤ i ≤ n, the partial planning instance P ′

i1(pi) has associated

loop instance Ui1 since ui1 and ui2 are initially false and ui2 is a precondition

of the only action u1
i3 that adds the goal ui3. However, if we instead consider

P ′

i2(pi), there are three actions that add the goal vi3, namely v1
i3 with precon-

dition ui2 and v2
i3, v3

i3 with precondition vi2. In other words, neither ui2 nor

vi2 is a landmark for P ′

i2(pi), but rather {ui2, vi2} is a disjunctive landmark.

For each 1 ≤ i ≤ n and each assignment pi, the actions are defined

such that exactly one of P ′

i1(pi) and P ′

i2(pi) is solvable. Which of the two

instances is solvable depends on the partial QBF Fi(pi) and the parity of

i. If i is odd, xi is universal, in which case P ′

i1(pi) is solvable if and only if

Fi(pi) is satisfiable and P ′

i2(pi) is solvable if and only if Fi(pi) is unsatisfiable.

Conversely, if i is even, xi is existential, in which case P ′

i2(pi) is solvable if

and only if Fi(pi) is satisfiable and P ′

i1(pi) is solvable if and only if Fi(pi) is

unsatisfiable. Since P ′

11(p1) = P ′

11(∅) = PF and i = 1 is odd, this implies

that PF is solvable if and only if the QBF F1(p1) = F1(∅) = F is satisfiable.

Figure 4 shows the causal graph of the planning instance PF . To avoid

cluttering, many vertical edges have been omitted, but it is easy to verify

that each edge is either left-to-right within the same row of variables, or

top-to-bottom between rows of variables, implying that the causal graph is

acyclic. All edges induced by the actions for Xi are already present. For

S, the edges not shown are those associated with the literals of each clause,

i.e. each edge is from a variable among x1, . . . , xn to either sj or t. The edges

to Vi not shown are from bi−1 (for i > 1), bi, xi, and Vi+1 or, in the case of

i = n, from S. Variables v11, v12, v13 do not appear since they are irrelevant.

26

a1 b1 x1

a2 b2 x2

an bn xn

s1 s2 sm t

un0 un1 un2 un3

vn1 vn2 vn3

u10 u11 u12 u13

Figure 4: The causal graph of the planning problem PF . For clarity, many vertical edges

have been omitted.

4.3. Proof of Correctness

In this section we prove that the reduction is correct, i.e. that the planning

instance PF constructed in the previous section has a solution if and only if

the QBF F is satisfiable. We first prove that the variables in S and actions

in AS correspond to the algorithm Check that tests whether the formula φ

is satisfied given the current assignment pn+1 to x1, . . . , xn.

Lemma 8. Given an assignment pn+1, starting from S it is possible to set sm

to true if and only if φ is satisfied, and t to true if and only if φ is unsatisfied.

27

Proof. We show by induction on 1 ≤ j ≤ m that we can set sj to true if

and only if clauses c1, . . . , cj are satisfied, and t to true if and only if at least

one of these clauses is unsatisfied. For j = 1, if c1 is satisfied, at least one

action among s11, s21, s31 is applicable, but not t1, making it possible to set s1

to true, but not t. If c1 is unsatisfied, action t1 is applicable, but not s11, s21,

s31, making it possible to set t to true, but not s1.

For j > 1, if at least one clause among c1, . . . , cj−1 is unsatisfied, by

hypothesis of induction we can set t to true but not sj−1. Then no action

among s1j , s2j , s3j is applicable, making it impossible to set sj to true. If, on

the contrary, clauses c1, . . . , cj−1 are satisfied, we can set sj−1 to true but not

t. Then if cj is satisfied, at least one action among s1j , s2j , s3j is applicable,

but not tj, making it possible to set sj to true, but not t. If cj is unsatisfied,

action tj is applicable, but not s1j , s2j , s3j , making it possible to set t to true,

but not sj.

We next prove that, given some assignment pi to the variables x1, . . . , xi−1,

which of P ′

i1(pi) and P ′

i2(pi) is solvable tells us whether or not Fi(pi) is sat-

isfiable, effectively simulating the algorithm QSat in Table 3.

Lemma 9. For each 1 ≤ i ≤ n, let pi be an assignment to x1, . . . , xi−1. The

instance P ′

i1(pi) is solvable if and only if i is odd and Fi(pi) satisfiable, or i

is even and Fi(pi) unsatisfiable. The instance P ′

i2(pi) is solvable if and only

if i is odd and Fi(pi) unsatisfiable, or i is even and Fi(pi) satisfiable.

Proof. By induction on 1 ≤ i ≤ n. For i = n, to solve P ′

n1(pi) we have to

apply the action subsequence 〈u1
n0, u

1
n1, u

1
n2, u

1
n3〉. Actions u1

n0 and u1
n2 have

precondition S, and actions u1
n1 and u1

n3 have precondition t. Moreover, Un1

28

is a loop instance for P ′

n1(pi). We thus have to make t true starting from S

for xn false and xn true given the assignment pn. Due to Lemma 8, this is

possible if and only if φ is unsatisfied for pn ∪ {xn} and pn ∪ {xn}. Since n is

even, and hence xn existential, this corresponds to Fn(pn) being unsatisfied.

On the other hand, to solve P ′

i2(pi) we have to apply one of the three

following action subsequences, with associated precondition sequences:

〈u1
n0, u

1
n1, u

1
n2, v

1
n3〉 : 〈S, {t}, S, {sm}〉,

〈u1
n0, v

1
n1, v

1
n2, v

2
n3〉 : 〈S, {sm}, S, {t}〉,

〈u1
n0, v

1
n1, v

1
n2, v

3
n3〉 : 〈S, {sm}, S, {sm}〉.

The subset Un1 is a loop instance of the former, while Un2 is a loop instance of

the two latter, implying that xn is false before u1
n1/v

1
n1 and true after u1

n2/v
1
n2.

The three sequences of preconditions are mutually exclusive since we can

only make one of sm and t true starting from S. In all three cases, we have

to make sm true starting from S for either pn ∪ {xn} or pn ∪ {xn}, which

corresponds to Fn(pn) being satisfied since xn is existential.

