Logic + Control: An example

or
SAT solver of Howe \& King as a logic program
(File ./LIPIcs/29.pdf)

Włodzimierz Drabent

Institute of Computer Science, Polish Academy of Sciences Linköping University (Sweden)
http://www.ipipan.waw.pl/~drabent
ICLP'12, 6th September 2012
Version compiled on September 10, 2012

This file contains extra material, not intended to be shown within a short presentation. In particular, such are all the slides with their titles in parentheses.

Is there $\begin{gathered}\text { logic } \\ \text { "logic" in actual Logic Programming ? }\end{gathered}$

To which extent LP is declarative/logical ?

How to reason about logic programs?

We present

a construction of a practical Prolog program (SAT solver of Howe\&King).

Most of the reasoning done at the declarative level (formally)
abstracting from any operational semantics.

\rightarrow Specification \rightarrow Logic programs 1, 2, 3

- Drovins correctness 0 .

Adding control
completeness
Conclusions

How to reason about logic programs?

We present
a construction of a practical Prolog program
(SAT solver of Howe\&King).
Most of the reasoning done at the declarative level (formally)
abstracting from any operational semantics.

Plan

- Specification
- Proving correctness \& completeness
- Logic programs 1, 2, 3
- Adding control
- Conclusions

How to reason about logic programs?

We present
a construction of a practical Prolog program
(SAT solver of Howe\&King).
Most of the reasoning done at the declarative level (formally)
abstracting from any operational semantics.

Plan

- Specification
- Proving correctness \& completeness
- Logic programs 1, 2, 3
- Adding control
- Conclusions

Preliminaries

Definite programs.

To describe relations to be defined by program predicates:
Specification - a Herbrand interpretation S.

$$
\text { Specified atom - a } p\left(t_{1}, \ldots, t_{n}\right) \in S .
$$

Representation of propositional formulae

 for a SAT solver [Howe\&King]Literals
as pairs
CNF formulae as lists of lists

$$
\begin{array}{cc}
x & \neg x \\
\text { true-X } & \text { false-X }
\end{array}
$$

$$
\left(\ldots \wedge\left(\ldots \vee \text { Literal }_{i j} \vee \ldots\right) \wedge \ldots\right)
$$

$$
\left[\ldots, \quad\left[\ldots, \text { Pair }_{i j}, \ldots\right], \ldots\right]
$$

CNF formula $\left[f_{1}, \ldots, f_{n}\right]$ is satisfiable iff
it has an instance $\left[f_{1} \theta, \ldots, f_{n} \theta\right]$ where \forall_{i}

$$
f_{i} \theta \in L_{1}^{0}=\left\{\left[t_{1}-u_{1}, \ldots, u-u, \ldots, t_{n}-u_{n}\right] \in \mathcal{H}\right\} .
$$

CNF formula f is satisfiable iff

$$
\text { some } f \theta \text { is in } L_{2}^{0}=\left\{\left[f_{1} \theta, \ldots, f_{n} \theta\right] \mid \text { as above }\right\} .
$$

A program defining L_{2}^{0} is a SAT solver.

Specifying a SAT solver

So apparently
a SAT solver should compute L_{2}^{0}.

Specifying a SAT solver

So apparently
a SAT solver should compute L_{2}^{0}.

Computing exact L_{2}^{0} unnecessary.
E.g. nobody uses append/3 defining the list appending relation
exactly!

畹 Common in LP: relations to be computed known approximately.

Specifying a SAT solver

So

$$
\begin{gathered}
\text { may } \\
\text { a SAT solver should compute } \\
L_{2}^{0} .
\end{gathered}
$$

Computing exact L_{2}^{0} unnecessary.
E.g. nobody uses append/3 defining the list appending relation
exactly!

宴 Common in LP: relations to be computed known approximately.

Specifying a SAT solver

So

$$
\begin{gathered}
\text { may } \\
\text { a SAT solver shoutd compute }
\end{gathered} L_{2}^{0} .
$$

Also
it may compute a certain $L_{2} \supseteq L_{2}^{0}$.

$$
L_{2}=\left\{s \in \mathcal{H} \mid \text { if } s \text { is a list of lists of pairs then } s \in L_{2}^{0}\right\} .
$$

IT Common in LP: relations to be computed known approximately.

