
Providing Configurable QoS Management in

Real-Time Systems with QoS Aspect Packages

Aleksandra Tešanović1, Mehdi Amirijoo1, and Jörgen Hansson1,2

1 Linköping University, Department of Computer Science, Linköping, Sweden
{alete, meham, jorha}@ida.liu.se

2 Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA
hansson@sei.cmu.edu

Abstract. Current quality of service (QoS) management approaches in
real-time systems lack support for configurability and reusability as they
cannot be configured for a target application or reused across many ap-
plications. In this paper we present the concept of a QoS aspect package
that enables developing configurable QoS management for real-time sys-
tems. A QoS aspect package represents both the specification and the
implementation of a set of aspects and components that provide a num-
ber of QoS policies. A QoS aspect package enables upgrades of already
existing systems to support QoS performance assurance by adding as-
pects and components from the package. Furthermore, a family of real-
time systems can easily be developed by adding aspects from the QoS
aspect package into an existing system configuration. We illustrate the
way a family of real-time database systems is developed using the QoS
aspect package with a case study of an embedded real-time database sys-
tem, called COMET. Our experiments with the COMET database have
shown that it is indeed possible to design a real-time system without QoS
management and then with a reasonable effort add the QoS dimension
to the system using a QoS aspect package.

1 Introduction

Real-time systems are characterized by rigid requirements on quality of service
(QoS). Namely, the failure to deliver a correct response in a timely manner results
in deterioration of system performance and, in the worst case, a catastrophe.
For example, in multimedia applications decoding of frames (images or sound)
has to be done in a timely manner, otherwise the results of the computations
are of no value [1]. Other examples can be found in telecommunications where
a user request (e.g., placing a call) has to be addressed as soon as possible
and packets have to arrive in a timely manner to avoid poor voice quality [2].
Furthermore, the engine of a modern car is controlled by an electronic control
unit (ECU) that continuously monitors and controls the engine using actuators
[3]. The control computations, e.g., fuel injection, must be finished within a
certain time frame, otherwise the performance of the engine decays and can lead
to an engine breakdown, potentially resulting in a catastrophe for the driver

A. Rashid and M. Aksit (Eds.): Transactions on AOSD II, LNCS 4242, pp. 256–288, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Providing Configurable QoS Management in Real-Time Systems 257

[3, 4]. For these reasons, the majority of real-time research over the years has
focused primarily on delivering appropriate methods for ensuring real-time QoS,
e.g., [5, 6, 7, 8, 9, 10, 11, 12]. In recent years, however, with a dramatic increase in
the use of real-time systems, the requirements on low development costs, short
time to market, and high degree of configurability have become increasingly
important in real-time system development [13].

Since QoS management is a core issue of real-time computing, configurability
and reusability of software cannot be achieved without first ensuring configura-
bility and reusability of QoS management. However, in our study of existing
work we have observed that approaches for QoS management in real-time sys-
tems [5, 6, 7, 8, 9, 10, 11, 12] do not comply with essential software engineering
principles that enable configuration and reuse.

In this paper we address the software engineering challenges in developing con-
figurable QoS management for real-time systems by proposing the concept of a
QoS aspect package, which represents a way of packaging the specification and
implementation of real-time QoS management for reuse and configuration. At an
abstract level, a QoS aspect package represents a way of specifying configurable
QoS management, where a real-time QoS management policy is specified inde-
pendently of an application by means of aspects and components. At a concrete
level, a QoS aspect package consists of aspects and components implementing a
variety of QoS management policies.

When studying existing QoS management approaches, we observed that a
majority of approaches assume that a real-time system has a QoS management
infrastructure upon which algorithms implementing specific QoS policies are
implemented. The infrastructure is implemented as an integral part of the system
and consists of services, functions, or methods for adjusting the system load.
Algorithms implementing QoS policies crosscut the overall system, and use the
services provided by the infrastructure to ensure performance guarantees.

The concept of a QoS aspect package provides a way of decomposing and
implementing QoS management for a family of real-time applications. The de-
composition is done such that the main functional infrastructure of QoS man-
agement is encapsulated into a set of components and various QoS policies are
encapsulated into aspects. For a family of real-time applications a QoS aspect
package has a unique set of components and possibly a great number of aspects
implementing various QoS policies.

A QoS aspect package enables the following:

– specification and implementation of QoS policies independent of a real-time
application,

– upgrades of existing systems to support QoS performance assurance by sim-
ply adding aspects that implement different QoS policies from the QoS aspect
package,

– development of families of real-time systems with variations in QoS man-
agement, where variations (aspects from the package) are injected into the
QoS management infrastructure at explicitly declared joinpoints of the
components,

258 A. Tešanović, M. Amirijoo, and J. Hansson

– offline and online configuration of QoS management as aspects can either
be woven into the resulting system offline and then deployed into the run-
time environment (preferred option in most real-time systems), or can be
deployed into the running system online [14] (preferred when a high degree
of availability is required),

– reusability of QoS management as aspects implemented within a QoS aspect
package can be reused in multiple applications,

– configurability and reusability of QoS management for a large class of real-
time systems across many application areas as the QoS aspect package con-
cept can be used in any real-time system conforming to a set of requirements
elaborated in this paper, e.g., available joinpoints in the code and confor-
mance to an aspect language.

Since a QoS aspect package could consist of many aspects and components,
the designer might need assistance in choosing the relevant subset of aspects
and components for configuring QoS management of a system. Therefore, we
provide appropriate tools for configuring QoS management. The tools also assist
in determining if a suggested QoS configuration, i.e., adding of a QoS aspect
package, is feasible for the target application.

We present a proof of concept implementation of a QoS aspect package for an
embedded real-time database, called COMET [15, 16]. We report our experiences
in using a QoS aspect package for real-time system development. We believe that
they are valuable for current and future implementors of real-time systems that
would like to use aspects for system development.

The paper is organized as follows. In Sect. 2 we present a background to real-
time systems and discuss how QoS is maintained. The problem formulation is
then presented in Sect. 3, where we identify problems in current QoS manage-
ment approaches for real-time systems. We propose, in Sect. 4, a QoS aspect
package as a possible solution to the identified problems. In Sect. 5 we present
the COMET database, to which QoS management has been added using a QoS
aspect package. Experiences from using aspect-orientation in real-time system
design and implementation are discussed in Sect. 6. The paper finishes with the
main conclusions in Sect. 7.

2 QoS Management

We now review the main characteristics of real-time systems and then discuss
the key properties of QoS management in these systems.

2.1 Real-Time System Model

Real-time systems are traditionally constructed of concurrent programs, called
tasks. A task is characterized by a number of temporal constraints amalgamating
a task model. One of the most important temporal constraints a task needs to
satisfy is a deadline, which represents the time point by which the task needs to
be completed.

Providing Configurable QoS Management in Real-Time Systems 259

Depending on the consequence of a missed deadline, real-time systems can
be classified as hard or soft. In hard real-time systems, e.g., aircraft and train
control, the consequences of missing a deadline can be catastrophic. In soft real-
time systems, e.g., video streaming and mobile services, missing a deadline does
not cause catastrophic damage to the system but affects performance negatively.

Tasks in a system are scheduled by a real-time scheduler that determines an
order of task execution that allows tasks to meet their respective deadlines [7].
Depending on the type of a real-time system and the scheduling policy used,
different task models are applicable. For example, in hard real-time systems
scheduling policies typically assume periodic tasks or sporadic tasks (aperiodic
tasks with a minimum interarrival time), with known worst-case execution times
[7]. Knowing the interarrival times and the worst-case execution times of the
tasks enables a designer to check whether deadlines are met. Since no deadline
misses can be tolerated, analysis of the system is normally done before system
deployment, implying that the utilization of the system is fixed beforehand.

The assumptions taken for hard real-time systems are relaxed for soft real-
time systems, i.e., for soft real-time systems it is assumed that the tasks can
arrive aperiodically and that worst-case execution times are not available.1 In-
stead, tasks in such systems are associated with an estimate of the average
execution time. The execution time is typically estimated by profiling the code
or by running experiments and monitoring the execution time of a task.

Since tasks in a soft real-time system arrive with unknown interarrival times
and inaccurate worst-case execution times, the workload submitted to the system
is unpredictable and can in the worst case cause the system to be overloaded.
This means that it is difficult to adjust the utilization to a certain level before-
hand (since admitted workload and utilization are related) and missing deadlines
is inevitable. The latter follows from the fact that there is a correlation between
the utilization of a system and deadline misses [7]. Rather than striving to achieve
a certain utilization or meet deadlines, the focus in the resource allocation and
task scheduling in soft real-time systems lies in mechanisms for ensuring QoS
predictability, i.e., guaranteeing that the utilization does not exceed a certain
threshold and no more than a certain number of tasks miss their deadlines during
a period of time.

In recent years, a new set of requirements focusing on reuse and reconfiguration
of real-time systems have emerged, resulting in the introduction of a number of
approaches to development of reconfigurable real-time software using component-
based and/or aspect-oriented software development, e.g., [16, 18, 19, 20]. In these
approaches, components (possibly woven with aspects) are executed by tasks in
a run-time environment. A task typically executes one or multiple operations a

1 Note that in practice deriving accurate worst-case execution times is difficult as
execution times depend on branches in the code, cache, processor pipelining, shared
resources (forcing tasks to wait for allocated resources), and scheduling. This also
implies that hard real-time system premises, e.g., the existence of accurate worst-
case execution time estimates, are not realistic for a majority of recently developed
intricate and large-scale real-time systems [17].

