Logic + Control: An example
or
SAT solver of Howe & King as a logic program opi
ogic

Is there ., °.~,, in actual Logic Programming ?
(File ./LIPIcs/29.pdf) logic

Whodzimierz Drabent To which extent LP is declarative/logical ?

Institute of Computer Science, Polish Academy of Sciences

Linkdping University (Sweden)

http://www.ipipan.waw.pl/~drabent

ICLP'12, 6th September 2012

Version compiled on September 10, 2012

1/25 3/25

I e e L — Representtion

How to reason about logic programs?

We present

a construction of a practical Prolog program

This file contains extra material, not intended to be shown (SAT solver of Howe&King).

within a short presentation. In particular, such are all the
slides with their titles in parentheses. Most of the reasoning done at the declarative level

(formally)
abstracting from any operational semantics.

Plan

» Specification » Logic programs 1, 2, 3

» Proving correctness & » Adding control

completeness » Conclusions

2/25 4/25

Representation

Preliminaries

Definite programs.

To describe relations to be defined by program predicates:

Specification — a Herbrand interpretation S.

Specified atom — a p(ty,...,t,) € S.

5/25

Representation of propositional formulae
for a SAT solver [Howe&King]

Literals x -z

as pairs true-X false-X

CNF formulae (...A(...V Literalij V ...) A ...)
as lists of lists ..., [..., Pairy, ...], ...]

CNF formula [fi,..., fa] is satisfiable iff
it has an instance [f16,..., f,0] where V;
fi0 € LY = {[ti-u1,...,u-u,... ty-u,) € H}.

CNF formula f is satisfiable iff

some fOisin LY = {[fi0,..., f,0] | as above }.

A program defining LY is a SAT solver.

6/ 25

Specification Towards Approximate specifications (Spec. 1)

Specifying a SAT solver

So apparently

a SAT solver should compute LY.

Computing exact L9 unnecessary.

E.g. nobody uses append/3 defining the list appending relation
exactly!

1= Common in LP: relations to be computed known approximately.

7/25

Specification Towards Approximate specifications (Spec. 1)

Specifying a SAT solver

So may
a SAT solver shettd compute LY.

Also
it may compute a certain L, D L.

Ly={se€H | if sis a list of lists of pairs then s € L3 }.

Any set LY C L}, C Ly will do:
a CNF formula f is satisfiable iff some f6 is in L.

1= Common in LP: relations to be computed known approximately.

7/25

Specification Towards Approximate specifications (Spec. 1) Specification Towards Approximate specifications (Spec. 1)

Approximate specifications (Details — 1st specification for SAT solver)
0 i - . -
S Specification: (SY,5;) with the specified atoms
. 0. :
required incorrect S Su:
sat_cnf(t), where t € LY, sat_cnf(t), where t € Ly,
N ' . sat_cl(s), se LY, sat_cl(s), s € Ly,
S r=ux, reH r=u, reH
Approximate specification — (S°, S), where S° C S. LY = {[ti-u1,...,u-u,... ty-u,] € H},
[0 0
L, = . . L
for completeness for correctness 2={lst- ol [s1, 5 € Li
Intention: S° C Mp C S. S°— what has to be computed. Ly ={te ™M | iftisa list of pairs then t € L},
S - what may be computed. Ly={se€H | ifsis a list of lists of pairs then s € L9} .
8/ 25 9/25
Specification Tovards Approximate specifications(Spec 1)
Approximate specifications Correctness & completeness of programs
SO Correctness (imperative programming)
——
7N
_ Correctness Completeness (logic programming)
required incorrect MpCS S C Mp
N —~ _ Completeness:
S Everything required by the spec. is computed.
Correctness:

Everything computed is compatible with the spec.

Approximate specification for SAT solver: (SY,S1),

states that predicate sat_cnf defines a set L,: LS C L}, C L. P semi-complete w.r.t. S o _
= P complete for terminating queries

[Details ~+ the paper] (under some selection rule).

[Details ~~ the paper]

8/ 25 10/ 25

Correctnessé. . .