Specifying a SAT solver

So may
a SAT solver should compute L_{2}^{0}.
Also
it may compute a certain $L_{2} \supseteq L_{2}^{0}$.

$$
L_{2}=\left\{s \in \mathcal{H} \mid \text { if } s \text { is a list of lists of pairs then } s \in L_{2}^{0}\right\} .
$$

Any set $L_{2}^{0} \subseteq L_{2}^{\prime} \subseteq L_{2}$ will do: a CNF formula f is satisfiable iff some $f \theta$ is in L_{2}^{\prime}.

宴 Common in LP: relations to be computed known approximately.

Approximate specifications

Approximate specification - $\left(S^{0}, S\right)$, where $S^{0} \subseteq S$.

for completeness for correctness
Intention: $\quad S^{0} \subseteq M_{P} \subseteq S . \quad S^{0}$ - what has to be computed.
S - what may be computed.

Approximate specifications

Approximate specification for SAT solver: $\left(S_{1}^{0}, S_{1}\right)$, states that predicate sat_cnf defines a set $L_{2}^{\prime}: \quad L_{2}^{0} \subseteq L_{2}^{\prime} \subseteq L_{2}$.
[Details \rightsquigarrow the paper]

(Details - 1st specification for SAT solver)

Specification: $\quad\left(S_{1}^{0}, S_{1}\right) \quad$ with the specified atoms

$$
\begin{array}{lll}
S_{1}^{0}: & S_{1}: \\
\text { sat_cnf }(t), & \text { where } & t \in L_{2}^{0}, \\
\text { sat_cl } & \text { sat_cnf }(t), & \text { where } \\
\text { sat } & t \in L_{2}, \\
x=x, & s \in L_{1}^{0}, & \text { sat_cl }(s), \\
L_{1}^{0}=\left\{\left[t_{1}-u_{1}, \ldots, u-u, \ldots, t_{n}-u_{n}\right] \in \mathcal{H}\right\}, \\
L_{2}^{0}=\left\{\left[s_{1}, \ldots, s_{n}\right] \mid\right. & \left.s_{1}, \ldots, s_{n} \in L_{1}^{0}\right\}, \\
& L_{1}=\{t \in \mathcal{H}, \\
& L_{2}=\left\{s \in \mathcal{H} \mid \text { if } t \text { is a list of pairs then } t \in L_{1}^{0}\right\}, \\
& \text { if } \left.s \text { is a list of lists of pairs then } s \in L_{2}^{0}\right\} .
\end{array}
$$

Correctness \& completeness of programs

Correctness (imperative programming)
Correctness Completeness (logic programming) $M_{P} \subseteq S \quad S \subseteq M_{P}$

Completeness:
Everything required by the spec. is computed.
Correctness:
Everything computed is compatible with the spec.

P semi-complete w.r.t. S

Correctness \& completeness of programs

Correctness (imperative programming)
Correctness Completeness (logic programming)

$$
M_{P} \subseteq S \quad S \subseteq M_{P}
$$

Completeness:
Everything required by the spec. is computed.
Correctness:
Everything computed is compatible with the spec.
P semi-complete w.r.t. S
$=P$ complete for terminating queries (under some selection rule).
[Details \rightsquigarrow the paper]

Correctness \& completeness, sufficient conditions

Th. (Clark 1979): $\quad P$ correct w.r.t. S when for each $(H \leftarrow B) \in \operatorname{ground}(P), \quad B \subseteq S \Rightarrow H \in S$.
(Out of correct atoms, the clauses produce only correct atoms.)P semi-complete w.r.t. S when for each $H \in S$,
exists $(H \leftarrow B) \in \operatorname{ground}(P)$ where $B \subseteq S$ (Each required atom can be produced out of required atoms.) Semi-complete + terminating \Rightarrow complete.