For 1 ≤ i < n, the reasoning is similar. To solve P ′

i1(pi) we have to make

v(i+1)3 true starting from V i+1 for pi ∪ {xi} and pi ∪ {xi}, which corresponds

to solving the instances P ′

(i+1)2(pi ∪ {xi}) and P ′

(i+1)2(pi ∪ {xi}). If i is odd,

the induction hypothesis states that Fi+1(pi ∪ {xi}) and Fi+1(pi ∪ {xi}) are

satisfiable, implying that Fi(pi) is satisfiable since xi is universal. If i is even,

Fi+1(pi ∪ {xi}) and Fi+1(pi ∪ {xi}) are unsatisfiable, implying that Fi(pi) is

unsatisfiable since xi is existential.

Conversely, to solve P ′

i2(pi) we have to make u(i+1)3 true starting from V i+1

for either pi ∪ {xi} or pi ∪ {xi}, which corresponds to solving the instance

P ′

(i+1)1(pi ∪ {xi}) or P ′

(i+1)1(pi ∪ {xi}). If i is odd, the induction hypothesis

29

states that Fi+1(pi ∪ {xi}) or Fi+1(pi ∪ {xi}) is unsatisfiable, implying that

Fi(pi) is unsatisfiable since xi is universal. If i is even, Fi+1(pi ∪ {xi}) or

Fi+1(pi ∪ {xi}) is satisfiable, implying that Fi(pi) is satisfiable since xi is

existential.

We are now ready to prove the main result of this section.

Theorem 1. Pe(Acyc) is PSPACE-complete.

Proof. Let F be an arbitrary QBF on n variables and m clauses in prenex

normal form. We can construct the planning instance PF in polynomial time

given F . A plan solving PF simulates a nested loop on x1, . . . , xn. Lemma

9 states that since i = 1 is odd, we can solve P ′

11(p1) = P ′

11(∅) = PF if and

only if the QBF F1(∅) = F is satisfiable.

We have presented a polynomial-time reduction from Qbf-Sat, a known

PSPACE-complete problem, to Pe(Acyc). Membership in PSPACE follows

from Theorem 4 of Bäckström and Nebel (1995).

As an immediate consequence of Theorem 1, bounded plan existence is

also PSPACE-complete for the class Acyc.

Corollary 10. Bpe(Acyc) is PSPACE-complete.

We remark that for Strips planning instances with acyclic causal graph

and positive preconditions, plan existence is in P and bounded plan existence

is NP-complete. These results follow from Theorems 3.7 and 4.2 of Bylander

(1994), who did not mention the causal graph but nevertheless constructed

planning instances whose causal graphs are acyclic.

We also prove an upper bound on the length of an optimal plan solving

PF , which we later need to prove PSPACE-completeness of Bpe(SC-Acyc).

30

Lemma 11. An upper bound on the length of an optimal plan solving PF is

given by L(m, n) = (2n+1 − 1)m + 18 · 2n − 10n − 18, where m is the number

of clauses of the QBF formula F , and n is the number of variables of F .

Proof. We prove by induction on i that the length of an optimal plan for

P ′

i1(pi) and P ′

i2(pi) is upper bounded by L(m, n + 1 − i), regardless of the

assignment pi. The base case is given by i = n. To solve P ′

n1(pn) or P ′

n2(pn)

we need to apply one of four action subsequences:

〈u1
n0, u

1
n1, u

1
n2, u

1
n3〉,

〈u1
n0, u

1
n1, u

1
n2, v

1
n3〉,

〈u1
n0, v

1
n1, v

1
n2, v

2
n3〉,

〈u1
n0, v

1
n1, v

1
n2, v

3
n3〉.

The fourth sequence requires first making sm true starting from S, then

resetting all variables in S to false, then making sm true again, for a total

of 3m actions. Since Un2 = {an, bn, xn, vn1, vn2} is a loop instance for this

partial planning instance, we have to insert the action sequence 〈b1n, a
1
n, x

1
n, b

2
n〉

between actions v1
n1 and v1

n2, for a total of 3m + 8 = L(m, 1) actions. The

remaining three sequences require making t true at some point instead of sm,

which needs a single action instead of m actions, making all of them shorter.

For i < n, we also need to apply one of four action sequences:

〈u1
i0, u

1
i1, u

1
i2, u

1
i3〉,

〈u1
i0, u

1
i1, u

1
i2, v

1
i3〉,

〈u1
i0, v

1
i1, v

1
i2, v

2
i3〉,

〈u1
i0, v

1
i1, v

1
i2, v

3
i3〉.

Each of these sequences requires solving P ′

(i+1)1(pi+1) or P ′

(i+1)2(pi+1) twice,

first for pi+1 = pi ∪ {xi}, then for pi+1 = pi ∪ {xi}. Between u1
i1/v

1
i1 and

31

u1
i2/v

1
i2 we have to reset all variables in Z ′

i+1 =
⋃n

j=i+1(Xj ∪ Vj) ∪ S to false

and insert the action sequence 〈b1i , a
1
i , x

1
i , b

2
i 〉.

By hypothesis of induction, solving P ′

(i+1)1(pi+1) or P ′

(i+1)2(pi+1) requires

at most L(m, n − i) actions. Resetting all variables in Z ′

i+1 to false requires

at most m + 10(n − i) actions: m actions to reset variables in S to false and,

for each i < j ≤ n, 6 actions to reset variables in Xj to false and 4 actions

to reset variables in Vj to false. The number of actions is upper bounded by

2L(m, n − i) + m + 10(n − i) + 8 =

= 2
[

(2n+1−i − 1)m + 18 · 2n−i − 10(n − i) − 18
]

+ m + 10(n − i) + 8 =

= (2n+2−i − 1)m + 18 · 2n+1−i − 10(n − i) − 28 =

= (2n+2−i − 1)m + 18 · 2n+1−i − 10(n + 1 − i) − 18 = L(m, n + 1 − i).

Since P ′

11(p1) = P ′

11(∅) = PF , an optimal plan for PF is upper bounded by

L(m, n + 1 − 1) = L(m, n).