260 A. Tešanović, M. Amirijoo, and J. Hansson

component. Which component is going to be executed by which task is determined
before the system is deployed, in a process called component-to-task mapping,
depending on the available resources in the underlying real-time environment. In
this work we allow tasks and components to be mapped arbitrarily, i.e., without
loss of generality a task can execute several components, and/or a component can
consist of multiple tasks. We omit details about the mapping in this paper due to
its length, and instead refer the interested reader to [20, 21] for further details.

2.2 QoS Management in Real-Time Systems

In this paper we focus primarily on methods for QoS management in soft real-
time systems. This is because soft real-time systems are founded on more realistic
assumptions than hard, i.e., worst-case execution times do not need to be known
and aperiodic tasks are supported. Also, soft real-time systems constitute a wide
spectrum of existing and emerging real-time applications, such as telecommuni-
cation, web servers, video streaming, and automatic and vehicle control.

Most of the research dealing with QoS management in real-time systems today
uses some form of feedback for controlling the QoS, as it has been shown that
feedback control is highly effective to support the specified performance of soft
real-time systems that exhibit unpredictable workloads. For example, it has been
shown that exact estimates of task execution times and arrival patterns are not
required when feedback control is used [8, 22]. This implies that we can apply
feedback control-based QoS management techniques on a wide spectrum of large-
scale and complex systems where, e.g., execution time estimates are not available.
We therefore primarily focus on QoS management using feedback control and
refer to it as feedback-based QoS management.

In the remainder of this section, we introduce the general feedback control struc-
ture that has been used in all feedback-based QoS management approaches, and
elaborate on representative QoS management approaches in real-time systems.

Feedback Control Structure. A typical structure of a feedback control sys-
tem is given in Fig. 1 along with the control-related variables. A sampled variable
a(k) refers to the value of the variable a at time kT , where T is the sampling
period and k is the sampling instant. In the remainder of the paper we omit k
where the notion of time is not of primary interest.

Input to the controller is the difference between the reference yr(k), repre-
senting the desired state of the controlled system, and the actual system state
given by the controlled variable y(k), which is measured using the sensor. Based
on the performance error, yr(k) − y(k), the controller changes the behavior of
the controlled system via the manipulated variable δu(k) and the actuator. The
objective of the control is to compute δu(k) such that the difference between
the desired state and the actual state is minimized, i.e., we want to mini-
mize (yr(k) − y(k))2. This minimization results in a reliable performance and
system adaptability as the actual system performance is closer to the desired
performance.

Providing Configurable QoS Management in Real-Time Systems 261

+ Controller
Controlled

System

)(ky

()kuδ)(kyr

Actuator

Sensor-1

Fig. 1. An architecture of the real-time system using feedback control structure

Feedback-Based QoS Management of Real-Time Systems. Here we re-
view the main feedback-based QoS management policies used in various real-time
applications. The goal is to illustrate the variety of sensors, actuators, and con-
trollers used in QoS management of real-time systems and to further motivate
our work.

In controlling the utilization in soft real-time systems [6, 8, 11, 23, 24], the
sensor periodically measures the utilization of the system. A controller compares
the utilization reference with the actual measured utilization and computes a
change to the manipulated variable. The actuator then carries out the change in
utilization, in one of the following ways:

– The precision or the quality of the result of the tasks can be modified by
applying imprecise computation techniques [25], which have been introduced
to allow flexibility in operation and to provide means for achieving graceful
degradation during transient overloads, e.g., a task is decomposed into a
mandatory part producing a nonoptimal but satisfactory result, and optional
parts that refine the initial result. This class of techniques enables trading
CPU resource needs for the precision of requested service results. Using these
techniques, the utilization is decreased by reducing the execution time of the
tasks. This in turn implies that the precision of the task results is lowered.
Conversely, the result precision increases as the utilization increases.

– The utilization is directly related to the the interarrival times of the tasks,
i.e., the utilization increases with decreasing interarrival times. Hence, the
utilization can be easily adjusted by changing the interarrival times of the
tasks [8, 11].

– Since the utilization of the system increases with number of admitted tasks,
it can be changed by enforcing admission control, where a subset of the tasks
are allowed to execute [22].

In a number of real-time applications, e.g., video streaming and signal pro-
cessing, tasks can deliver results of less precision in exchange for timely delivery
of results. For example, during overloads alternative filters with less output qual-
ity and execution time may be used, ensuring that task deadlines are met. In
general, the precision of the results increases with the execution time given to a
task, calling for the use of a feedback structure to control the precision [5, 12, 26].
In such a structure, the sensor is used to estimate the output quality of the tasks,
while a controller forces the tasks to maintain an output precision equal to the

262 A. Tešanović, M. Amirijoo, and J. Hansson

reference. The execution time given to individual tasks is controlled by the ac-
tuator, thereby, ensuring that the output precision is maintained at the desired
level.

In telecommunication and web servers, arriving packets and requests are in-
serted into queues, where the requests wait to be processed. The time it takes
to process requests once they arrive at a server is proportional to the length of
the queue, i.e., the processing time increases with the length of the queue. Con-
trolling the queue length is the key to guarantee timely processing of requests.
If the queue length is too long, then the time it takes to process a request may
be unacceptable as there are time constraints on the requests. Typically, a feed-
back controller is used to adjust the queue length such that the length equals
its reference [10, 27, 28, 29, 30]. Ways of manipulating the queue length include
changing the admission rate of the requests. Namely, by admitting more arriv-
ing requests the queue length increases, thus, increasing the latency time of the
requests.

Controlling the execution times of tasks is important in real-time systems
with constraints on energy consumption. Efforts have been carried out trying to
reduce energy consumption in real-time systems, while preserving timely com-
pletion of tasks [31]. In this case execution times are monitored and the voltage
and, thus, frequency of the CPU is varied such that the power consumption is
reduced and tasks are executed in a timely manner. Hence, the sensor is used to
measure the execution time of the tasks and the actuator is used to carry out
the change in the voltage or the frequency of the CPU.

By studying the examples above, we note that there are many ways to
implement sensors and actuators. This shows that the choice of a sensor and
an actuator depends highly on the type of an application and its constraints.
Control-related variables also vary depending on the application being con-
trolled. Furthermore, controllers are implemented using a particular metric and
a controlling algorithm, explicitly tuned for a specific application.

In the feedback-based policies mentioned in this section, traditional control
algorithms such as PID, state-feedback, and Lead-Lag are used (details on these
algorithms can be found in [32]). These algorithms assume that the controlled
system does not change during run time, i.e., the behavior of the controlled
system is time-invariant. Hence, the control algorithm parameters are tuned
offline and may not be altered during run time. However, the behavior of some
real-time systems is time-varying due to significant changes in load and/or ex-
ecution times. This is addressed by employing adaptive control algorithms [33]
where the behavior of the controlled system is monitored at run time and the
control algorithm parameters are adapted accordingly. Hence, different types of
controllers may be employed and, as such, there is a need for configurability of
the controllers.

As can be observed, there are many different types of control algorithms that
are applied to specific QoS management policies. The choice of a control algo-
rithm depends on the control performance, run-time complexity, memory foot-
print, and adaptiveness.

Providing Configurable QoS Management in Real-Time Systems 263

3 Problem Formulation

As discussed in Sect. 2, a number of QoS management approaches have been
explicitly developed to suit the needs of a particular application. Specifically, if
feedback-based QoS management is considered, a QoS controller (see Fig. 1) is
typically developed to control a certain type of metric, and it cannot be reused
for another metric unless extensive modifications are made to the system and
the controller. Furthermore, QoS policies used in existing approaches to real-time
QoS management [5, 6, 8, 9, 10, 11, 12, 23, 24, 26, 27, 28, 29, 30, 31, 34, 35, 36]
cannot be exchanged or modified separately from the system. Hence, QoS man-
agement is specific to a real-time application and a QoS management approach
developed for one application cannot easily be reused in another application.

Additional limitation of these QoS approaches is that the architecture of the
system is developed such that it is tightly integrated with QoS management,
yielding in a system that has a fixed, monolithic, and nonevolutionary archi-
tecture. Modifications of QoS management require complex modifications of the
code and the structure of the overall system. Moreover, current approaches do
not enable taking existing systems without QoS management and adapting them
to be used in an application with specific QoS needs. The trend in the vehic-
ular industry, for example, is to incorporate QoS guarantees in vehicle control
systems [15, 37]. In this case a cost-effective way of building QoS-aware vehi-
cle control systems is to efficiently incorporate QoS mechanisms into already
existing systems.

Software engineering research has shown that the implementation of QoS man-
agement should be reusable across applications and highly configurable [38, 39].
A number of software engineering approaches that provide configurable QoS
management do exist. In these approaches QoS policies are encapsulated into
aspects, developed independently of the application, and injected into the dis-
tributed middleware system when needed. In such approaches qoskets are fre-
quently used as the means of encapsulating the code of a QoS policy [38, 39, 40].
Qoskets represent a set of QoS class specifications and their implementations.
They are used for monitoring and adapting the system to, e.g., varying network
loads. Separating QoS policies from the application and encapsulating them into
reusable and exchangeable units has proven to be conducive to cost-effective de-
velopment of software systems that can be more easily maintained and evolved
[38, 39, 40]. Moreover, it has been shown that CoSMIC [41] is useful for fa-
cilitating automated system configuration and deployment [39, 41]. CoSMIC is
a domain-specific tool based on the concept of model-driven architectures, de-
veloped to aid in configuration of QoS in the domain of distributed real-time
CORBA-based middleware systems.