Correctness \& completeness, sufficient conditions

Th. (Clark 1979): $\quad P$ correct w.r.t. S when for each $(H \leftarrow B) \in \operatorname{ground}(P), \quad B \subseteq S \Rightarrow H \in S$.
(Out of correct atoms, the clauses produce only correct atoms.)

Th.: P semi-complete w.r.t. S when for each $H \in S$, exists $(H \leftarrow B) \in \operatorname{ground}(P)$ where $B \subseteq S$.
(Each required atom can be produced out of required atoms.)
Semi-complete + terminating \Rightarrow complete.

SAT solver 1

P_{1} :

$$
\text { sat_cnf }([]) .
$$

$$
\text { sat_cnf }([\text { Clause } \mid \text { Clauses] }]) \leftarrow \text { sat_cl(Clause), sat_cnf (Clauses). }
$$

$$
\text { sat_cl }[\text { Pol-Var }[\text { Pairs }]) \leftarrow \text { Pol }=\text { Var. }
$$

$$
\text { sat_cll }[[H \mid P a i r s]) \leftarrow \text { sat_cl(Pairs }) .
$$

Can be constructed guided by the sufficient conditions above, and specification $\left(S_{1}^{0}, S_{1}\right)$.

Correct w.r.t. S_{1}, complete w.r.t. S_{1}^{0}. [Details \rightsquigarrow the paper]
Inefficient backtracking search.

SAT solver 1

P_{1} : sat_cnf([]). sat_cnf $([$ Clause \mid Clauses $]) \leftarrow$ sat_cl $($ Clause $)$, sat_cnf $($ Clauses $)$. sat_cl $([$ Pol-Var \mid Pairs $]) \leftarrow$ Pol $=$ Var. sat_cl $([H \mid$ Pairs $]) \leftarrow$ sat_cl(Pairs $)$.

Can be constructed guided by the sufficient conditions above, and specification (S_{1}^{0}, S_{1}).

Correct w.r.t. S_{1}, complete w.r.t. S_{1}^{0}. [Details \rightsquigarrow the paper]
Inefficient backtracking search.

(Towards better efficiency)

Idea: Watch two variables of each clause.
Delay Pol = Var in sat_cl $([$ Pol-Var \mid Pairs $]) \leftarrow$ Pol $=$ Var until Var watched and bound.

New predicates - another representations of clauses
E.g. $\left(v_{1}, p_{1}, v_{2}, p_{2}, s\right)$ for $\left[p_{1}-v_{1}, p_{2}-v_{2} \mid s\right]$.

To block on v_{1}, v_{2}
Specification $\left(S_{1}^{0}, S_{1}\right)$ extended $\rightsquigarrow\left(S_{2}^{0}, S_{2}\right)$.

Guided by the sufficient conditions for correctness \& completeness
correct \& complete w.r.t. the new specification

(Towards better efficiency)

Idea: Watch two variables of each clause.
Delay Pol = Var in sat_cl $([$ Pol-Var \mid Pairs $]) \leftarrow$ Pol $=$ Var until Var watched and bound.

New predicates - another representations of clauses

$$
\text { E.g. }\left(v_{1}, p_{1}, v_{2}, p_{2}, s\right) \text { for }\left[p_{1}-v_{1}, p_{2}-v_{2} \mid s\right] \text {. }
$$

To block on v_{1}, v_{2}
Specification $\left(S_{1}^{0}, S_{1}\right)$ extended $\rightsquigarrow\left(S_{2}^{0}, S_{2}\right)$.

Guided by the sufficient conditions for correctness \& completeness a logic program P_{2} built, correct \& complete w.r.t. the new specification. [Details \rightsquigarrow the paper]

(Towards efficiency. Details: the new spec.)

Idea: Watch two variables of each clause. delay Pol $=$ Var in sat_cl $([$ Pol-Var \mid Pairs $]) \leftarrow$ Pol $=$ Var until Var watched and bound.