Correctness & completeness, sufficient conditions

P correct w.r.t. S when
BCS=HeS.

Th. (Clark 1979):
for each (H «— B) € ground(P),

(Out of correct atoms, the clauses produce only correct atoms.)

Th.: P semi-complete w.r.t. S when
foreach H € S5,
exists (H «— B) € ground(P) where B CS.

(Each required atom can be produced out of required atoms.)

Semi-complete + terminating = complete.

11/ 25

Programs

Program 1 (2 (2a) 3) 23 Control (Control details)

(Towards better efficiency)

Watch two variables of each clause.
Delay Pol = Var in sat_cl([Pol-Var|Pairs]|) < Pol=Var
until Var watched and bound.

Idea:

New predicates — another representations of clauses
Eg (Ulap177)2ap275) for [pl_vlap2_v2‘3]-
To block on vy, vs

Specification (SY,S;) extended ~~ (S9,55).

Guided by the sufficient conditions for correctness & completeness
a logic program P, built,

correct & complete w.r.t. the new specification.

[Details ~~ the paper]

13/25

Programs

Program 1 (2 (2a) 3) 23 Control (Control details)

Programs Program 1 (2 (2a) 3) 23 Control (Control details)

SAT solver 1

P1:
sat_cnf ([]).
sat_cnf ([Clause|Clauses)) < sat_cl(Clause), sat_cnf(Clauses).

sat_cl([Pol-V ar|Pairs]) < Pol = Var.
sat_cl([H|Pairs]) < sat_cl(Pairs).

Can be constructed
guided by the sufficient conditions above, and specification (SY,S1).

Correct w.r.t. S, complete w.r.t. SY. [Details ~ the paper]

Inefficient backtracking search.

12 /25

(Towards efficiency. Details: the new spec.)

Watch two variables of each clause.
delay Pol = Var in sat_cl([Pol-Var|Pairs]) < Pol=Var
until Var watched and bound.

Idea:

New predicates. Specification: Sy (resp. S;) extended by atoms

sat_cl3(s,v,p), where [p-v|s] € L] (resp. € L),
sat_cl5(vy, p1, v, P2, s),
sat_clba(vy, p1, v2, P2, S),
Already in SY (S)):

sat_cl(s)

[p1=v1, pa=12|s] € LY (resp. € Ly).

s € LY (resp. € Ly).

v1, V9 — the watched variables
:-block sat_cl5(-,7,-,7,7)
sat_clba called with v; bound

Intention:

14 /25

Programs Program 1 (2 (2a) 3) 23 Control (Control details) Programs Program 1 (2 (2a) 3) 23 Control (Control details)

(Towards efficiency, final logic program) Adding control to P

e Delays — modifying the selection rule
:-block sat_cl5(-,7?,-,7,7)

P, may flounder (under the intended delays).
To avoid floundering — new predicates, new specification.

e Two cases of pruning SLD-trees.

Initial queries sat(f, 1) Skipping a rule of P3; implemented by (...->...;...).
)
Variables in f Completeness preserved.
Spec. requires [to be a list of true/false Case 1 — proof [technical report].

Case 2 — informal justification

Guided by the sufficient conditions for correctness & completeness

a logic program P3 O P,, correct & complete.
[Details ~ the paper]

Result: Prolog program [Howe&King] of 22 lines / 12 rules.
Implements DPLL with watched literals and unit propagation.

(partly)
15 /25 17/ 25
Programs Program 1 (2 (2a) 3) 23 Control (Control details) Programs Program 1 (2 (2a) 3) 23 Control (Control details)
Towards better efficiency — brief (Adding control, details)
To prepare the intended control — new predicates. Delays — modifying the selection rule

] . :-block sat_cl5(-,7,-,7,7)
E.g. another data representation, like

(01,1, 02,2, 8) for [p1-v1, pa-vals], Pruning 1. Choosing one of two clauses dynamically.
to block on vy, vs. Completeness preserved. [Proof — tech. report]
sat_cl5(Varl, ..., Var2,...) « sat_clb5a(Varl,..., Var2,...).
Specification (5?7 S)) extended ~~ (Sg’ S5). sat_clb5(Varl, ..., Var2,...) < sat_clba(Var2,..., Varl,...).
Guided by the sufficient conditions for correctness & completeness sat_cl5(Varl,..., Var2,...) «—
a logic program Ps built nonvar(Varl) — sat_clba(Varl,..., Var2,...)
correct & complete w.r.t. the new specification. ; sat_clba(Var2, ..., Varl,...).