While software engineering approaches and tools for reusable and configurable
QoS management [38, 39, 40] enable extending existing systems by adding qos-
kets, they assume a CORBA-based (including real-time versions) architecture.
The domain of the tools developed for assisting in configuring QoS is also limited
to CORBA-based systems [41]. This type of evolution and tool support is not
sufficient for a large class of real-time systems as most of the existing systems

264 A. Tešanović, M. Amirijoo, and J. Hansson

do not have CORBA architecture, e.g., vehicle systems, control systems, and
mobile devices.

4 Enabling Configurable Real-Time QoS

In this section we first elaborate on the requirements that a system needs to fulfill
in order to use a QoS aspect package for configuring QoS. Then, we present
the main idea behind the concept of a QoS aspect package using an example
of feedback-based QoS management, and outline the procedure for configuring
QoS management. This is followed by a discussion on how tools can be used to
support configuration of QoS.

4.1 System Requirements

The concept of a QoS aspect package as the means of configuring and extending
an existing system applies both to the class of traditional (monolithic) real-time
systems and to the class of component-based real-time systems, provided that
they conform to the requirements we identified for each class.

Traditional real-time systems should: (1) be written in a language that has a
corresponding aspect language; (2) have the source code of the system available;
and (3) have the code structured in fine-grained pieces that perform well-defined
functions, i.e., good coding practice is employed.

Component-based real-time systems should be built using “glass box” or “gray
box” component models. These models imply that components have well-defined
interfaces, but also internals are accessible for manipulation by the software
developer. Examples include Koala [18], RTCOM [16], PBO [19], AutoComp
[20], and Rubus-based component models [42].

In addition, both monolithic and component-based real-time systems should
have functions for controlling the system load. Recall from Sect. 2.2 that there are
multiple ways of controlling the load in the system, e.g., by changing the output
quality of the tasks [25], modifying the period of the tasks [8, 11], admission
control [22], and changing the frequency of the CPU [31]. This implies that the
tasks must be scheduled by an online scheduler [7], e.g., earliest deadline first or
rate monotonic [43] (in contrast to systems with, for example, a cyclic executive).

Given that a system conforms to the named requirements, the concepts and
tools for configuration that we present next can be used for adding and config-
uring QoS management.

4.2 The QoS Aspect Package

At the design and specification level, the QoS aspect package prescribes a hier-
archical QoS management architecture that, at the highest level, consists of two
classes of entities: the QoS component and the QoS aspect types (see Fig. 2). The
top level of the QoS management architecture can be used for any QoS manage-
ment. In the remainder of the paper we discuss feedback-based QoS management,

Providing Configurable QoS Management in Real-Time Systems 265

where components include a QoS actuator component, a feedback controller com-
ponent, and a sensor component. The aspect types include the following types
of aspects (see Fig. 2):

– QoS management policy aspects,
– QoS task model aspects, and
– QoS composition aspects.

The QoS component is defined as a gray box component implementing func-
tions that provide an infrastructure for the QoS management polices. As such, a
component has an interface that contains the following information: (1) function-
ality, in terms of functions, procedures, or methods that a component requires
(uses) from the system, (2) functionality that a component provides to the sys-
tem, and (3) the list of explicitly declared joinpoints where changes can be made
in the component functionality. Explicitly declared joinpoints are especially use-
ful in the context of producing families of systems with variations in their QoS
management. One other motivation for explicitly declaring these joinpoints is
to ensure that the evolution of the QoS aspect package and the system can be
done as efficiently as possible. Namely, having access to the points in the com-
ponent structure, the aspect developer when developing new QoS aspects does
not necessarily have to have full knowledge of the component code to develop
aspects quickly and successfully (as we elaborate further in our experience report
in Sect. 6).

Fig. 2. A QoS aspect package at the specification level

The actuator is a QoS component and, in its simplest form, acts as a sim-
ple admission controller. It publishes a list of joinpoints in its interfaces where
different actuator policies can be woven. Similarly, the feedback controller is
by default designed with a simple control algorithm and identified joinpoints in
the component structure, such that the controller can be extended to support
more sophisticated control algorithms, e.g., adaptive control [33]. The sensor
component collects necessary data and possibly aggregates it to form the metric

266 A. Tešanović, M. Amirijoo, and J. Hansson

representing the controlled variable. In its simplest form the sensor component
measures utilization, which is commonly used as a controlled variable [8]. The
sensor component publishes a set of joinpoints where it is possible to change the
measured metric.

The QoS management policy aspects, namely actuator policy, controller pol-
icy, and the sensor policy, adapt the system to provide a variety of QoS man-
agement policies. Depending on the target application, the aspects modify the
controller to support an appropriate QoS policy, and also change the actuator
and the sensor component according to the choice of manipulated variable and
controlled variable, respectively. For example, if the deadline miss ratio is to be
controlled by changing the computation result quality of the tasks, then a QoS
policy aspect measuring the deadline miss ratio is chosen. The actuator is modi-
fied by the aspect, exchanging the admission policy for an actuation mechanism
where the quality of the tasks’ results are modified.

The QoS task model aspects adapt the task model of a real-time system to the
model used by QoS policies, e.g., a utilization task model needs to be used for a
feedback-based QoS policy where utilization of the system is controlled. There
can be a number of aspects defined to ensure enrichments or modifications of the
task model, e.g., by adding various attributes to tasks, so that the resulting task
model is suitable for distinct QoS or applications’ needs. Concrete examples of
task models are given in Sect. 5.3.

The QoS composition aspects facilitate composition of a real-time system with
the QoS-related components: controller, actuator, and sensor. As we illustrate
in Sect. 5.5, these aspects are rather simple and straightforward to implement.

Once a QoS aspect package is specified as described above, i.e., components
and aspect types are identified, it needs to be populated with the actual im-
plementations of aspects and components, which enable a system designer to
develop a family of applications. Therefore, each family of applications would
have its own QoS aspect package.

Now, an existing system that complies with requirements from Sect. 4.1 is
configured for the specific real-time QoS management as follows.

– The architecture of the existing system is inspected and joinpoints are iden-
tified.

– The new context in which the system is going to be used, i.e., the application
domain, is determined.

– Given the new usage context of the system, a suitable QoS policy consisting
of the sensor policy, controlling policy, and the actuation policy, is identified.

– If the aspects implementing the QoS policy do not exist in the given QoS
aspect package, then the corresponding aspects are defined, developed, and
added to the package. Aspects use joinpoints in the existing system to inject
the QoS policy. Similarly, the QoS aspect package has to be populated with
a sensor component, controller component, and an actuator component, if
these do not already exist in the package.

Providing Configurable QoS Management in Real-Time Systems 267

Fig. 3. A real-time system where a QoS aspect package is used for configuring QoS
management

– Aspects and components for a specific QoS configuration are chosen from
the QoS aspect package and woven into the existing system.

A real-time system where a QoS aspect package is applied is shown in Fig. 3.
In this figure, the controlled (existing) system is a component-based system that
consists of gray box or glass box components c1, . . . , c5, which have well-defined
interfaces and internals accessible for modification (corresponding to the second
type of real-time systems discussed in Sect. 4.1).2

QoS composition aspects from a QoS aspect package are used to add the
sensor, controller, and actuator to the parts/components of the system where
needed; these aspects are represented with gray dashed lines between component
connections in Fig. 3. Additionally, QoS composition aspects offer significant
flexibility in the system design as the feedback loop can easily be placed “outside”
the system and between any components in the system by simply adding QoS
composition aspects. QoS management policies are thus added to the system
using appropriate aspects from the package. Moreover, QoS policies can easily
be exchanged by adding or changing aspects within the QoS management policy
type. Hence, a QoS aspect package ensures that QoS management policies are
modifiable and configurable, depending on the application requirements.

2 The explanation and the main points are the same as if the depicted controlled
system would be a traditional monolithic real-time system conforming to the re-
quirements listed in Sect. 4.1.

268 A. Tešanović, M. Amirijoo, and J. Hansson

4.3 Tool Support

In this section we describe tool support for choosing relevant aspects and com-
ponents from a QoS aspect package for a specific QoS configuration.

The tool supporting QoS configuration is a part of a tool called ACCORD
modeling environment (ACCORD-ME). ACCORD-ME is, in turn, an integral
part of the ACCORD tool development environment, which provides support
for the development of reconfigurable real-time systems [44].3 ACCORD-ME is a
model-based tool, implemented using the generic modeling environment (GME),
a toolkit for creating domain-specific modeling environments [45]. In general,
the creation of a GME-based tool is accomplished by defining metamodels that
specify the modeling paradigm (modeling language) of the application domain.
In our case, based on the content of the QoS aspect package, modeling paradigms
for QoS management are defined for ACCORD-ME. QoS modeling paradigms
are given as UML diagrams and they define the relationship between components
and aspects in the package, their possible relationship to other components of
the system, and possibilities of combining components and aspects into different
configurations. Note that a modeling paradigm needs to be specified for each
new domain, i.e., each family of real-time systems.

The GME environment also enables specifying multiple tool plug-ins, which
can be developed independently of the environment and then integrated with the
GME to be used for different modeling and/or analysis purposes. Exploiting this,
ACCORD-ME is developed with a number of subtools, namely the configurator,
memory and worst-case execution time (M&W) analyzer, and formal verifier (see
Fig. 4).

Next we explain the configurator part of ACCORD-ME and its role in con-
figuration of QoS management. We omit detailed description of ACCORD-ME
analysis tools (M&W analyzer and formal verifier) and refer the interested reader
to [44].

