Logic + Control: An example

SAT solver of Howe & King as a logic program

(File ./LIPIcs/29.pdf)

Włodzimierz Drabent

Institute of Computer Science, Polish Academy of Sciences Linköping University (Sweden)

http://www.ipipan.waw.pl/~drabent

ICLP'12, 6th September 2012

Version compiled on September 10, 2012

This file contains extra material, not intended to be shown within a short presentation. In particular, such are all the slides with their titles in parentheses.

To which extent LP is declarative/logical?

How to reason about logic programs?

How to reason about logic programs?

We present

a construction of a practical Prolog program (SAT solver of Howe&King).

Most of the reasoning done at the declarative level (formally) abstracting from any operational semantics.

- Specification
- Proving correctness &

- ▶ Logic programs 1, 2, 3
- Adding control
 - Conclusions

How to reason about logic programs?

We present

a construction of a practical Prolog program (SAT solver of Howe&King).

Most of the reasoning done at the declarative level (formally) abstracting from any operational semantics.

Plan

- Specification
- Proving correctness & completeness

- ▶ Logic programs 1, 2, 3
- Adding control
- Conclusions

Preliminaries

Definite programs.

To describe relations to be defined by program predicates:

Specification – a Herbrand interpretation S.

Specified atom - a
$$p(t_1, \ldots, t_n) \in S$$
.

Representation of propositional formulae

for a SAT solver [Howe&King]

```
Literals
                                   \mathcal{X}
                                                         \neg x
as pairs
                                                    false-X
                               true-X
                              (\ldots \wedge (\ldots \vee Literal_{ij} \vee \ldots) \wedge \ldots)
CNF formulae
                              [\ldots, [\ldots, Pair_{ij}, \ldots], \ldots]
as lists of lists
CNF formula [f_1, \ldots, f_n] is satisfiable iff
   it has an instance [f_1\theta,\ldots,f_n\theta] where \forall_i
      f_i\theta \in L_1^0 = \{ [t_1 - u_1, \dots, u - u_n, \dots, t_n - u_n] \in \mathcal{H} \}.
```

CNF formula f is satisfiable iff some $f\theta$ is in $L_2^0 = \{ [f_1\theta, \dots, f_n\theta] \mid \text{ as above } \}.$

A program defining L_2^0 is a SAT solver.

Specifying a SAT solver

So apparently a SAT solver should compute L_2^0 .

Specifying a SAT solver

So apparently a SAT solver should compute L_2^0 .

Computing exact L_2^0 unnecessary.

E.g. nobody uses append/3 defining the list appending relation exactly!

© Common in LP: relations to be computed known approximately.

Specifying a SAT solver

So may a SAT solver should compute L_2^0 .

Computing exact L_2^0 unnecessary.

E.g. nobody uses append/3 defining the list appending relation exactly!

© Common in LP: relations to be computed known approximately.

So may a SAT solver should compute L_2^0 .

Also it may compute a certain $L_2 \supset L_2^0$.

 $L_2 = \{ s \in \mathcal{H} \mid \text{ if } s \text{ is a list of lists of pairs then } s \in L_2^0 \}.$

© Common in LP: relations to be computed known approximately.

So may a SAT solver should compute L_2^0 .

Also it may compute a certain $L_2 \supseteq L_2^0$.

 $L_2 = \left\{ s \in \mathcal{H} \mid \text{ if } s \text{ is a list of lists of pairs then } s \in L_2^0 \right\}.$

Any set $L_2^0 \subseteq \underline{L_2'} \subseteq L_2$ will do: a CNF formula f is satisfiable iff some $f\theta$ is in L_2' .

Common in LP: relations to be computed known approximately.

7 / 25

Approximate specifications

Approximate specification
$$(S^0, S)$$
, where $S^0 \subseteq S$.

 $\uparrow \quad \uparrow$

for completeness for correctness

Intention: $S^0 \subseteq M_P \subseteq S$. S^0 – what has to be computed. S – what may be computed.