New predicates. Specification: S_{1}^{0} (resp. S_{1}) extended by atoms

$$
\begin{aligned}
& \text { sat_cl3 }(s, v, p), \quad \text { where } \quad[p-v \mid s] \in L_{1}^{0}\left(\text { resp } . \in L_{1}\right) \text {, } \\
& \text { sat_cl5 }\left(v_{1}, p_{1}, v_{2}, p_{2}, s\right) \text {, } \\
& \text { sat_cl5a }\left(v_{1}, p_{1}, v_{2}, p_{2}, s\right) \text {, } \\
& {\left[p_{1}-v_{1}, p_{2}-v_{2} \mid s\right] \in L_{1}^{0}\left(\text { resp. } \in L_{1}\right) \text {. }}
\end{aligned}
$$

Already in $S_{1}^{0}\left(S_{1}\right)$:
sat_cl(s)

$$
s \in L_{1}^{0}\left(\text { resp. } \in L_{1}\right)
$$

Intention: v_{1}, v_{2} - the watched variables
:-block sat_cl5 (-,?,-,?,?)
sat_cl5a called with v_{1} bound

(Towards efficiency, final logic program)

P_{2} may flounder (under the intended delays).
To avoid floundering - new predicates, new specification.

> Guided by the sufficient conditions for correctness \& completeness a logic program $P_{3} \supseteq P_{2}$, correct \& complete.

(Towards efficiency, final logic program)

P_{2} may flounder (under the intended delays).
To avoid floundering - new predicates, new specification.

Guided by the sufficient conditions for correctness \& completeness a logic program $P_{3} \supseteq P_{2}$, correct \& complete.
[Details \rightsquigarrow the paper]

(Towards efficiency, final logic program)

P_{2} may flounder (under the intended delays).
To avoid floundering - new predicates, new specification.

Initial queries $\operatorname{sat}(f, l)$
Variables in f

Spec. requires l to be a list of true/false

Guided by the sufficient conditions for correctness \& completeness a logic program $P_{3} \supseteq P_{2}$, correct \& complete.
[Details \rightsquigarrow the paper]

Towards better efficiency - brief

To prepare the intended control - new predicates.
E.g. another data representation, like $\left(v_{1}, p_{1}, v_{2}, p_{2}, s\right)$ for $\left[p_{1}-v_{1}, p_{2}-v_{2} \mid s\right]$, to block on v_{1}, v_{2}.

Specification $\left(S_{1}^{0}, S_{1}\right)$ extended $\rightsquigarrow\left(S_{3}^{0}, S_{3}\right)$.

Guided by the sufficient conditions for correctness \& completeness a logic program P_{3} built correct \& complete w.r.t. the new specification.

Adding control to P_{3}

- Delays - modifying the selection rule :-block sat_cl5(-,?,-,?,?)
- Two cases of pruning SLD-trees.

Skipping a rule of P_{3}; implemented by (...->...;...).
Completeness preserved.
Case 1 - proof [technical report].
Case 2 - informal justification

Result: Prolog program [Howe\&King] of 22 lines / 12 rules. Implements DPLL with watched literals and unit propagation. (partly)

(Adding control, details)

Delays - modifying the selection rule
:-block sat_cl5(-,?,-,?,?)

Choosing one of two clauses dynamically.

(Adding control, details)

Delays - modifying the selection rule
:-block sat_cl5(-,?,-,?,?)
Pruning 1. Choosing one of two clauses dynamically. Completeness preserved. [Proof \rightarrow tech. report] sat_cl5 $(\operatorname{Var} 1, \ldots, \operatorname{Var} 2, \ldots) \leftarrow$ sat_cl5a $(\operatorname{Var} 1, \ldots, \operatorname{Var} 2, \ldots)$.
sat_cl5 $(\operatorname{Var} 1, \ldots, \operatorname{Var} 2, \ldots) \leftarrow$ sat_cl5a $(\operatorname{Var} 2, \ldots, \operatorname{Var} 1, \ldots)$.
sat_cl5 $(\operatorname{Var} 1, \ldots, \operatorname{Var} 2, \ldots) \leftarrow$
nonvar(Var1) \rightarrow sat_cl5a(Var1,..., Var2,...)
; sat_cl5a(Var2,..., Var1,...).