When configuring QoS management of a system, the inputs to ACCORD-
ME are the QoS requirements of the application that are placed on the system.
QoS requirements can include specification of the controlled and manipulated
variables, and the parameters characterizing the task model. The requirements
can also be QoS policies that need to be enforced by the system, e.g., the uti-
lization policy, the deadline miss ratio policy, and dynamic adaptation of the
control algorithms. Based on the requirements and the predefined QoS model-
ing paradigms, the system developer can activate the configurator subtool to
get adequate support for choosing relevant aspects and components from the
QoS aspect package. To suggest a set of appropriate aspects and components,
the configurator compares the requirements with the available configurations.
Based on this analysis, configurator suggests the components and aspects that
are found in suitable configurations.

3 The name ACCORD-ME originates from the name of the approach for aspectual
component-based real-time system development (ACCORD) [16] for which this tool
was initially developed.

Providing Configurable QoS Management in Real-Time Systems 269

Analyzer
Configurator

W&M Analyzer

Aspect

Component

Library

content

Connection

Fig. 4. The editing window of ACCORD-ME, which is a part of the ACCORD Devel-
opment Environment

The configurator provides three levels of support, expert, configuration, and
requirement-based, based on the expertise and preferences of the developer. The
expert option is used by developers familiar with the content of the QoS aspect
package and all of its provided functionality and policies. The configuration-
based option gives a list of possible QoS configurations of the system that can
be created from the QoS aspect package. The requirement-based option provides
the system developer with a list of possible choices of parameters in the feedback
control structure, e.g., controlled and manipulated variables, from which the
developer can choose a relevant subset suitable for a particular application. Thus,
developers do not need to know the contents of the QoS aspect package to be
able to configure QoS management.

After one of the above options is chosen, the configurator loads the relevant
components and aspects into the ACCORD-ME editing area, where the designer
can assemble the system by connecting the components and aspects, as shown
in Fig. 4. Each aspect and component contains information stating with which it
can be connected to form a functionally correct QoS management configuration.

The obtained QoS configuration can be analyzed by other subtools available
in ACCORD-ME. Specifically, formal analysis can be performed to ensure that
adding constituents of the QoS aspect package preserves already proven proper-
ties of the original system [46], thereby ensuring that functionality of the original
system is preserved or modified in a well-understood way. For the purposes of

270 A. Tešanović, M. Amirijoo, and J. Hansson

formal analysis, a QoS configuration is transformed from a UML-based model
to a timed automata-based model.

The output of ACCORD-ME is a configuration of a system that satisfies a
specific QoS need of the application and that is functionally correctly assembled.
The configuration, i.e., components, aspects, and their relationships, is stored in
an XML file. This XML file is then fed to the tool of the ACCORD development
environment, called the configuration compiler, which takes as input: (1) the
information obtained from ACCORD-ME about the created QoS configuration,
and (2) the source code of the needed aspects and components from the QoS
aspect package (the source code of the system that is being controlled is also re-
quired). Based on this input, the configuration compiler generates a compilation
file, which is used to compile source code of aspects and components into the
final system. The configuration compiler also provides documentation about the
generated QoS configuration that can later be used for maintaining the system.

5 Case Study: COMET Database

In this section we present a case study on a component-based embedded real-
time database, called COMET. Initially, we developed COMET to be suitable
for hard real-time applications in vehicular systems [15, 16]. Thus, the initial
COMET implementation does not provide QoS guarantees. To adopt COMET
to real-time systems with performance guarantees we developed a COMET QoS
aspect package. In order to understand the choices made when developing dif-
ferent aspects for COMET QoS, we give an overview of COMET, and present
the QoS management policies used for implementation of the QoS aspect pack-
age. We then discuss the data and transaction models used in various COMET
configurations. We also describe a number of COMET QoS configurations and
present the implementation of representative components and aspects. Finally,
we demonstrate experimentally that COMET with the QoS extensions indeed
provides the required QoS guarantees.

5.1 COMET Overview

The architecture of the COMET database consists of a number of components
(see Fig. 5a): the user interface component, the transaction manager component,
the index manager component, and the memory manager component. The user
interface component provides a database interface to the application, which en-
ables a user (i.e., an application using the database) to query and manipulate
data elements. User requests are parsed by the user interface and are then con-
verted into an execution plan. The transaction manager component is responsible
for executing incoming execution plans, thereby performing the actual manipu-
lation of data. The index manager component is responsible for maintaining an
index of all tuples in the database. The COMET configuration containing the
named components provides only basic functionality of the database, and this
basic COMET configuration is especially suitable for small embedded vehicular
systems [15].

Providing Configurable QoS Management in Real-Time Systems 271

MMC IMC

TMC

UIC

Basic COMET
configuration

MMC IMC

TMC

Concurrent COMET
configuration

SMC

UIC

LMC

(a) (b)

Concurrency
control aspect

LEGEND

UIC user interface
 component

TMC transaction
 manager component

IMC index manager
 component

MMC memory manager
 component

LMC locking manager
 component

SMC scheduling manager
 component

Fig. 5. Basic and concurrent COMET configurations

Depending on the application with which the database is to be integrated,
additional aspects and components can be added to the basic COMET config-
uration. For example, to enable concurrent access to the database two addi-
tional components, the locking manager component and the scheduling manager
component, are needed (see Fig. 5b). The scheduling manager component is re-
sponsible for registering new transactions, i.e., tasks in a database system, to
the system and scheduling them according to the chosen scheduling policy, e.g.,
earliest deadline first [47]. The locking manager component is responsible for
obtaining and releasing locks on data items accessed by transactions. Concur-
rency control aspects, providing algorithms for detecting and resolving conflicts
among transactions, can also be woven to the system. The concurrent COMET
configuration is out of scope of this paper and we refer interested readers to [16].

Each component has been developed according to RTCOM [16] component
model we developed previously. RTCOM is compliant with the QoS component
discussed in Sect. 4.2 as it has interfaces where it publishes (provided and re-
quired) operations and declares joinpoints where variations can be introduced.
For example, the transaction manager component executes transactions by exe-
cuting an operation getResult() declared in its provided interface. The schedul-
ing manager declares an operation createNew() in its provided interface, which
registers transactions. Moreover, transactions in the scheduling manager compo-
nent are scheduled using method scheduleRecord(), which is explicitly declared
in the component interface as the joinpoint where variations in the structure of
the scheduling manager component can be done.

5.2 QoS Policies

Given that we want to use the COMET database with applications that require
performance guarantees, we need to choose some existing QoS policies and de-
velop the QoS aspect package to integrate them into the database. Hence, in

272 A. Tešanović, M. Amirijoo, and J. Hansson

this section we give an overview of three feedback-based QoS management poli-
cies that we use in our case study; we found that these are especially suitable
for ensuring performance guarantees in real-time systems. First we describe the
feedback miss ratio control (FC-M) [8], where deadline miss ratio is controlled
by modifying the number of admitted transactions. This is followed by a descrip-
tion of QMF [48], which is a QoS-sensitive approach for miss ratio and freshness
guarantees used for managing QoS in real-time databases. Finally, we give a
brief description of two adaptive QoS algorithms, the self-tuning regulator and
the least squares regression algorithm [33].

FC-M uses a control loop to control the deadline miss ratio by adjusting the
utilization in the system. We say that a transaction is terminated when it has
completed or missed its deadline. Let missedT ransactions(k) be the number
of transactions that have missed their deadline and admittedT ransactions(k)
be the number of terminated admitted transactions in the time interval [(k −
1)T, kT]. The deadline miss ratio,

m(k) =
missedT ransactions(k)

admittedT ransactions(k)
(1)

denotes the ratio of transactions that have missed their deadlines. The perfor-
mance error, em(k) = mr(k) − m(k), is computed to quantize the difference
between the desired deadline miss ratio mr(k) and the measured deadline miss
ratio m(k). Note that m(k) is a controlled variable, corresponding to y(k) in
Fig. 1, while mr(k) is a reference, corresponding to yr(k). The change to the
utilization δu(k), which we denote as the manipulated variable, is derived using
a P-controller [32], hence, δu(k) = KPem(k), where KP is a tunable variable.
The utilization target u(k) is the integration of δu(k). Admission control is then
used to carry out the change in utilization.

Another way to change the requested utilization is to apply the policy used
in QMF [48], where a feedback controller, similar to that of FC-M, is used to
control the deadline miss ratio. The actuator in QMF manipulates the quality
of data in real-time databases in combination with admission control to carry
out changes in the controlled systems. If the database contains rarely requested
data items, then updating them continuously is unnecessary, i.e., they can be
updated on-demand. On the other hand, frequently requested data items should
be updated continuously, because updating them on-demand would cause serious
delays and possibly deadline overruns. When a lower utilization is requested via
the deadline miss ratio controller, some of the least accessed data objects are
classified as on-demand, thus, reducing the utilization. In contrast, if a greater
utilization is requested then the data items that were previously updated on-
demand, and have a relatively higher number of accesses, are moved from on-
demand to immediate update, meaning that they are updated continuously. This
way the utilization is changed according to the system performance.

The QoS management approaches presented so far in this section are not
adaptive as they use linear feedback control and assume that the real-time sys-
tem is time-invariant, which implies that the controller is tuned and fixed for
that particular environment setting. For time-varying real-time systems it is

Providing Configurable QoS Management in Real-Time Systems 273

beneficial to use adaptive QoS management that enables the controller in the
feedback loop to dynamically adjust its control algorithm parameters such that
the overall performance of the system is improved. Two representative adaptive
QoS approaches are the self-tuning regulator and the least squares regression
model [33].