4.4. PDDL Encoding

In this section we show how to encode two planning domains in PDDL: a

planning domain containing instances of type Pn from Section 3, simulating

nested loops on n variables, and a planning domain containing instances of

type PF , encoding instances of Qbf-Sat as planning instances.

To implement a planning domain simulating nested loops, we define a

single type index as well as predicates a, b, x, u0, u1, u2, and u3, each with a

single parameter in the form of an index. We also need two predicates last,

on one index, and consecutive, on two indices.

For a given n, the idea is to introduce objects j1, . . . , jn of type index.

For each 1 ≤ i ≤ n, the fluent a(ji) corresponds to the variable ai of the

32

planning instance Pn, and so on. The initial state of the PDDL planning in-

stance is given by {last(jn), consecutive(j1, j2), . . . , consecutive(jn−1, jn)}, con-

sisting solely of static fluents.

Each action in Table 2 has preconditions and effects on variables in Xi∪Vi

for some 1 ≤ i ≤ n, or on variables in consecutive sets Xi ∪ Vi and Xi+1 ∪

Vi+1. We parameterize actions of the first type on a single index ji, and

actions of the second type on two indices ji and ji+1, using the precondition

consecutive(ji, ji+1) to ensure that the indices are consecutive. Finally, we

append the precondition last(ji) to actions u1
n0, . . . , u

1
n3, ensuring that these

actions are only applicable for index jn.

In total, the resulting planning domain has 18 actions: six actions on

variables in Xi for 1 ≤ i ≤ n, four actions making variables in Vi true for

1 ≤ i < n, four actions making variables in Vi true for i = n, and four actions

resetting variables in Vi to false for 1 ≤ i ≤ n. A sample PDDL encoding

that includes some actions of the domain appears in Table 4.4.

In experiments, the planning domain is highly challenging, which we at-

tribute to the fact that there are a lot of deadends. LAMA 2011 (Richter

et al., 2011) performs best of the planners we tested, but is only able to solve

the planning instance Pn for n ≤ 4. For n = 4, the solution contains 200

grounded operators (the optimal plan length of Pn is 16 · 2n − 10n − 16).

The planning domain encoding QBF instances is similar to that sim-

ulating nested loops. There is a type index with associated predicates that

correspond to variables in the sets Xi and Vi, the latter containing additional

variables compared to the planning instance Pn.

In addition to the variables in Xi ∪ Vi, we have to represent the variables

33

(d e f i n e (domain nested−loop)

(: requ i rements : typing)

(: types index)

(: p r ed i c a t e s (l a s t ? j − index) (con s e cu t i v e ? j1 ? j2 − index)

(a ? j − index) (b ? j − index) (x ? j − index)

(u0 ? j − index) (u1 ? j − index)

(u2 ? j − index) (u3 ? j − index))

(: a c t i on a1

: parameters (? j − index)

: e f f e c t (and (a ? j)))

(: a c t i on a2

: parameters (? j 1 ? j2 − index)

: p r e cond i t i on (and (con s e cu t i v e ? j1 ? j2) (b ? j1))

: e f f e c t (and (not (a ? j2))))

(: a c t i on un1

: parameters (? j − index)

: p r e cond i t i on (and (l a s t ? j) (not (b ? j))

(not (x ? j)) (u0 ? j))

: e f f e c t (and (u1 ? j)))

Table 5: Sample PDDL encoding simulating nested loops

34

in the set S, corresponding to the clauses of the QBF formula. To do so, we

introduce a second type clause with associated predicates sat, on one clause,

and unsat, with no parameters. To represent the precondition S of actions

u1
n0, u1

n2, and v1
n2 we have to use an ADL type forall construct since the

number of clauses may vary between QBF instances. We remark that we can

get rid of the forall construct using our modified reduction described in the

next section.

Just as for indices, we have to keep track of the last clause as well as

consecutive clauses. To distinguish between indices and clauses we introduce

predicates last-index, consecutive-indices, last-clause, and consecutive-clauses.

For a QBF formula F on n variables and m clauses, we introduce objects

j1, . . . , jm of type index and c1, . . . , cm of type clause, and define the initial

state by indicating the last clause and index as well as consecutive clauses

and indices. Once this is done, defining the actions is straightforward.

This planning domain is even more challenging than the previous one:

no planner can solve the planning instance PF associated with a satisfiable

QBF F on four variables and one clause. Since our encoding requires the

QBF to be in prenex normal form, the number of variables has to be a

multiple of two, and with only two variables we cannot define a meaningful

QBF. Consequently, it appears that our reduction from Qbf-Sat to planning

instances with acyclic causal graphs is impractical to implement and solve,

at least using current state-of-the-art planners.

5. Bounded Number of Preconditions

Bylander (1994) showed that the problem of plan existence is PSPACE-

35

Action Partial precondition Postcondition

a1
∅ {a}

b1 {a} {b}

b2 {a} {b}

x1 {a, b} {x}

x2 {b} {x}

u1
1 {b} {u1}

u1
2 {x, u1} {u2}

u1
3 {x, u2} {u3}

u1
4 {b, u3} {u4}

Table 6: The set of actions A(U) of a modified loop instance U .

complete for Strips planning instances whose actions have one postcondition

and unbounded number of preconditions (either positive or negative). He did

not prove a result for a bounded number k of preconditions, but conjectured

that plan existence falls into the polynomial hierarchy in a regular way, with

the precise complexity determined by k. In this section we modify our previ-

ous reduction such that actions have at most two preconditions, thus showing

that plan existence is PSPACE-complete for k = 2 and proving Bylander’s

conjecture to be wrong.

We first modify loop instances such that they have at most two precon-

ditions. Given a planning instance P = 〈V, A, I, G〉, such a modified loop

instance is a subset of variables U = {a, b, x, u1, u2, u3, u4} ⊆ V with associ-

ated actions A(U) ⊆ A such that {u1, u2, u3, u4} ⊆ I and u4 is a landmark of

P . In other words, variables u1, . . . , u4 are initially false, and either u4 ∈ G

36

or u4 is a precondition of some action required to reach the goal state G.

Table 6 shows the action set A(U) of a modified loop instance U .