8 / 25

Approximate specifications

Approximate specification for SAT solver: (S_1^0, S_1) , states that predicate $sat_{-}cnf$ defines a set L_2' : $L_2^0 \subseteq L_2' \subseteq L_2$. [Details \rightsquigarrow the paper]

(Details – 1st specification for SAT solver)

Specification: (S_1^0, S_1) with the specified atoms

```
S_1^0:
                                                   S_1:
                                                sat_{-}cnf(t), where t \in L_2,
 sat\_cnf(t), where t \in L_2^0,
 sat_{-}cl(s), \qquad s \in L_1^0, \qquad sat_{-}cl(s),
                                                                                  s \in L_1.
                                                                                   x \in \mathcal{H}
                            x \in \mathcal{H}
                                                x = x
 x = x
L_1^0 = \{ [t_1 - u_1, \dots, u - u_n, \dots, t_n - u_n] \in \mathcal{H} \},
L_2^0 = \{ [s_1, \dots, s_n] \mid s_1, \dots, s_n \in L_1^0 \},
         L_1 = \{ t \in \mathcal{H} \mid \text{ if } t \text{ is a list of pairs then } t \in L_1^0 \},
        L_2 = \{ s \in \mathcal{H} \mid \text{ if } s \text{ is a list of lists of pairs then } s \in L_2^0 \}.
```

Correctness & completeness of programs

Completeness:

Everything required by the spec. is computed.

Correctness:

Everything computed is compatible with the spec.

```
\begin{array}{rcl} P \text{ semi-complete w.r.t. } S \\ &=& P \text{ complete for terminating queries} \\ && \text{(under } \textit{some} \text{ selection rule)}. \end{array}
```

Correctness & completeness of programs

Completeness:

Everything required by the spec. is computed.

Correctness:

Everything computed is compatible with the spec.

```
\begin{array}{rcl} P \text{ semi-complete w.r.t. } S \\ &=& P \text{ complete for terminating queries} \\ && \text{(under } \textit{some} \text{ selection rule)}. \end{array}
```

Correctness & completeness, sufficient conditions

```
Th. (Clark 1979): P correct w.r.t. S when for each (H \leftarrow B) \in ground(P), B \subseteq S \Rightarrow H \in S.
```

(Out of correct atoms, the clauses produce only correct atoms.)

```
Th.: P semi-complete w.r.t. S when for each H \in S, exists (H \leftarrow B) \in ground(P) where B \subseteq S.
```

(Each required atom can be produced out of required atoms.)

Semi-complete + terminating \Rightarrow complete

Correctness & completeness, sufficient conditions

```
Th. (Clark 1979): P correct w.r.t. S when for each (H \leftarrow B) \in ground(P), B \subseteq S \Rightarrow H \in S.
```

(Out of correct atoms, the clauses produce only correct atoms.)

Th.: P semi-complete w.r.t. S when for each $H \in S$, exists $(H \leftarrow B) \in ground(P)$ where $B \subseteq S$.

(Each required atom can be produced out of required atoms.)

Semi-complete + terminating \Rightarrow complete.

SAT solver 1

```
\begin{array}{l} P_1:\\ sat\_cnf([]).\\ sat\_cnf([Clause|Clauses]) \leftarrow sat\_cl(Clause), \ sat\_cnf(Clauses).\\ sat\_cl([Pol-Var|Pairs]) \leftarrow Pol = Var.\\ sat\_cl([H|Pairs]) \leftarrow sat\_cl(Pairs). \end{array}
```

Can be constructed guided by the sufficient conditions above, and specification (S_1^0, S_1) .

Correct w.r.t. S_1 , complete w.r.t. S_1^0 . [Details \leadsto the paper]

nefficient backtracking search

SAT solver 1

```
\begin{array}{l} P_1:\\ sat\_cnf([]).\\ sat\_cnf([Clause|Clauses]) \leftarrow sat\_cl(Clause),\ sat\_cnf(Clauses).\\ sat\_cl([Pol-Var|Pairs]) \leftarrow Pol = Var.\\ sat\_cl([H|Pairs]) \leftarrow sat\_cl(Pairs). \end{array}
```

Can be constructed guided by the sufficient conditions above, and specification (S_1^0, S_1) .

Correct w.r.t. S_1 , complete w.r.t. S_1^0 . [Details \leadsto the paper]

Inefficient backtracking search.

(Towards better efficiency)

Idea: Watch two variables of each clause.

Delay Pol = Var in $sat_cl([Pol-Var|Pairs]) \leftarrow Pol=Var$ until Var watched and bound.

New predicates – another representations of clauses $\text{E.g. } (\textbf{\textit{v}}_1, p_1, \textbf{\textit{v}}_2, p_2, s) \text{ for } [p_1 - v_1, p_2 - v_2 | s].$ $\text{To block on } \textbf{\textit{v}}_1, \textbf{\textit{v}}_2$ Specification (S_1^0, S_1) extended $\ \leadsto \ (S_2^0, S_2).$

Guided by the sufficient conditions for correctness & completeness a logic program P_2 built,

correct & complete w.r.t. the new specification.