16 / 25 18 /25

(Control details) Final Proving Approx. Transform. Declarative Practice Brief

Programs Program 1 (2 (2a) 3) 23 Control

(Adding control, details 2) Conclusions, approximate specifications

> . ,) formal .
Approximate spec’s crucial for precise reasoning about programs.

Pruning 2. Removing a redundant part of SLD-tree. Exact relations (defined by programs) often not known,
(Do not work on a clause which is already true.) not easy to understand.
Completeness preserved, informal justification. Ex.: Which set is defined by sat_cl/1 in P,? In Py, P3?
s(zt(iZS(J(Varl, Poll, .) 7) Varl — Poll. Misunderstood by the author (first report) and some reviewers.
sat_clba(, -, Var2, Pol2, Pairs) < sat_cl3(Pairs, Var2, Pol2). _ o _
3 => Approximate spec’s useful for declarative diagnosis (DD).
-) , . Trouble: DD requires exact specifications.
sat_clb5a(Varl, Poll, Var2, Pol2, Pairs) «— Ex. Is append([a], b, [a|b]) correct?

Varl= Poll — true; sat_cl3(Pairs, Var2, Pol2).
Approximate spec’s should be used:

: . __incorrectness . correctness
Diagnosing . — specification for
incompleteness completeness

19 / 25 21 /25

Brief Final Proving Approx. Transform. Declarative Practice Brief

Final Proving Approx. Transform. Declarative Practice

Conclusions, proving correctness & completeness Conclusions, approximate specifications 2

Proving correctness.

Method of [Clark'79] simpler than that of Bossi&Cocco [Apt'97]. Transformational approaches seem inapplicable

to our example P, ~» Pj,

.. not weaker
~ Neglected. as the same predicates define different sets in Py, P;.
Proving completeness. Seldom considered. (E.g. not in [Apt'97].) have the same approximate specification

Our method: new notion of semi-completeness,

semi-completeness + termination = completeness. | . ificati
nterpretations as specifications

Both methods — “existential specifications” inexpressible. =
== simple, natural, declarative (but termination), Ex - We could not state that
- corrgspond. to com.mon—sense_ reasoning about programs, for each satisfiable f some true instance f6 is computed.
== applicable in practice (maybe informally). We required all true instances

Ex.: An error in Py (first version) found & located by a failed proof attempt. .]
Solution(?): Use theories as specifications.

Methods for programs with negation: [Drabent, Mitkowska'05]

20 / 25 22 /25

Final Proving Approx. Transform. Declarative Practice Brief Final Proving Approx. Transform. Declarative Practice Brief

Conclusions, declarative programming Conclusions, summary

» Approximate specifications crucial

Most of reasoning can be done Approximate spec’s useful for declarative diagnosis

at declarative level / pure logic programs.
Abstracting from operational semantics, » Simple methgds for proving cc?rrectness & completeness
thinking in terms of relations; declarative (bUt termmatlon)
formally. applicable in practice

» Most of reasoning can be done at declarative level
Separation “logic” — “control” works: _ _ (pure logic programs)
Declarative properties

)) reasoning independent
Operational properties & P

Reasoning related to operational semantics / efficiency

independent from that related to correctness & semi-completeness.
» Claim: Approach practically applicable maybe informally,

But: Pruning may spoil completeness. in programming and in teaching.

http://www.ipipan.waw.pl/~drabent

23 /25 25 /25

Final Proving Approx. Transform. Declarative Practice Brief

Conclusions,

Claim: The presented approach can be used in practice,
maybe informally,

in programming and in teaching.

LP is not declarative unless
we have/use declarative means of reasoning about programs.

24 / 25