Unlike the original notion of loop instance, the solution to a modified

loop instance is not unique: action b1 may appear before or after u1
2, and

action b2 may appear before or after action u1
3. However, the key property

of loop instances still holds: on any plan solving a modified loop instance,

{b, x} holds before action u1
1 and {b, x} holds after u1

4. Moreover, although

the initial state does not explicitly mention the variables in {a, b, x}, these

have to be initially false for the modified loop instance U to be solvable.

We now modify our reduction from Qbf-Sat to Pe(Acyc) by redefining

the planning instance P ′

F = 〈V ′

F , A′

F , I ′

F , G′

F 〉 such that

• V ′

F =
⋃n

i=1 (Xi ∪ V ′

i) ∪ E ′ ∪ S ′,

• V ′

i = {ui0, ui1, ui2, . . . , ui9, vi2, . . . , vi9} for each 1 ≤ i ≤ n,

• E ′ =
⋃m

j=0{ej0, . . . , ej5},

• S ′ = {s1, . . . , sm, r2, . . . , rm} ∪
⋃m

j=1{tj1, . . . , tj3},

• A′

F =
⋃n

i=1 (Ai ∪ B′

i) ∪ A′

E ∪ A′

S,

• I ′

F = V
′

F ,

• G′

F = {u19}.

For each 1 ≤ i ≤ n, the set Xi = {ai, bi, xi} and the action set Ai on variables

in Xi are the same as in the original reduction.

The set S ′ includes many more variables than the original set S. Variables

s1, . . . , sm are still used to verify that each clause is satisfied for the current

37

assignment to x1, . . . , xn. For each 1 ≤ j ≤ m, variables tj1, . . . , tj3 are

used to verify that clause cj is unsatisfied. Variables r2, . . . , rm are used to

aggregate the information regarding some clause being unsatisfied, which is

necessary since the proof of unsatisfiability for each clause is a separate chain

of variables. Variables in E ′ are used to ensure that we can only make one

variable true among s1, t11, . . . , tm1 while bn is false.

Table 7 shows the actions in the sets A′

E and A′

S. To help understand the

mechanism behind these actions, Figure 5 shows the subgraph of the causal

graph on variables in E ′ ∪ S ′. Intuitively, we can no longer use a single

action to check whether a given clause cj is unsatisfied, since this would

require at least three preconditions. Instead, we check each literal of cj in

turn, corresponding to the actions t1j1, t1j2, and t1j3. The intermediate states

have to be different for each clause, which is why we need variables tj1, tj2,

and tj3 for each clause cj.

We proceed to prove several lemmas regarding the actions in A′

E and A′

S.

Lemma 12. While bn is false, starting from E
′

∪ S
′

it is impossible to make

a variable v ∈ E ′ ∪ S ′ true and then reset v to false.

Proof. By induction on v in the topological ordering induced by the causal

graph. The base case is given by v = e01, an antecessor of all other variables

in E ′ ∪ S ′. While bn is false we can make e01 true using action e101, but e201,

the only action resetting e01 to false, has precondition bn.

In the inductive case, by inspection of the actions we can verify that there

exists a predecessor u ∈ E ′ ∪ S ′ of v such that each action making v true

has precondition u, while each action making v false has precondition u. By

hypothesis of induction we cannot make u true and then reset it to false,

38

e101 {bn} {e01}

e201 {bn} {e01}

e102 {e01} {e02}

e202 {e01} {e02}

e1(k−1)3 {e(k−1)1, e(k−1)2} {e(k−1)3}

e2(k−1)3 {e(k−1)1, e(k−1)2} {e(k−1)3}

e1(k−1)4 {e(k−1)2, e(k−1)3} {e(k−1)4}

e2(k−1)4 {e(k−1)2, e(k−1)3} {e(k−1)4}

e1(k−1)5 {ek0, e(k−1)4} {e(k−1)5}

e2(k−1)5 {ek0, e(k−1)4} {e(k−1)5}

e1k0 {e(k−1)1, e(k−1)2} {ek0}

e2k0 {e(k−1)1, e(k−1)2} {ek0}

e1k1 {e(k−1)2, ek0} {ek1}

e2k1 {e(k−1)2, ek0} {ek1}

e1k2 {e(k−1)3, ek1} {ek2}

e2k2 {e(k−1)3, ek1} {ek2}

e1m3 {em1, em2} {em3}

e2m3 {em1, em2} {em3}

e1m5 {em2, em3} {em5}

e2m5 {em2, em3} {em5}

sh1 {ℓh1 , e05} {s1}

s41 {e05} {s1}

shj {ℓhj , sj−1} {sj}

s4j {sj−1} {sj}

t1k1 {ℓ
1

k, ek5} {tk1}

t2k1 {ek5} {tk1}

t1kl {ℓ
l

k, tk(l−1)} {tkl}

t2kl {tk(l−1)} {tkl}

r12 {t13} {r2}

r22 {t23} {r2}

r32 {t13, t23} {r2}

r1p {rp−1} {rp}

r2p {tp3} {rp}

r3p {rp−1, tp3} {rp}

a) b)

Table 7: Actions in a) the set A′

E for 1 ≤ k ≤ m; b) the set A′

S for 2 ≤ j ≤ m, 1 ≤ h ≤ 3,

1 ≤ k ≤ m, 2 ≤ l ≤ 3, and 3 ≤ p ≤ m.

39

e01

e02

e03

e04

e05

s1

sm

e10

e11

e12

e13

e14

e15

t11

t12

t13

em0

em1

em2

em3

em5

tm1

tm2

tm3

r2 rm

Figure 5: The causal graph on E′ ∪ S′.

rendering it impossible to make v true and reset it to false.

Lemma 13. While bn is false, to make sm or rm true starting from E
′

∪ S
′

we can make at most one of e(j−1)3 and ej0 true for each 1 ≤ j ≤ m.

Proof. To make sm or rm true starting from E
′

∪S
′

while bn is false, we have to

40

either make s1, . . . , sm true in sequence, thus verifying that the 3SAT formula

φ is satisfied by the current assignment to x1, . . . , xn, or choose a clause cj

and make tj1, tj2, tj3 true in sequence, thus verifying that cj is unsatisfied. In

the latter case, we have to finish by making rj, . . . , rm true (or rj+1, . . . , rm

if j = 1).