[Details → the paper]

(Towards better efficiency)

Idea: Watch two variables of each clause.

Delay Pol = Var in $sat_cl([Pol-Var|Pairs]) \leftarrow Pol=Var$ until Var watched and bound.

New predicates – another representations of clauses $\text{E.g. } (\textbf{\textit{v}}_1, p_1, \textbf{\textit{v}}_2, p_2, s) \text{ for } [p_1 - v_1, p_2 - v_2 | s].$ $\text{To block on } \textbf{\textit{v}}_1, \textbf{\textit{v}}_2$ Specification (S_1^0, S_1) extended $\iff (S_2^0, S_2).$

Guided by the sufficient conditions for correctness & completeness a logic program P_2 built,

correct & complete w.r.t. the new specification.

[Details → the paper]

(Towards efficiency. Details: the new spec.)

Idea: Watch two variables of each clause. delay Pol = Var in $sat_cl([Pol-Var|Pairs]) \leftarrow Pol=Var$ until Var watched and bound.

New predicates. Specification: S_1^0 (resp. S_1) extended by atoms

```
\begin{array}{ll} sat\_cl3(s,v,p), & \text{where} & [p-v|s] \in L^0_1 \text{ (resp.} \in L_1), \\ sat\_cl5(v_1,p_1,v_2,p_2,s), & \\ sat\_cl5a(v_1,p_1,v_2,p_2,s), & \\ Already in ~S^0_1 \text{ (}S_1\text{)}: \\ sat\_cl(s) & s \in L^0_1 \text{ (resp.} \in L_1\text{)}. \end{array}
```

Intention: v_1, v_2 - the watched variables :-block sat_cl5(-,?,-,?,?) sat_cl5a called with v_1 bound

(Towards efficiency, final logic program)

 P_2 may flounder (under the intended delays).

To avoid floundering – new predicates, new specification.

```
Variables in f
Spec. requires l to be a list of true/false
```

Guided by the sufficient conditions for correctness & completeness a logic program $P_3 \supset P_2$, correct & complete.

(Towards efficiency, final logic program)

 P_2 may flounder (under the intended delays).

To avoid floundering – new predicates, new specification.

```
Variables in f
Spec. requires l to be a list of true/false
```

Guided by the sufficient conditions for correctness & completeness a logic program $P_3 \supset P_2$, correct & complete.

(Towards efficiency, final logic program)

 P_2 may flounder (under the intended delays).

To avoid floundering – new predicates, new specification.

```
Initial queries sat(f,l)
\uparrow
Variables in f
Spec. requires l to be a list of true/false
```

Guided by the sufficient conditions for correctness & completeness a logic program $P_3 \supset P_2$, correct & complete.

Towards better efficiency – brief

To prepare the intended control - new predicates.

E.g. another data representation, like (v_1, p_1, v_2, p_2, s) for $[p_1-v_1, p_2-v_2|s]$, to block on v_1, v_2 .

Specification (S_1^0, S_1) extended \rightsquigarrow (S_3^0, S_3) .

Guided by the sufficient conditions for correctness & completeness a logic program P_3 built

correct & complete w.r.t. the new specification.

Adding control to P_3

Delays – modifying the selection rule

```
:-block sat_cl5(-,?,-,?,?)
```

Two cases of pruning SLD-trees.

```
Skipping a rule of P_3; implemented by (...->...;...).
```

Completeness preserved.

```
Case 1 – proof [technical report].
```

Case 2 – informal justification

Result: Prolog program [Howe&King] of 22 lines / 12 rules. Implements DPLL with watched literals and unit propagation.

(partly)

(Adding control, details)

```
Delays — modifying the selection rule :-block sat_cl5(-,?,-,?,?)
```

```
Pruning 1. Choosing one of two clauses dynamically.

Completeness preserved. [Proof \rightarrow tech. report sat\_cl5(Var1, \ldots, Var2, \ldots) \leftarrow sat\_cl5a(Var1, \ldots, Var2, \ldots).
sat\_cl5(Var1, \ldots, Var2, \ldots) \leftarrow sat\_cl5a(Var2, \ldots, Var1, \ldots).

\downarrow
sat\_cl5(Var1, \ldots, Var2, \ldots) \leftarrow
nonvar(Var1) \rightarrow sat\_cl5a(Var1, \ldots, Var2, \ldots)
sat\_cl5a(Var2, \ldots, Var1, \ldots)
```