5.3 Data and Transaction Model

We consider a main memory database model, where there is one CPU as the
main processing element. We consider the following data and transaction models.

In the basic configuration of COMET we have a basic data model and a basic
transaction model. The basic data model contains metadata used for concurrency
control algorithms in databases. The basic transaction model characterizes each
transaction τi only with a period pi and a relative deadline di. However, QoS
algorithms like FC-M, QMF, and adaptive algorithms require more complex
data and transaction models that capture, e.g., metadata that express temporal
constraints, such as mean interarrival and execution times.

In the differentiated data model, data objects are classified into two classes,
temporal and nontemporal [49]. Nontemporal data constitutes data objects with
no temporal requirements, e.g., arrival times and deadlines. For temporal data
we only consider base data, i.e., data objects that hold the view of the real-world
and are updated by sensors. A base data object bi is considered temporally in-
consistent or stale if the current time is later than the timestamp of bi followed by
the absolute validity interval avii of bi, i.e., currenttime > timestampi + avii.

Both FC-M and QMF require a transaction model where transaction τi is
classified as either an update or a user transaction. Update transactions arrive
periodically and may only write to base (temporal) data objects. User transac-
tions arrive aperiodically and may read temporal and read/write nontemporal
data. In this model, denoted the utilization transaction model, each transaction
has the following characteristics:

– the period pi (update transactions),
– the estimated mean interarrival time rE,i (user transactions),
– the actual mean interarrival time rA,i (user transactions),
– the estimated execution time xE,i,
– the actual execution time xA,i,
– the relative deadline di,
– the estimated utilization4 uE,i, and
– the actual utilization uA,i.

Table 1 presents the complete utilization transaction model. Upon arrival,
a transaction presents the estimated average utilization uE,i and the relative
deadline di to the system. The actual utilization of the transaction uA,i is not
known in advance due to variations in the execution time.
4 Utilization is also referred to as load.

274 A. Tešanović, M. Amirijoo, and J. Hansson

Table 1. The utilization transaction model

Attribute Periodic transactions Aperiodic transactions

di di = pi di = rA,i

uE,i uE,i = xE,i/pi uE,i = xE,i/rE,i

uA,i uA,i = xA,i/pi uA,i = xA,i/rA,i

5.4 A Family of COMET QoS Configurations

We developed a QoS aspect package for COMET to enable the database to
be used in applications that have uncertain workloads and where requirements
for data freshness are essential, e.g., a new generation of vehicle control systems
[3]. The aspects within the package are implemented using AspectC++ [50]. The
COMET QoS aspect package consists of the actuator and controller components
and the following aspects:

– QoS management policy aspects: actuator utilization policy, missed deadline
monitor, missed deadline controller, scheduling strategy, data access monitor,
QoS through update scheduling aspect, self-tuning regulator aspect, and
adaptive regression model aspect;

– QoS transaction and data model aspects: utilization transaction model as-
pect and data differentiation aspect; and

– QoS composition aspects: actuator composition and controller composition
aspects.

Figure 6 shows the family of COMET feedback-based QoS configurations.
Each configuration is obtained by adding aspects and possibly components from
the package to the previous configuration. The initial configuration is the concur-
rent COMET configuration. Table 2 indicates which elements of the QoS aspect
package are used in different configurations.

The tool described in Sect. 4.3 can be used for specifying the QoS requirements
of an application with which COMET is to be integrated. Once the requirements
are specified, the tool suggests the subset of aspects and components from the
aspect package that can be used for making a COMET QoS configuration. The
tool decides on the relevant subset of components and aspects by cross-examining
the requirements with the previously developed QoS modeling paradigms for the
domain of embedded real-time databases.

To simplify the presentation, in the following we discuss only five distinct
configurations that provide admission control, FC-M, QMF, self-tuning, and
least squares regression QoS. Note however that depending on the chosen aspects
and components from the package, the number of variants in COMET QoS family
is higher (see Fig. 6).

The admission control configuration includes one component from the QoS as-
pect package, the actuator. The configuration also requires the actuator compo-
sition aspect to ensure adding the actuator to the controlled system, and the uti-
lization transaction model aspect to extend the transaction model (see Table 2).
This configuration is simple as it only provides facilities for admission control.

Providing Configurable QoS Management in Real-Time Systems 275

Fig. 6. Creating a family of real-time systems from the COMET QoS aspect package

The miss ratio feedback configuration (COMET FC-M) provides QoS guaran-
tees based on the FC-M policy. The configuration includes the actuator and con-
troller components and their corresponding composition aspects, the utilization
transaction model aspect, the missed deadline monitor aspect, and the missed
deadline controller aspect (see Table 2). These aspects modify the policy of the
scheduling manager component and the controller to ensure that QoS with re-
spect to deadline misses is enforced.

The update scheduling configuration (COMET QMF) provides the QoS guaran-
tees based on the QMF policy. Here the data differentiation aspect and scheduling
strategy aspect are used to further enrich the transaction model. Moreover, the
data access monitor aspect is required to ensure the metric used in QMF, and the
QoS through update scheduling aspect to further adjust the policy of the actuator
to suit the QMF algorithm.

The self-tuning regulator configuration (COMET STR) provides adaptive
QoS control where the control algorithm parameters are adjusted by using

276 A. Tešanović, M. Amirijoo, and J. Hansson

Table 2. The COMET QoS aspect package constituents and their usage in various
COMET QoS configurations

QoS aspect package

Policy
aspects

Transaction
model

aspects

Composition
aspects

Utilization transaction model

Controller composition
Actuator composition

Actuator utilization policy

Missed deadline monitor

Missed deadline controller

Data differentiation

Scheduling strategy

Data access monitor

QoS through update
scheduling

COMET configurations

Admiss
ion

co
ntro

l
COMET

FC-M COMET

QMF

X

X

X
X

X

X

X

X
X

X

X

X

X

X

X

X

X X X

Components Actuator
Controller

X

X

X

X

X

Self-tuning regulator

Adaptive regression
model

COMET

STR COMET

RM

X
X

X

X
X

X

X

X

X
X

X

X
X

X

X

X

X X

COMET FCM the miss ratio feedback configuration; COMET STR the self-tuning regulator configuration
COMET QMF the update scheduling configuration; COMET RM the regression model configuration

X in the table means that an aspect (or a component) is a part of a configuration

the self-tuning regulator. This aspect is added to the aspects and components
constituting the COMET FC-M configuration to ensure the adaptability of the
control already provided by the COMET FC-M configuration.

The regression model configuration (COMET RM) provides the adaptive
QoS control where the control algorithm parameters are adjusted by using the
least squares technique and the regression model. This aspect also requires all
the aspects needed for the FC-M configuration to ensure adaptability of QoS
management.

5.5 Implementation Details

To illustrate the way aspects and components can be implemented within an
aspect package, in this section we elaborate on the implementation of the main
constituents of the COMET FC-M configuration. Recall that the FC-M config-
uration includes the actuator and controller components, composition aspects
for these components, as well as the utilization transaction model aspect, the
missed deadline monitor aspect, and the missed deadline controller aspect.

Providing Configurable QoS Management in Real-Time Systems 277

The actuator is a component that, based on an admission policy, decides
whether to allow new transactions into the system. Operations provided by the
actuator are admit(), which performs the admission test, and adjust(), which
adjusts the number of transactions that can be admitted. The default admission
policy is to allow all transactions to be admitted to the system. This admission
policy of the actuator can be changed by weaving specific QoS actuator policy
aspects.

The controller is a component that computes the input to the admission policy
of the actuator at regular intervals. By default, an input of zero is generated,
but by using QoS controlling policy aspects various feedback control policies can
be used. The controller provides only one operation, init(), that initializes the
controller component. The controller calls adjust() operation of the actuator
after computing the manipulated variable.

The utilization transaction model aspect augments the basic COMET trans-
action model so that it suits the utilization transaction model described in
Sect. 5.3. This is done using an intertype declaration that adds new parame-
ters to the basic model, e.g., estimated utilization uE,i and estimated execution
time xE,i.

1: aspect actuator_composition{
2: // Insert actuator between user interface and scheduler.
3: advice call("bool Scheduler_CreateNew(...)") : around() {
4: if (Actuator_Admit(*(scheduleRecord *)tjp->arg(0)))
5: tjp->proceed();
6: else
7: *(bool *)tjp->result() = false;
8: }
9: };

Fig. 7. The actuator composition aspect

The actuator composition aspect enables the actuator to intercept requests
to create new transactions that are posed by the user interface to the schedul-
ing manager component. This is done via an advice of type around which is
executed when the operation createNew() of the scheduler manager is called
(lines 3–8 in Fig. 7). Since this operation of the scheduler manager component
is in charge of registering a new transaction to the system, the advice ensures
that an admission test is made by the actuator before the transaction is actually
registered (line 4). If the transaction can be admitted, transaction registration
is resumed; the proceed() in line 5 enables the normal continuation of the join-
point createNew() (an explicitly declared joinpoint in the scheduling manager
component). If the transaction is to be aborted, then the around advice replaces
the execution of the transaction registration in full and, thus, ensures that the
transaction is rejected from the system (line 7).

The actuator utilization policy aspect shown in Fig. 8 replaces, via the around
advice (lines 5–13), the default admission policy of actuator with an admission
policy based on utilization (lines 9–12). The current transaction examined for
admission in the system is denoted ct in Fig. 8.