Making s1, . . . , sm true requires first making e03, e04, e05 true. Due to

Lemma 12 we cannot make e10 true before applying action e105 since the

latter has precondition e10. Likewise, we cannot make e10 true after e104,

since the latter has precondition e02 and the only action e110 making e10 true

has precondition e02. Since e104 has to appear before e105 to make e03, e04, e05

true, this prevents us from making e10 true at all. The same argument holds

regarding e(j+1)0 if we want to make tj1, tj2, tj3 true for any 1 ≤ j < m.

Conversely, if we want to make t11, t12, t13 true, we first have to make

e10, e11, e12 true. Due to Lemma 12 we cannot make e03 true before applying

action e112 since the latter has precondition e03. Likewise, we cannot make

e03 true after e111, since the latter has precondition e02 and the only action

e103 making e03 true has precondition e02. Since e111 has to appear before e112

to make e10, e11, e12 true, this prevents us from making e03 true at all. The

same argument holds regarding e(j−1)3 if we want to make tj1, tj2, tj3 true for

any 2 ≤ j ≤ m.

As a consequence of Lemma 13, to make sm or rm true we can only make

variables true along a single path.

Corollary 14. After making sm or rm true starting from E
′

∪ S
′

while bn is

false, there is a directed path p in the causal graph from e01 to sm or rm such

that all variables on p are true and all other variables in E ′ ∪ S ′ are false.

41

If the 3SAT formula φ is satisfiable, the path p from Corollary 14 is

〈e01, . . . , e05, s1, . . . , sm〉, else there exists 1 ≤ j ≤ m such that the path

is 〈e01, e02, e10, e11, e12, . . . , ej0, . . . , ej5, tj1, tj2, tj3, rj , . . . , rm〉. The only other

actions whose preconditions are satisfied during this process are those making

a variable among e03, . . . , e(j−1)3, e(j+1)0 true. All other actions require a

variable not on the path p to be true. Due to Lemma 13, no variable among

e03, . . . , e(j−1)3, e(j+1)0 can be made true simultaneously with the variables

e10, . . . , ej0, ej3 on the path p.

Lemma 15. Assume that all variables in E ′ ∪ S ′ are false except those on a

path p from e01 to sm or rm. Starting from this situation, satisfying {sm, rm}

while bn is true causes all variables in E ′ ∪ S ′ to be false.

Proof. From the given situation it is easy to show that the converse of Lemma

12 holds: we cannot make a variable in E ′ ∪ S ′ false and then true. While bn

is true, action e201 making e01 false is applicable, but not e101. The inductive

case is identical to that in the proof of Lemma 12. Moreover, making a

variable on p false requires first making its predecessor false. Since the last

variable on p is sm or rm, making sm and rm false has the effect of making

all variables on p false. During this process we cannot make any variable

outside p true, since the precondition of actions ej3 and e(j+1)0 is {ej1, ej2}

and ej1 has to be false before making ej2 false.

Table 8 shows the actions in the set B′

n for 1 ≤ k ≤ 9. There are a number

of differences with respect to the original action set Bn. First, the precondi-

tion S has been replaced with {sm, rm}, which in turn has been split across

two actions (the pairs (u1
n0, u

1
n1), (u1

n7, u
1
n8), and (v1

n7, v
1
n8), respectively). Sec-

42

Action Pre Post

u1
n0 {bn−1, sm} {un0}

u1
n1 {rm, un0} {un1}

u1
n2 {rm, un1} {un2}

u1
n3 {bn, un2} {un3}

u1
n4 {xn, un3} {un4}

u1
n5 {xn, un4} {un5}

u1
n6 {bn, un5} {un6}

u1
n7 {sm, un6} {un7}

u1
n8 {rm, un7} {un8}

u1
n9 {rm, un8} {un9}

v1
n2 {sm, un1} {vn2}

v1
n3 {bn, vn2} {vn3}

v1
n4 {xn, vn3} {vn4}

v1
n5 {xn, vn4} {vn5}

v1
n6 {bn, vn5} {vn6}

v1
n7 {sm, vn6} {vn7}

v1
n8 {rm, vn7} {vn8}

v1
n9 {sm, un8} {vn9}

v2
n9/v

3
n9 {rm, vn8}/{sm, vn8} {vn9}

u2
n0 {bn−1} {un0}

u4
nk/v

4
nk {un(k−1), vn(k−1)} {unk}/{vnk}

Table 8: Actions in the set B′

n for 1 ≤ k ≤ 9. See the text for explanations.

43

ond, action u1
n0 has precondition bn−1. Finally, action u2

n0 has precondition

bn−1 and, for each 1 ≤ k ≤ 9, the actions making unk or vnk false have

precondition {un(k−1), vn(k−1)} (the action v4
nk is omitted for k = 1, and the

precondition vn(k−1) is omitted for k = 1 and k = 2).

Table 9 shows the actions in the set B′

i for 1 ≤ i < n and 1 ≤ k ≤ 9.

These actions are essentially the same as those in B′

n, except we have replaced

the precondition V i+1 with {u(i+1)9, v(i+1)9} and split it across two actions.

Just as before we define two partial planning instances P ′′

i1(pi) and P ′′

i2(pi) for

each 1 ≤ i ≤ n and each assignment pi. The goal of P ′′

i1(pi) is ui9, while the

goal of P ′′

i2(pi) is vi9.

In spite of the differences between PF and P ′

F , the mechanism is the same:

for each 1 ≤ i ≤ n, the planning instance P ′′

i1(pi) has associated modified

loop instance Ui1 = {ai, bi, xi, ui3, ui4, ui5, ui6}, while P ′′

i2(pi) has alternative

modified loop instances Ui1 and Ui2 = {ai, bi, xi, vi3, vi4, vi5, vi6}. It is easy

to prove the equivalent of Lemmas 12 and 15 for the variables in V ′

i : while

solving P ′′

i1(pi) or P ′′

i2(pi), we cannot make a variable in V ′

i true and then

false, and when subsequently making ui9 and vi9 false while bi−1 is true, all

variables in V ′

i become false.