(Adding control, details)

```
Delays - modifying the selection rule
   :-block sat_cl5(-,?,-,?,?)
```

Pruning 1. Choosing one of two clauses dynamically. Completeness preserved. [Proof \rightarrow tech. report]

(Adding control, details 2)

Pruning 2. Removing a redundant part of SLD-tree. (Do not work on a clause which is already true.) Completeness preserved, informal justification.

```
sat\_cl5a(Var1, Pol1, ..., ...) \leftarrow Var1 = Pol1.
sat\_cl5a(\_,\_, Var2, Pol2, Pairs) \leftarrow sat\_cl3(Pairs, Var2, Pol2).
sat\_cl5a(Var1, Pol1, Var2, Pol2, Pairs) \leftarrow
             Var1 = Pol1 \rightarrow true; sat\_cl3(Pairs, Var2, Pol2).
```

Conclusions, proving correctness & completeness

Proving correctness.

Method of [Clark'79] simpler than that of Bossi&Cocco [Apt'97].

: Neglected.

Proving completeness. Seldom considered. (E.g. not in [Apt'97].) Our method: new notion of semi-completeness, semi-completeness + termination ⇒ completeness.

Both methods

- : simple, natural, declarative (but termination),
- correspond to common-sense reasoning about programs,
- : applicable in practice (maybe informally).

Ex.: An error in P_1 (first version) found & located by a failed proof attempt.

Methods for programs with negation: [Drabent, Miłkowska'05]

Intro. Specification Correctness&... Programs Final Proving Approx. Transform. Declarative Practice Brief

Conclusions, approximate specifications

Approximate spec's crucial for formal precise reasoning about programs.

Exact relations (defined by programs) often not known, not easy to understand.

Ex.: Which set is defined by $sat_cl/1$ in P_1 ? In P_2, P_3 ?

Misunderstood by the author (first report) and some reviewers.

Approximate spec's useful for declarative diagnosis (DD).

Trouble: DD requires exact specifications.

Ex. Is append([a], b, [a|b]) correct

Approximate spec's should be used:

Diagnosing incorrectness - specification for correctness completeness

Conclusions, approximate specifications

Approximate spec's crucial for formal precise reasoning about programs.

Exact relations (defined by programs) often not known, not easy to understand.

Ex.: Which set is defined by $sat_cl/1$ in P_1 ? In P_2, P_3 ?

Misunderstood by the author (first report) and some reviewers.

→ Approximate spec's useful for declarative diagnosis (DD). Trouble: DD requires exact specifications.

 $\mathbf{Ex.} \ \, \mathbf{Is} \,\, append([a],b,[a|b]) \,\, \mathbf{correct?}$

Approximate spec's should be used:

Diagnosing incorrectness incompleteness – specification for correctness completeness

Conclusions, approximate specifications 2

Transformational approaches seem inapplicable to our example $P_1 \rightsquigarrow P_3$,

as the same predicates define different sets in P_1, P_3 . have the same approximate specification

Interpretations as specifications

"existential specifications" inexpressible.

Ex.: We could not state that for each satisfiable f some true instance $f\theta$ is computed. We required all true instances.

Solution(?): Use *theories* as specifications.

Conclusions, approximate specifications 2

Transformational approaches seem inapplicable

to our example $P_1 \rightsquigarrow P_3$,

as the same predicates define different sets in P_1, P_3 . have the same approximate specification

Interpretations as specifications

- "existential specifications" inexpressible.

Ex.: We could not state that for each satisfiable f some true instance $f\theta$ is computed. We required all true instances.

Solution(?): Use *theories* as specifications.

Conclusions, declarative programming

Most of reasoning can be done at declarative level / pure logic programs.

Abstracting from operational semantics, thinking in terms of relations; formally.

Separation "logic" – "control" works:

Reasoning related to operational semantics / efficiency independent from that related to correctness & semi-completeness.

But: Pruning may spoil completeness.

Conclusions, ...

Claim: The presented approach can be used in practice, maybe informally, in programming and in teaching.

LP is not declarative unless we have/use declarative means of reasoning about programs.

Intro. Specification Correctness&... Programs Final Proving Approx. Transform. Declarative Practice Brief

Conclusions, summary

- ► Approximate specifications crucial

 Approximate spec's useful for declarative diagnosis
- Simple methods for proving correctness & completeness declarative (but termination)
 applicable in practice
- Most of reasoning can be done at declarative level (pure logic programs)
 - Declarative properties

 Operational properties

 reasoning independent
- ► Claim: Approach practically applicable maybe informally, in programming and in teaching.