(Adding control, details 2)

Pruning 2. Removing a redundant part of SLD-tree.
(Do not work on a clause which is already true.)
Completeness preserved, informal justification.

$$
\begin{gathered}
\text { sat_cl5a }(\text { Var } 1, \text { Pol1,_, , , }) \leftarrow \operatorname{Var} 1=\text { Pol1. } \\
\text { sat_cl5a }(-, \text {, Var } 2, \text { Pol2, Pairs }) \leftarrow \text { sat_cl3(Pairs, Var } 2, \text { Pol } 2) . \\
\vdots \\
\text { sat_cl5a }(\text { Var } 1, \text { Pol1, Var } 2, \text { Pol } 2, \text { Pairs }) \leftarrow \\
\text { Var } 1=\text { Pol1 } \rightarrow \text { true } ; \text { sat_cl3(Pairs, Var } 2, \text { Pol } 2) .
\end{gathered}
$$

Conclusions, proving correctness \& completeness

Proving correctness.
Method of [Clark'79] simpler than that of Bossi\&Cocco [Apt'97]. not weaker
\because Neglected.
Proving completeness. Seldom considered. (E.g. not in [Apt'97].)
Our method: new notion of semi-completeness, semi-completeness + termination \Rightarrow completeness.

Both methods
\because simple, natural, declarative (but termination),
\because correspond to common-sense reasoning about programs,
$\because \quad$ applicable in practice (maybe informally).
Ex.: An error in P_{1} (first version) found \& located by a failed proof attempt.
Methods for programs with negation: [Drabent,Miłkowska'05]

Conclusions, approximate specifications

\rightarrow Approximate spec's crucial for formal precise reasoning about programs.
Exact relations (defined by programs) often not known, not easy to understand.
Ex.: Which set is defined by sat_cl/1 in P_{1} ? In P_{2}, P_{3} ?
Misunderstood by the author (first report) and some reviewers.

Conclusions, approximate specifications

\rightarrow Approximate spec's crucial for formal precise reasoning about programs.

Exact relations (defined by programs) often not known, not easy to understand.
Ex.: Which set is defined by sat_cl/1 in P_{1} ? $\ln P_{2}, P_{3}$?
Misunderstood by the author (first report) and some reviewers.
\rightarrow Approximate spec's useful for declarative diagnosis (DD). Trouble: DD requires exact specifications.

Ex. Is append $([a], b,[a \mid b])$ correct?
Approximate spec's should be used:
Diagnosing incorrectness $\begin{aligned} & \text { incompleteness }\end{aligned}$ - specification for $\begin{aligned} & \text { correctness } \\ & \text { completeness }\end{aligned}$

Conclusions, approximate specifications 2

Transformational approaches seem inapplicable to our example $P_{1} \rightsquigarrow P_{3}$, as the same predicates define different sets in P_{1}, P_{3}. have the same approximate specification

Interpretations as specifications - "existential specifications" inexpressible.

Conclusions, approximate specifications 2

Transformational approaches seem inapplicable to our example $P_{1} \rightsquigarrow P_{3}$,
as the same predicates define different sets in P_{1}, P_{3}.
have the same approximate specification

Interpretations as specifications

- "existential specifications" inexpressible.

Ex.: We could not state that for each satisfiable f some true instance $f \theta$ is computed. We required all true instances.

Solution(?): Use theories as specifications.

Conclusions, declarative programming

Most of reasoning can be done at declarative level / pure logic programs.

Abstracting from operational semantics, thinking in terms of relations; formally.

Separation "logic" - "control" works:
Reasoning related to operational semantics / efficiency independent from that related to correctness \& semi-completeness.

But: Pruning may spoil completeness.

Conclusions, ...

Claim: The presented approach can be used in practice, maybe informally, in programming and in teaching.

LP is not declarative unless we have/use declarative means of reasoning about programs.

Conclusions, summary

- Approximate specifications crucial

Approximate spec's useful for declarative diagnosis

- Simple methods for proving correctness \& completeness declarative (but termination) applicable in practice
- Most of reasoning can be done at declarative level (pure logic programs)
Declarative properties
- reasoning independent

Operational properties

- Claim: Approach practically applicable maybe informally, in programming and in teaching.
http://www.ipipan.waw.pl/~drabent