Theorem 2. The planning instance P ′

F has a solution if and only if the QBF

formula F is satisfiable.

Proof. We show that the equivalent of Lemma 9 holds for partial planning

instances P ′′

i1(pi) and P ′′

i2(pi). For i = n, to solve P ′′

n1(pn) we have to ap-

ply the action subsequence 〈u1
n0, . . . , u

1
n9〉 with associated loop instance Un1.

This requires making rm true starting from E
′

∪ S
′

while bn is false, then

satisfying {sm, rm} while bn is true, then making rm true again while bn is

44

Action Pre Post

u1
i0 {bi−1, u(i+1)9} {ui0}

u1
i1 {v(i+1)9, ui0} {ui1}

u1
i2 {v(i+1)9, ui1} {ui2}

u1
i3 {bi, ui2} {ui3}

u1
i4 {xi, ui3} {ui4}

u1
i5 {xi, ui4} {ui5}

u1
i6 {bi, ui5} {ui6}

u1
i7 {u(i+1)9, ui6} {ui7}

u1
i8 {v(i+1)9, ui7} {ui8}

u1
i9 {v(i+1)9, ui8} {ui9}

v1
i2 {u(i+1)9, ui1} {vi2}

v1
i3 {bi, vi2} {vi3}

v1
i4 {xi, vi3} {vi4}

v1
i5 {xi, vi4} {vi5}

v1
i6 {bi, vi5} {vi6}

v1
i7 {u(i+1)9, vi6} {vi7}

v1
i8 {v(i+1)9, vi7} {vi8}

v1
i9 {u(i+1)9, ui8} {vi9}

v2
i9/v

3
i9 {v(i+1)9, vi8}/{u(i+1)9, vi8} {vi9}

u2
i0 {bi−1} {ui0}

u4
ik/v

4
ik {ui(k−1), vi(k−1)} {uik}/{vik}

Table 9: Actions in the set B′

i for 1 ≤ i < n. See the text for explanations.

45

false. Corollary 14 implies that after making rm true, there is a single path

of variables in E ′ ∪S ′ that are true. Lemma 15 then implies that when satis-

fying {sm, rm} while bn is true, all variables in E ′ ∪ S ′ become false. Making

rm true is possible if and only of the formula φ is unsatisfied, implying that

P ′′

i1(pi) is solvable if and only if Fn(pn) is unsatisfiable.

Conversely, to solve P ′′

n2(pn) we have to apply one of three subsequences:

〈u1
n0, u

1
n1, u

1
n2, . . . , u

1
n8, v

1
n9〉,

〈u1
n0, u

1
n1, v

1
n2, . . . , v

1
n8, v

2
n9〉,

〈u1
n0, u

1
n1, v

1
n2, . . . , v

1
n8, v

3
n9〉.

The first of these subsequences has associated loop instance Un1, while the

latter two have associated loop instance Un2. Since each subsequence requires

making sm true for pn ∪ {xn} or pn ∪ {xn}, P ′′

n2(pn) is solvable if and only if

Fn(pn) is satisfiable.

For i < n, solving P ′′

i1(pi) or P ′′

i2(pi) requires making u(i+1)9 or v(i+1)9 true

starting from V
′

i+1 while bi is false, then satisfying {u(i+1)9, v(i+1)9} while bi

is true, then making u(i+1)9 or v(i+1)9 true again while bi is false. Satisfy-

ing {u(i+1)9, v(i+1)9} while bi is true causes all variables in V ′

i+1 to be false.

Technically, we can apply u1
(i+1)0 before the precondition {u(i+1)9, v(i+1)9} is

checked, but u1
(i+1)0 has to appear after b2i , at which time the value of xi is

already fixed.

Making u(i+1)9 or v(i+1)9 true starting from V
′

i+1 while bi is false corre-

sponds to solving P ′′

(i+1)1(pi+1) or P ′′

(i+1)2(pi+1), first for pi+1 = pi ∪{xi}, then

for pi+1 = pi ∪{xi}. We can now apply the same reasoning as in the proof of

Lemma 9. Since P ′′

11(p1) = P ′′

11(∅) = P ′

F , we have shown that P ′

F is solvable

if and only if F1(p1) = F1(∅) = F is satisfiable.

46

6. The Complexity of Planning for ISR-Acyc

In the previous section we established that plan existence is PSPACE-

complete for planning instances with acyclic causal graphs. This raises

the question whether there are subclasses of Acyc for which plan existence

is easier. In this section we identify one such subclass by showing that

Pe(ISR-Acyc) is NP-complete. Without loss of generality we assume that

the initial state of each propositional variable v ∈ V is v.

Proposition 16. Pe(ISR-Acyc) is NP-complete.

Proof. NP-hardness follows immediately from Theorem 2 in Brafman and

Domshlak (2003); merely note that each variable in their construction is

irreversible.

We continue by proving membership in NP. Let P = 〈V, A, I, G〉 be an

arbitrary instance of ISR-Acyc, and let VI ⊆ V be the subset of irreversible

variables. A plan solving P cannot change the values of variables in VI more

than once. We construct a non-deterministic guess as follows:

1. a subset U ⊆ VI of variables whose values change once,

2. a total order ≺ on U (the order in which variables change),

3. for each v ∈ U , a state sv and an action av applicable in sv that satisfies

post(av) = {v}.

Note that the size of the guess is polynomial in the size of P . Given this

information, we claim that we can verify whether there exists a plan solving

P in polynomial time. Assume for simplicity that U = {v1, v2, . . . , vm} and

47

v1 ≺ v2 ≺ · · · ≺ vm. A subsequence of states on a plan solving P looks like

I → sv1 → sv1 ⊕ post(av1) → sv2 → sv2 ⊕ post(av2) →

→ . . . → svm → svm ⊕ post(avm) → G

To show that this subsequence can be extended to a valid plan, it is sufficient

to show that there exists a plan from s = svi ⊕post(avi) to s′ = svi+1
for each

1 ≤ i ≤ m−1. The plan from s to s′ is not allowed to change any irreversible

variables, so we can remove all actions on VI from A. Let A′ = {a ∈ A :

Vpost(a)∩VI = ∅} be the resulting set of actions. Then the planning instance

〈V, A′, s, s′〉 is an instance of 3S (Jonsson and Bäckström, 1998), since the

causal graph is acyclic, variables in VI are static (i.e. no action changes the

variable) and all other variables are symmetrically reversible. Plan existence

is in P for 3S, so we can determine in polynomial time whether there exists

a plan from s to s′. Verifying that there exists a plan from I to sv1 and from

svm ⊕ post(avm) to G can be similarly done.