278 A. Tešanović, M. Amirijoo, and J. Hansson

1: aspect actuator_utilization_policy{
2: // Add a utilization reference to the system
3: advice "SystemParameters" : float utilizationRef;
4: // Changes the policy of the actuator to the utilization
5: advice execution("% Actuator_Admit(...)") : around() {
6: // Get the current estimated total utilization
7: totalUtilization = GetTotalEstimatedUtilization();
8: // Check if the current transaction ct can be admitted
9: if (utilizationTarget > totalUtilization + ct->utilization)
10: { (*(bool *)tjp->result()) = true; }
11: else
12: { (*(bool *)tjp->result()) = false; }
13: }

Fig. 8. The actuator utilization policy aspect

The controller composition aspect facilitates the composition of the controller
with all other components in the system by ensuring that the controller is prop-
erly initialized during the system initialization.

 1: aspect missed_deadline_monitor {
 2: advice call("% Scheduler_CreateNew(...)") : after(){
 3: if (*(bool *)tjp->result()) { admittedTransactions++; }
 4: }
 5: advice call("% Scheduler_Completed(...)") : before(){
 6: ScheduleRecord *sr = (ScheduleRecord *)tjp->arg(0);
 7: _getTime(¤tTime);
 8: node = findNode(ActiveQueue_root, sr->id);
 9: if ((node != NULL) && (_compareTimes(¤tTime,
10: &(node->data->deadline))))
11: { missedTransactions++; }
12: }
13: advice call("% Scheduler_Aborted(...)") : before(){…
14: admittedTransactions--;}
15: advice call("% Scheduler_RejectLeastValuableTransaction(...)") : after(){
16: if (*(bool *)tjp->result()) { admittedTransactions--;}
17: }
18: advice call("% getTimeToDeadline(...)") && within("%
19: getNextToExecute(...)") : after() {… missedTransactions++;}
20: }

Fig. 9. Missed deadline monitor aspect

The missed deadline monitor aspect modifies the scheduling manager compo-
nent to keep track of transactions that have missed their deadlines, missedT ran-
sactions, and transactions that have been admitted to the system, admittedT ra-
nsactions. This is done by having a number of advices of different types
intercepting operations of the scheduling manager component that handles com-
pletion and abortion of transactions (see Fig. 9). For example, the advice of type
after that intercepts the call to createNew() increments the number of admitted

Providing Configurable QoS Management in Real-Time Systems 279

transactions once the transactions have been admitted to the system (lines 2–4).
Similarly, before the transaction has completed, the advice in lines 5–12 checks
if the number of transactions with missed deadlines should be incremented, i.e.,
before invoking the operation completed() of the scheduler manager component.

1: aspect missed_deadline_control{
2: // Initialize the new variables need for control
3: advice call("% UserInterface_init(...)") : after() {
4: SystemParameters *sp =
5: (SystemParameters *)tjp->arg(0);
6: if (*(bool *)tjp->result()) {
7: missRatioReference = sp->missRatioReference;
8: missRatioControlVariableP =
9: sp->missRatioControlVariableP;
10: ...
11: }
12: // Modify the calculation of the control output
13: advice call("% calculateOutput(...)") : after(){
14: missRatioOutputHm =
15: calculateMissRatioOutput(Scheduler_GetDeadlineMissRatio());
16: *((float *)tjp->result()) = missRatioOutputHm;
17: }
18: }

Fig. 10. Missed deadline controller aspect

The missed deadline controller aspect, illustrated in Fig. 10, is an instance
of the feedback control policy aspect and it modifies the scheduler manager
component to keep track of the deadline miss ratio, using Eq. (1). The aspect
does so with two advices of type after. One is executed after the initialization
of the user interface (lines 3–11), thus, ensuring that the appropriate variables
needed for controller policy are initialized. The other modifies the output of the
controller to suit the chosen feedback control policy, which is deadline miss ratio
in this case (lines 13–17).

5.6 Experimental Evaluation

In this section we present an experiment made on the COMET platform with
and without the QoS aspect package. The goal of the experiment is to show
that QoS management in COMET performs as expected and thereby show that,
when adding the COMET QoS aspect package, we indeed achieve configurability
in QoS management with required performance guarantees. It should be noted
that we have performed several other experiments to show that we achieve the
desired behavior under different COMET QoS configurations [51].

For doing the experiment we have chosen the following experimental setup.
The database consists of eight relations, each containing ten tuples. Note that
this relatively low data volume is acceptable for the experiments as the exper-
imental results do not depend on the data volume but the load, i.e., number

280 A. Tešanović, M. Amirijoo, and J. Hansson

of transactions, that is imposed on the database. To that end, we ensured that
a constant stream of transaction requests is used in the experiments. Update
transactions arrive periodically, whereas user transactions arrive aperiodically.
To vary the load on the system, the interarrival times between transactions are
altered. The deadline miss ratio reference, i.e., the desired QoS, is set to 0.1.

The experiment is applied to the COMET FC-M configuration, where the
load applied on the database is varied. This way we can determine the behavior
of the system under increasing load. We use the behavior of the concurrent
COMET configuration without the QoS aspect package as a baseline. For all the
experiment data, we have taken the average of 10 runs, each consisting of 1,500
transactions. We have derived 95% confidence intervals based on the samples
obtained from each run using the t-distribution [52]. We have found that the ten
runs are sufficient as we have obtained tight confidence intervals (shown later in
this section). Figure 11 shows the deadline miss ratio of concurrent COMET and
COMET with the FC-M configuration. The dotted line indicates the deadline
miss ratio reference. We vary the applied load from 0 to 130%. This interval of
load captures the transition from an underloaded system to an overloaded system
since at 130% applied load we capture the case when the system is overloaded.
We refer to [5, 6] for extensive evaluations of how loads greater than 130% affect
the performance of the system.

Starting with concurrent COMET, the deadline miss ratio starts increasing
at approximately 0.85 load. However, the deadline miss ratio increases more
than the desired deadline miss ratio and, hence, concurrent COMET does not
provide any QoS guarantees. Studying the results obtained when using the FC-
M configuration we see that the deadline miss ratio for loads 0.90, . . . , 1.30

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Load

D
ea

dl
in

e
M

is
s

R
at

io

Open Loop
FC−M
Reference

Fig. 11. Deadline miss ratio as a function of load

Providing Configurable QoS Management in Real-Time Systems 281

are 0.1025 ± 0.0070, 0.1023 ± 0.0027, 0.1012 ± 0.0025, 0.1052 ± 0.0030, and
0.1082 ± 0.0011. In contrast with concurrent COMET, the added FC-M config-
uration manages to keep the deadline miss ratio at the reference, even during
high loads. This is in line with our earlier observations where feedback control
has shown to be very effective in guaranteeing QoS [5, 53, 54]. Hence, the results
of our experiment show that the COMET FM-C configuration is able to provide
QoS guarantees under varying load.

6 Experience Report

This section contains observations we made with respect to use of aspect-oriented
software development in general and the QoS aspect package in particular for en-
suring configurability and reusability of QoS management in real-time software.

Lesson 1: Both aspects and components are needed in the QoS aspect package
to ensure configurability. We already observed in Sect. 1 that many QoS man-
agement approaches use a similar QoS infrastructure but provide distinct QoS
policies, concluding that this is the reason why a QoS aspect package has both
components (providing infrastructure) and aspects (providing QoS policies).
Here we would like to reaffirm that without components in a QoS aspect pack-
age high configurability and reusability would be difficult to achieve. Namely,
if all QoS management approaches were implemented only using aspects, each
aspect would have to contain the necessary functionality of the infrastructure
for QoS management. This is obviously not conducive to the development of
families of real-time systems with distinct needs on the QoS configuration. Fur-
thermore, the footprint of the system would be increased with additional code.
Another solution would be to implement one basic aspect that would contain
the functionality of an infrastructure and possibly a QoS policy. However, this
option is not desirable as it implies dependencies among aspects that could lead
to dependency problems in the implementation phase. This in turn could induce
decreased configurability (as fewer aspects could be combined). Having compo-
nents that provide functionality used by aspects decreases dependency issues
and the overall memory footprint for the system, and increases reusability of
aspects and configurability of QoS management.

Lesson 2: Explicitly declared joinpoints in component interfaces lead to an ef-
ficient and analyzable product-line architecture. We have observed that for de-
veloping a variety of system configurations using the same set of components
in combination with various aspects, it is beneficial to have explicitly defined
places in the architecture where extensions can be made, i.e., aspects woven.
Although this approach restricts the joinpoint model of the aspect language,
we obtain clear points in the components and the system architecture where
variations can be made. The system developer extending and reconfiguring an
existing system now does not need to have a complete insight into the system
or component internals to perform successful reconfiguration. Therefore, in our
components within a QoS aspect package we enforce that the places where pos-

282 A. Tešanović, M. Amirijoo, and J. Hansson

sible extensions can be done are explicitly declared in the component interfaces.
It is our experience, confirmed by the experiences of third-party COMET users,
that these points are not difficult to identify in the design and implementation
phases of component development. For example, the declared joinpoints for the
actuator component and the controller component from the COMET QoS aspect
package were straightforwardly determined in the design phase by taking into
consideration a few possible policies that could be applied to these components.

Hence, relevant joinpoints in the components should be identified in the design
phase of the QoS aspect package development with regard to possible policy vari-
ations. In development of the COMET database we have experienced that these
points are relatively low in number and, once identified, are even suitable for as-
pects that are developed later on. Moreover, the explicitly declared joinpoints in
the component code are desirable in the real-time domain. This is because they
provide predefined places where code modifications can be done and, therefore,
the system can be analyzed during the design phase to establish if it satisfies
temporal constraints and has desired functional characteristics [16, 46]. We can
conclude that by using the notion of a QoS aspect package we can efficiently
develop an analyzable product-line architecture of a real-time system that has
the ability to satisfy specified QoS needs.