7. The Complexity of Planning for SC-Acyc

In this section we study the complexity of plan existence and bounded

plan existence when the causal graph is acyclic and the DTG of each variable

is strongly connected. We first show that the decision problem Pe(SC-Acyc)

is in P by proving that all planning instances in SC-Acyc have a solu-

tion. We then show that the decision problem Bpe(SC-Acyc) is PSPACE-

complete. This latter result generalizes that of Helmert (2004), who showed

that bounded plan existence is NP-hard for the subclass of SC-Acyc with

inverted fork causal graphs.

48

Lemma 17. For each planning instance P in SC-Acyc, there exists a plan

that solves P (and Pe(SC-Acyc) is in P).

Proof. By induction on the cardinality |V |. If |V | = 1, the resulting planning

instance has a single variable, and the fact that DTG(v) is strongly connected

implies that we can always reach any value in D(v) from any other value.

Thus P has a solution regardless of the values of I and G.

If |V | = n > 1, choose a variable v ∈ V without incoming edges in the

causal graph G. Such a variable exists since G is acyclic. Let W = V \ {v},

and let A | W = {〈pre(a) | W, post(a)〉 : a ∈ A, Vpost(a) ⊆ W} be the

projection of the actions in A onto W . Compute a solution to the plan-

ning instance 〈W, A | W, I | W, G | W 〉. Such a solution exists by induction

hypothesis since |W | < n.

If we convert the actions in the resulting plan back to A, some of them

might have preconditions on v. To compute a solution to P we can now

simply insert actions on v that achieve these preconditions. Such actions

exist since DTG(v) is strongly connected and since no actions on v have a

precondition on other variables (else v would have an incoming edge in the

causal graph). If v ∈ VG, also insert actions that satisfy the goal state G(v)

on v.

To prove that Bpe(SC-Acyc) is PSPACE-complete, we take advantage

of our reduction from Qbf-Sat to Pe(Acyc), described in Section 4. Given a

QBF formula F , the planning instance PF that we construct has a single vari-

able whose DTG is not strongly connected, namely a1 (incidentally implying

that a single irreversible variable is sufficient to increase the complexity of

plan existence from P to PSPACE). We modify the planning problem PF by

49

Action Pre Post

c1i {c1, . . . , ci−2, ci−1} {ci}

c2i {c1, . . . , ci−2, ci−1} {ci}

Table 10: The actions on the variables c1, . . . , ck for 1 ≤ i ≤ k.

adding variables c1, . . . , ck where k = ⌈log L(m, n)⌉ and L(m, n) is the upper

bound on the length of optimal plans for PF from Lemma 11 (implying that

k is polynomial in the size of F). The variables c1, . . . , ck are initially false.

Table 10 shows the actions on c1, . . . , ck, causing these variables to act as

a Gray counter from 0 to 2k − 1 (Bäckström and Nebel, 1995). The causal

graph on these variables is acyclic since there is no edge from a variable ci to

a variable cj with j < i. We now define a single additional action a2
1 whose

precondition on c1, . . . , ck encodes the value L(m, n), and whose effect is a1.

Theorem 3. The decision problem Bpe(SC-Acyc) is PSPACE-complete.

Proof. Membership is trivial, and we prove PSPACE-hardness by reduction

from Qbf-Sat. Let F be an arbitrary QBF formula, and let P ′′

F be our

modified planning instance from above. The causal graph of P ′′

F is acyclic

and each variable has strongly connected DTG, including a1 and c1, . . . , ck.

Then Lemma 17 implies that there exists a plan solving P ′′

F .

Let L(m, n) be the bound on the optimal plan length of the planning

instance PF from Lemma 11. We claim that P ′′

F has a solution of length at

most L(m, n) if and only if F is satisfiable. If F is satisfiable, the original

planning instance PF has a solution plan of length at most L(m, n), and this

plan is also a solution to P ′′

F . If F is not satisfiable, the original planning

50

instance PF does not have a solution. This means that we have to use action

a2
1 to solve P ′′

F , which requires us to first use the Gray counter c1, . . . , ck to

count to L(m, n), causing any plan solving P ′′

F to have length greater than

L(m, n).

8. Related Work

The conception of the causal graph is usually credited to Knoblock (1994),

who devised an algorithm that constructs abstraction hierarchies for planning

instances with acyclic causal graphs. Bacchus and Yang (1994) extended this

idea, improving the chance of obtaining a hierarchical solution. The causal

graph heuristic (Helmert, 2004) exploits acyclic causal graphs to approximate

the cost of reaching the goal. When necessary, the algorithm breaks cycles

in the graph by ignoring some of the preconditions of each action.

Several authors have studied the computational complexity of planning

when the causal graph is acyclic. Bäckström and Nebel (1995) showed that

there are planning instances with acyclic causal graphs that have exponen-

tially long solutions. However, this does not necessarily imply that it is

hard to determine whether a solution exists (Jonsson and Bäckström, 1998).

Williams and Nayak (1997) proposed a reactive planner that outputs each

action in polynomial time when the causal graph is acyclic and variables

are reversible. A similar algorithm was proposed by Jonsson and Bäckström

(1998) for the class 3S of planning instances with acyclic causal graph and

propositional variables that are either static, splitting, or symmetrically re-

versible. Brafman and Domshlak (2003) studied the class of planning in-

stances with propositional variables and polytree causal graphs, and de-

51

signed a polynomial-time algorithm that outputs a complete solution when

the causal graph has bounded indegree. Giménez and Jonsson (2008) showed

that the problem of plan existence is NP-complete for this class when the in-

degree is unbounded. Chen and Giménez (2008) showed that when variables

have domains of unbounded size, any connected causal graph containing an

unbounded number of variables causes plan existence to be bounded away

from P.

Regarding our PDDL encoding for translating QBF formulae to planning

instances, we are only aware of two previous related approaches. The first is

the reduction by Bylander (1994) from deterministic Turing machine (DTM)

acceptance to Strips planning. Although no PDDL encoding was provided,

in principle we could first reduce Qbf-Sat to DTM acceptance and then use

Bylander’s reduction to produce a planning instance. The second approach

is the work of Porco et al. (2013), who introduced a general approach to

translating formulae in second order logic to planning instances in PDDL.

However, this is only sufficient to translate problems in the polynomial hier-

archy, not PSPACE.

9. Conclusion

In this paper we have proved that the plan existence problem is PSPACE-

complete when restricted to instances with acyclic causal graphs. Our proof

is largely based on one conceptually simple idea: nondeterministic choices

can be replaced by enumerating all possible choices. Implementing this idea

in such a weak “programming language” as propositional planning is non-

trivial, though, and our solution is based on making several counters to

52

interact in complex ways. It is not surprising that the planning instance con-

structed in the reduction has a causal graph that is complicated and difficult

to characterise in graph-theoretical terms. Hence, it may be worthwhile to

try to obtain alternative proofs that leads to instances with different (and

hopefully simpler) causal graphs. An interesting question along these lines

is the following: let Pe(C) denote the plan existence problem restricted to

instances such that their casual graphs are members of C, and let Cn denote

the directed chain on n vertices. Now, is it the case that Pe({C1,C2, . . .})

is PSPACE-complete? It is known that Pe({C1,C2, . . .}) is NP-hard even

if the variable domains are restricted to five elements (Giménez and Jons-

son, 2009) but there are no results yet indicating that this problem is indeed

harder.

We may take this idea one step further and try to fully characterise the

sets of graphs C such that Pe(C) is PSPACE-complete. This may appear

to be an overly difficult problem but it should not be deemed completely

hopeless: recall that Chen and Giménez (2008) have, under the complexity-

theoretic assumption that nu-FPT 6= W[1], exactly characterised the sets

of graphs C such that Pe(C) is in P. Hence, their result may be viewed as

a characterisation of the problems in the “easy” end of the hardness spec-

trum while a characterisation of the PSPACE-complete problems would be

a summary of the other end of the spectrum. We also note that their re-

sult leaves room for significant improvements since they only prove that sets

of graphs that do not satisfy the tractability condition are not in P. In

fact, there exists a set of graphs C such that Pe(C) is NP-intermediate, i.e.

Pe(C) is not in P and Pe(C) is not NP-hard. Clearly, a characterisation of

53

the PSPACE-complete graphs (and also of the X-complete graphs for other

complexity classes X within PSPACE) would be an interesting refinement

of their result.

We finally note that it may be much easier to study sets of acyclic graphs

instead of general graphs. The following could be a first step: identify the

sets of acyclic graphs C such that Pe(C) is NP-complete without imposing

any other constraints on, for instance, domain sizes? Examples exist in the

literature (Helmert, 2004) but they are scarce. However, recall that if we

allow other side constraints (such as restricting domain sizes or otherwise

put restrictions on the DTGs), then there are plenty of examples in the

literature. Examples include directed-path singly connected causal graphs

with domain size two (Brafman and Domshlak, 2003). Naturally, this kind

of studies can be performed with other complexity classes in mind—probably,

the most interesting result would be to characterise the acyclic graphs that

make Pe tractable.

References

C. Knoblock, Automatically generating abstractions for planning, Artificial

Intelligence 68(2) (1994) 243–302.

F. Bacchus, Q. Yang, Downward refinement and the efficiency of hierarchical

problem solving, Artificial Intelligence 71 (1994) 43–100.

M. Helmert, A planning heuristic based on causal graph analysis, in: Pro-

ceedings of the 14th International Conference on Automated Planning and

Scheduling, 2004, pp. 161–170.

54

B. Williams, P. Nayak, A reactive planner for a model-based executive,

in: Proceedings of the 15th International Joint Conference on Artificial

Intelligence, 1997, pp. 1178–1185.

P. Jonsson, C. Bäckström, Tractable plan existence does not imply tractable

plan generation, Annals of Mathematics and Artificial Intelligence 22(3-4)

(1998) 281–296.

R. Brafman, C. Domshlak, Structure and Complexity in Planning with Unary

Operators, Journal of Artificial Intelligence Research 18 (2003) 315–349.

O. Giménez, A. Jonsson, The Complexity of Planning Problems with Simple

Causal Graphs, Journal of Artificial Intelligence Research 31 (2008) 319–

351.

A. Jonsson, The Role of Macros in Tractable Planning, Journal of Artificial

Intelligence Research 36 (2009) 471–511.

C. Domshlak, Y. Dinitz, Multi-Agent Off-line Coordination: Structure and

Complexity, in: Proceedings of the 6th European Conference on Planning,

2001, pp. 277–288.

O. Giménez, A. Jonsson, Planning over Chain Causal Graphs for Variables

with Domains of Size 5 Is NP-Hard, Journal of Artificial Intelligence Re-

search 34 (2009) 675–706.

T. Bylander, The computational complexity of propositional STRIPS plan-

ning, Artificial Intelligence 69 (1994) 165–204.

55

C. Bäckström, B. Nebel, Complexity Results for SAS+ Planning, Computa-

tional Intelligence 11 (1995) 625–655.

L. Stockmeyer, A. Meyer, Word problems requiring exponential time, in:

Proceedings of the 5th Symposium on Theory of Computing (STOC), 1973,

pp. 1–9.

S. Richter, M. Westphal, M. Helmert, LAMA 2008 and 2011, in: Booklet

from the 7th International Planning Competition, 2011, pp. 50–54.

H. Chen, O. Giménez, Causal Graphs and Structurally Restricted Plan-

ning, in: Proceedings of the 18th International Conference on Automated

Planning and Scheduling, 2008, pp. 36–43.

A. Porco, A. Machado, B. Bonet, Automatic Reductions from PH into

STRIPS or How to Generate Short Problems with Very Long Solutions, in:

Proceedings of the 23rd International Conference on Automated Planning

and Scheduling, 2013, pp. 342–346.

56