Lesson 3: There is a tradeoff between configurability, reusability, and main-
tenance. Having a large number of aspects leads to high demands on main-
tainability of the aspects and the system, while fewer aspects lead to better
maintainability at the expense of limiting configurability and reusability of as-
pects in the system. This further confirms previous observations [55] where a
tradeoff between requirements for configurability and maintenance when using
aspects in embedded software systems was identified. In the case of developing a
QoS aspect package for COMET, our primary goal was to ensure reuse of QoS-
related aspects and to increase system configurability. Therefore, we have chosen
to separate concerns such that we have a great number of aspects that each can
be used in multiple COMET configurations. For example, the missed deadline
monitor aspect is decoupled from the missed deadline controller aspect (both are
part of the QoS policy aspects and implement FC-M policy) to allow the missed
deadline monitor aspect to be used in a combination with another controller
policy. In the case when there is a focus on maintainability, the missed deadline
monitor aspect and the missed deadline control aspect could be combined into
one aspect that both monitors and controls the deadline misses. The same is true
for the scheduling strategy aspect and the QoS through the update scheduling
aspect that both implement parts of the QMF algorithm. We have chosen to
have these in different aspects to enable them to be exchanged independently
from the configuration and from each other.

Hence, if reusability and configurability is of foremost concern, as it is typi-
cally the case in the context of creating families of real-time systems, QoS policies
should be decomposed into greater number of aspects; thus, trading maintain-
ability for reusability and configurability. To deal with maintainability issues, an

Providing Configurable QoS Management in Real-Time Systems 283

efficient way of organizing aspects and components for easier access and modifi-
cation within a QoS aspect package is needed.

Lesson 4: Aspects can be reused in various phases of the system development.
We found that aspects implemented in a QoS aspect package can be reused in
various phases of the system development. Namely, due to the nature of QoS
policies, one or several aspects constituting a policy normally control the load of
the system and in some way monitor the system performance. Hence, in addition
to reuse of these aspect in a number of QoS configurations, they can be reused
in the testing and evaluation phase for performance evaluation and gathering
statistics. As a simple illustration, the missed deadline monitor aspect within the
COMET QoS aspect package is used in the design and implementation phase
of the system as a part of a QoS management to implement a specific QoS
policy, and is later used in the evaluation phase of the system development for
performance evaluations (presented in Sect. 5.6).

Lesson 5: Aspect languages are a means of dealing with legacy software. Since
we initially targeted the COMET database system to hard real-time systems in
the vehicular industry [4], the programming language used for the development
of the basic database functionality (described in Sect. 5.1) needed to be suited
for software that already existed in a vehicular control system. Moreover, analy-
sis techniques that have been used in the existing vehicle control system should
be applicable to our basic database components. This lead to developing the
COMET basic configuration using C programming language. Aspects provided
an efficient means for introducing extensions to the system; we used the As-
pectC++ weaver since a weaver for C language [56] is not yet publicly available.
Since existing real-time systems are typically developed in a non-object-oriented
language such as C, aspects provide a great value for evolution of the system
without reconstructing the code of the system.

Lesson 6: Less is more when it comes to aspect languages for embedded and real-
time systems. When developing aspect languages for real-time systems operating
in resource-constrained environments, the focus should be on providing basic
aspect language features that facilitate encapsulating and weaving aspects into
the code of components in the simplest and most memory-efficient way possible.
We believe that minimizing memory usage should be of primary importance
for aspect languages suitable for these types of systems. Given that most real-
time computing systems are developed using non-object-oriented languages, the
intertype declaration could be kept as simple as possible, e.g., allowing weaving
of single members in structs. We also observe that due to the nature of many
real-time operating systems, e.g., Rubus [57] and MicroC [58], the advice and
pointcut model could be simplified. Namely, the pointcut syntax in most cases
does not need to be elaborate as it is in current aspect languages (e.g., AspectJ
and AspectC++). We have developed most of the COMET aspects using call
and execution pointcuts, and occasionally within.

284 A. Tešanović, M. Amirijoo, and J. Hansson

7 Summary

In this paper we have presented the concept of a QoS aspect package that en-
ables reconfigurability in QoS management of real-time systems. A QoS aspect
package facilitates the development of real-time systems with a flexible QoS
management architecture consisting of aspects and components, where parts of
the architecture can be modified, changed, or added depending on the target
application’s QoS requirements. Furthermore, QoS policies within a QoS aspect
package are encapsulated into aspects and can be exchanged and modified inde-
pendently of the real-time system. This improves reusability of QoS management
and ensures applicability across many applications. Applying the concept of a
QoS aspect package enables existing real-time systems, without QoS guarantees,
to be used in applications that require specific performance guarantees. By ex-
changing aspects within the QoS aspect package one can efficiently tailor QoS
management of a real-time system based on the application requirements. We
have shown how the concept can be applied in practice by describing the way we
have adapted the COMET database platform. Initially, COMET was developed
without mechanisms for QoS guarantees, but by adding the QoS aspect package
COMET has been extended to support a variety of QoS policies.

Acknowledgments

The authors would like to thank anonymous reviewers for valuable comments
on the manuscript. This work is financially supported by the Swedish National
Graduate School in Computer Science (CUGS) and the Center for Industrial
Information Technology (CENIIT) under contract 01.07.

References

[1] Chen X., Cheng A.M.K. An imprecise algorithm for real-time compressed im-
age and video transmission. In: Proceedings of the International Conference on
Computer Communications and Networks (ICCCN), pp. 390–397, 1997

[2] Curescu C., Nadjm-Tehrani S. Time-aware utility-based resource allocation
in wireless networks. IEEE Transactions on Parallel and Distributed Systems,
16:624–636, 2005

[3] Gustafsson T., Hansson J. Data management in real-time systems: a case of
on-demand updates in vehicle control systems. In: Proceedings of Tenth IEEE
Real-Time Applications Symposium (RTAS’04), IEEE Computer Society Press,
pp. 182–191, 2004

[4] Nyström D., Tešanović A., Norström C., Hansson J., B̊ankestad N.E. Data man-
agement issues in vehicle control systems: a case study. In: Proceedings of the 14th
IEEE Euromicro International Conference on Real-Time Systems (ECRTS’02),
IEEE Computer Society Press, pp. 249–256, 2002

[5] Amirijoo M., Hansson J., Son S.H., Gunnarsson S. Robust quality management
for differentiated imprecise data services. In: Proceedings of the 25th IEEE In-
ternational Real-Time Systems Symposium (RTSS’04), IEEE Computer Society
Press, pp. 265–275, 2004

Providing Configurable QoS Management in Real-Time Systems 285

[6] Amirijoo M., Hansson J., Gunnarsson S., Son S.H. Enhancing feedback control
scheduling performance by on-line quantification and suppression of measurement
disturbance. In: Proceedings of the 11th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS’05), IEEE Computer Society Press,
pp. 2–11, 2005

[7] Buttazzo G.C. Hard Real-Time Computing Systems, Kluwer Academic, Dor-
drecht, 1997

[8] Lu C., Stankovic J.A., Tao G., Son S.H. Feedback control real-time scheduling:
framework, modeling and algorithms. Journal of Real-Time Systems, 23, 2002

[9] Lu Y., Saxena A., Abdelzaher T.F. Differentiated caching services: a control-
theoretical approach. In: Proceedings of the 21st IEEE International Conference
on Distributed Computing Systems (ICDCS’01), IEEE Computer Society Press,
pp. 615–622, 2001

[10] Parekh S., Gandhi N., Hellerstein J., Tilbury D., Jayram T., Bigus J. Using control
theory to achieve service level objectives in performance management. Journal of
Real-Time Systems, 23, 2002

[11] Cervin A., Eker J., Bernhardsson B., Årzén K. Feedback-feedforward scheduling
of control tasks. Real-Time Systems Journal, 23, 2002, Special Issue on Control-
Theoretical Approaches to Real-Time Computing

[12] Li B., Nahrstedt K. A control theoretical model for quality of service adaptations.
In: Proceedings of the Sixth IEEE International Workshop on Quality of Service,
pp. 145–153, 1998

[13] Stankovic J. VEST: a toolset for constructing and analyzing component based
operating systems for embedded and real-time systems. In: Proceedings of the
First International Conference on Embedded Software, (EMSOFT’01), LNCS vol.
2211, Springer, Berlin Heidelberg New York, pp. 390–402, 2001

[14] Tesanovic A., Amirijoo M., Nilsson D., Norin H., Hansson J. Ensuring real-
time perfomance guarantees in dynamically reconfigurable embedded systems.
In: Proceedings of the IFIP International Conference on Embedded and Ubiquitous
Computing, LNCS vol. 3824, Springer, Berlin Heidelberg New York, pp. 131–141,
2005

[15] Nyström D., Tešanović A., Nolin M., Norström C., Hansson J. COMET: a
component-based real-time database for automotive systems. In: Proceedings of
the IEEE Workshop on Software Engineering for Automotive Systems, pp. 1–8,
2004

[16] Tešanović A., Nyström D., Hansson J., Norström C. Aspects and components
in real-time system development: towards reconfigurable and reusable software.
Journal of Embedded Computing, 1, 2004

[17] Engblom, J. Analysis of the execution time unpredictability caused by dynamic
branch prediction. In: Proceedings of the IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS’03), pp. 152–159, 2003

[18] van Ommering R. Building product populations with software components. In:
Proceedings of the 24th International Conference on Software Engineering, ACM,
New York, pp. 255–265, 2002

[19] Stewart D.B., Volpe R., Khosla P.K. Design of dynamically reconfigurable real-
time software using port-based objects. IEEE Transactions on Software Engi-
neering, 23, 1997

[20] Sandström K., Fredriksson J., Åkerholm M. Introducing a component technol-
ogy for safety critical embedded realtime systems. In: Proceedings of the Interna-
tional Symposium on Component-Based Software Engineering (CBSE7), Scotland,
Springer, Berlin Heidelberg New York, pp. 194–208, 2004

286 A. Tešanović, M. Amirijoo, and J. Hansson

[21] Tešanović A., Amirijoo M., Björk M., Hansson J. Empowering configurable QoS
management in real-time systems. In: Proceedings of the Fourth ACM SIG Inter-
national Conference on Aspect-Oriented Software Development (AOSD’05), ACM,
New York, pp. 39–50, 2005

[22] Amirijoo M., Hansson J., Son S.H., Gunnarsson S. Generalized performance man-
agement of multi class real-time imprecise data services. In: Proceedings of the
26th IEEE International Real-Time Systems Symposium (RTSS’05), pp. 38–49,
2005

[23] Abdelzaher T.F., Shin K.G., Bhatti N. Performance guarantees for web server
end-systems: a control-theoretical approach. IEEE Transactions on Parallel and
Distributed Systems, 13:80–96, 2002

[24] Koutsoukos X., Tekumalla R., Natarajan B., Lu C. Hybrid supervisory utiliza-
tion control of real-time systems. In: Proceedings of 11th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’05), IEEE Computer
Society Press, pp. 12–21, 2005

[25] Liu J.W.S., Shih W.K., Lin K.J., Bettati R., Chung J.Y. Imprecise computations.
IEEE Comput, 82, 1994

[26] Amirijoo M., Hansson J., Son S.H. Algorithms for managing QoS for real-time
data services using imprecise computation. In: Proceedings of the Conference
on Real-Time and Embedded Computing Systems and Applications (RTCSA’03),
LNCS vol. 2968, Springer, Berlin Heidelberg New York, pp. 136–157, 2004

[27] Abdelzaher T.F., Stankovic J.A., Lu C., Zhang R., Lu Y. Feedback performance
control in software services. IEEE Control Systems Magazine, 23:74–90, 2003

[28] Sha L., Liu X., Lu Y., Abdelzaher T. Queuing model based network server per-
formance control. In: Proceedings of 23rd IEEE Real-Time Systems Symposium
(RTSS’02), IEEE Computer Society Press, 2002

[29] Abdelzaher T., Lu Y., Zhang R., Henriksson D. Practical application of control
theory to web services. In: Proceedings of American Control Conference (ACC),
2004

[30] Robertson A., Wittenmark B., Kihl M. Analysis and design of admission control
in web-server systems. In: Proceedings of American Control Conference (ACC),
2003

[31] Zhu Y., Mueller F. Feedback EDF scheduling exploiting dynamic voltage scal-
ing. In: Proceedings of the Tenth IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’04), IEEE Computer Society Press, pp. 84–93,
2004

[32] Franklin G.F., Powell J.D., Workman M. Digital Control of Dynamic Systems,
3rd edn., Addison-Wesley, New York, 1998

[33] Åström K.J., Wittenmark B. Adaptive Control, 2nd edn., Addison-Wesley, New
York, 1995

[34] Kang K.D., Son S.H., Stankovic J.A. Managing deadline miss ratio and sensor
data freshness in real-time databases. IEEE Transactions on Knowledge and Data
Engineering, 16:1200–1216, 2004

[35] Kang K.D., Son S.H., Stankovic J.A. Service differentiation in real-time main
memory databases. In: Proceedings of the Fifth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, IEEE Computer Society
Press, pp. 119–128, 2002

[36] Sharma V., Thomas A., Abdelzaher T., Skadron K., Lu Z. Power-aware QoS
management in web servers. In: Proceedings of 24th IEEE Real-Time Systems
Symposium (RTSS), IEEE Computer Society Press, pp. 63–71, 2003

Providing Configurable QoS Management in Real-Time Systems 287

[37] Sanfridson M. Problem formulations for qos management in automatic control.
Technical Report TRITA-MMK 2000:3, ISSN 1400-1179, ISRN KTH/MMK–
00/3–SE, Mechatronics Lab KTH, Royal Institue of Technology (KTH), Sweden,
2000

[38] Schantz R., Loyall J., Atighetchi M., Pall P. Packaging quality of service control
behaviors for reuse. In: Proceedings of the Fifth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC’02), Washington,
DC, USA, IEEE Computer Society, pp. 375, 2002

[39] Wang N., Gill C., Schmidt D.C., Subramonian V. Configuring real-time as-
pects in component middleware. In: Proceedings of the OTM Confederated In-
ternational Conferences, LNCS vol. 3291, Springer, Berlin Heidelberg New York,
pp. 1520–1537, 2004

[40] Duzan G., Loyall J., Schantz R., Shapiro R., Zinky J. Building adaptive
distributed applications with middleware and aspects. In: Proceedings of the
Third ACM International Conference on Aspect-Oriented Software Development
(AOSD’04), New York, NY, USA, ACM, pp. 66–73, 2004

[41] Gokhale A.S., Schmidt D.C., Lu T., Natarajan B., Wang N. CoSMIC: an MDA
generative tool for distributed real-time and embedded applications. In: Proceed-
ings of the First Workshop on Model-Driven Approaches to Middleware Applica-
tions Development (MAMAD 2003), pp. 300–306, 2003

[42] Isovic D., Norström C. Components in real-time systems. In: Proceedings of
the Eighth IEEE International Conference on Real-Time Computing Systems and
Applications (RTCSA’02), Tokyo, Japan, pp. 135–139, 2002

[43] Liu C.L., Layland J.W. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, 20:46–61, 1973

[44] Tešanović A., Mu P., Hansson J. Development environment for configuration
and analysis of embedded real-time systems. In: Proceedings of the Fourth In-
ternational Workshop on Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS’05), 2005

[45] GME. The generic modeling environment. Institute for Software Integrated Sys-
tems, Vanderbilt University, http://www.isis.vanderbilt.edu/Projects/gme/,
2004

[46] Tešanović A., Nadjm-Tehrani S., Hansson J. Modular verification of reconfigurable
components. In: Component-Based Software Development for Embedded Systems
– An Overview on Current Research Trends, LNCS vol. 3778, Springer, Berlin
Heidelberg New York, pp. 59–81, 2005

[47] Liu C.L., Layland J.W. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, 20:46–61, 1973

[48] Kang K.D., Son S.H., Stankovic J.A., Abdelzaher T.F. A QoS-sensitive approach
for timeliness and freshness guarantees in real-time databases. In: Proceedings of
the 14th IEEE Euromicro Conference on Real-Time Systems (ECRTS’02), IEEE
Computer Society Press, pp. 203–212, 2002

[49] Ramamritham K. Real-time databases. International Journal of Distributed and
Parallel Databases, 1993

[50] Spinczyk O., Gal A., Schröder-Preikschat W. AspectC++: an aspect-oriented ex-
tension to C++. In: Proceedings of the 40th International Conference on Technol-
ogy of Object-Oriented Languages and Systems (TOOLS’02), Sydney, Australia,
Australian Computer Society, 2002

[51] Björk M. QoS management in configurable real-time databases. Master’s thesis,
Department of Computer Science, Linköping University, Sweden, 2004

http://www.isis.vanderbilt.edu /Projects/gme/

288 A. Tešanović, M. Amirijoo, and J. Hansson

[52] DeGroot M.H., Schervish M.J. Probability and Statistics, 3rd edn., Addison-
Wesley, New York, 2002

[53] Amirijoo M., Hansson J., Son S.H. Error-driven QoS management in imprecise
real-time databases. In: Proceedings of the 15th IEEE Euromicro Conference on
Real-Time Systems (ECRTS’03), IEEE Computer Society Press, pp. 63–72, 2003

[54] Amirijoo M., Hansson J., Son S.H. Specification and management of QoS in
imprecise real-time databases. In: Proceedings of the Seventh IEEE International
Database Engineering and Applications Symposium (IDEAS’03), IEEE Computer
society Press, pp. 192–201, 2003

[55] Tešanović A., Sheng K., Hansson J. Application-tailored database systems: a case
of aspects in an embedded database. In: Proceedings of the Eighth IEEE Inter-
national Database Engineering and Applications Symposium (IDEAS’04), IEEE
Computer Society, pp. 291–301, 2004

[56] Coady Y., Kiczales G. Back to the future: a retroactive study of aspect evolu-
tion in operating system code. In: Proceedings of the Second ACM International
Conference on Aspect-Oriented Software Development (AOSD’03), Boston, USA,
ACM, pp. 50–59, 2003

[57] Articus Systems. Rubus OS – Reference Manual, 1996
[58] Labrosse J.J. MicroC/OS-II the Real-Time Kernel, CMPBooks, 2002

	Introduction
	QoS Management
	Real-Time System Model
	QoS Management in Real-Time Systems

	Problem Formulation
	Enabling Configurable Real-Time QoS
	System Requirements
	The QoS Aspect Package
	Tool Support

	Case Study: COMET Database
	COMET Overview
	QoS Policies
	Data and Transaction Model
	A Family of COMET QoS Configurations
	Implementation Details
	Experimental Evaluation

	Experience Report
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

