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Is there
logic

“logic”
in actual Logic Programming ?

To which extent LP is declarative/logical ?
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How to reason about logic programs?

We present

a construction of a practical Prolog program
(SAT solver of Howe&King).

Most of the reasoning done at the declarative level
(formally)

abstracting from any operational semantics.

Plan

I Specification

I Proving correctness &
completeness

I Logic programs 1, 2, 3

I Adding control

I Conclusions
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Preliminaries

Definite programs.

To describe relations to be defined by program predicates:

Specification – a Herbrand interpretation S.

Specified atom – a p(t1, . . . , tn) ∈ S.
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Representation of propositional formulae
for a SAT solver [Howe&King]

Literals
as pairs

x ¬x
true-X false-X

CNF formulae (. . . ∧ (. . . ∨ Literal ij ∨ . . .) ∧ . . .)
as lists of lists [ . . . , [ . . . , Pairij , . . . ], . . . ]

CNF formula [f1, . . . , fn] is satisfiable iff
it has an instance [f1θ, . . . , fnθ] where ∀i

fiθ ∈ L0
1 = { [t1-u1, . . . , u-u, . . . , tn-un] ∈ H} .

CNF formula f is satisfiable iff
some fθ is in L0

2 = { [f1θ, . . . , fnθ] | as above }.

A program defining L0
2 is a SAT solver.
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Specifying a SAT solver

So apparently

a SAT solver

may

should compute L0
2.

Any set L0
2 ⊆ L′

2 ⊆ L2 will do:
a CNF formula f is satisfiable iff some fθ is in L′

2.
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Specifying a SAT solver
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a SAT solver

may

should compute L0
2.

Computing exact L0
2 unnecessary.

E.g. nobody uses append/3 defining the list appending relation
exactly!

Any set L0
2 ⊆ L′

2 ⊆ L2 will do:
a CNF formula f is satisfiable iff some fθ is in L′

2.

R Common in LP: relations to be computed known approximately.
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Approximate specifications

S0︷ ︸︸ ︷
required incorrect

︸ ︷︷ ︸
S

Approximate specification – (S0, S)
↑ ↑

for completeness for correctness

, where S0 ⊆ S.

Intention: S0 ⊆MP ⊆ S. S0 – what has to be computed.
S – what may be computed.
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Approximate specifications

S0︷ ︸︸ ︷
required incorrect

︸ ︷︷ ︸
S

Approximate specification for SAT solver: (S0
1 , S1),

states that predicate sat cnf defines a set L′
2: L0

2 ⊆ L′
2 ⊆ L2.

[Details  the paper]
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(Details – 1st specification for SAT solver)

Specification: (S0
1 , S1) with the specified atoms

S0
1 :
sat cnf (t),
sat cl(s),
x=x,

where t ∈ L0
2,

s ∈ L0
1,

x ∈ H

S1 :
sat cnf (t),
sat cl(s),
x=x,

where t ∈ L2,
s ∈ L1,
x ∈ H

L0
1 = { [t1-u1, . . . , u-u, . . . , tn-un] ∈ H} ,

L0
2 = { [s1, . . . , sn] | s1, . . . , sn ∈ L0

1 },

L1 = { t ∈ H | if t is a list of pairs then t ∈ L0
1} ,

L2 = { s ∈ H | if s is a list of lists of pairs then s ∈ L0
2 } .
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Correctness & completeness of programs

Correctness (imperative programming)
↙ ↘

Correctness
MP ⊆ S

Completeness
S ⊆MP

(logic programming)

Completeness:

Everything required by the spec. is computed.
Correctness:

Everything computed is compatible with the spec.

P semi-complete w.r.t. S
= P complete for terminating queries

(under some selection rule).

[Details  the paper]
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Correctness & completeness, sufficient conditions

Th. (Clark 1979): P correct w.r.t. S when
for each (H ← B) ∈ ground(P ), B ⊆ S ⇒ H ∈ S.

(Out of correct atoms, the clauses produce only correct atoms.)

Th.: P semi-complete w.r.t. S when
for each H ∈ S,
exists (H ← B) ∈ ground(P ) where B ⊆ S.

(Each required atom can be produced out of required atoms.)

Semi-complete + terminating ⇒ complete.
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SAT solver 1

P1:
sat cnf ([ ]).
sat cnf ([Clause|Clauses])← sat cl(Clause), sat cnf (Clauses).
sat cl([Pol-V ar|Pairs])← Pol = V ar.
sat cl([H|Pairs])← sat cl(Pairs).

Can be constructed

guided by the sufficient conditions above, and specification (S0
1 , S1).

Correct w.r.t. S1, complete w.r.t. S0
1 . [Details  the paper]

Inefficient backtracking search.
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(Towards better efficiency)

Idea: Watch two variables of each clause.
Delay Pol =Var in sat cl([Pol-Var |Pairs])← Pol=Var
until Var watched and bound.

New predicates – another representations of clauses
E.g. (v1, p1, v2, p2, s) for [p1-v1, p2-v2|s].

To block on v1, v2

Specification (S0
1 , S1) extended  (S0

2 , S2).

Guided by the sufficient conditions for correctness & completeness

a logic program P2 built,
correct & complete w.r.t. the new specification.

[Details  the paper]
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(Towards efficiency. Details: the new spec.)
Idea: Watch two variables of each clause.

delay Pol =Var in sat cl([Pol-Var |Pairs])← Pol=Var
until Var watched and bound.

New predicates. Specification: S0
1 (resp. S1) extended by atoms

sat cl3(s, v, p),
sat cl5(v1, p1, v2, p2, s),
sat cl5a(v1, p1, v2, p2, s),

where [p-v|s] ∈ L0
1 (resp. ∈ L1),

[p1-v1, p2-v2|s] ∈ L0
1 (resp. ∈ L1).

Already in S0
1 (S1):

sat cl(s) s ∈ L0
1 (resp. ∈ L1).

Intention: v1, v2 – the watched variables
:-block sat cl5(-,?,-,?,?)

sat cl5a called with v1 bound
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(Towards efficiency, final logic program)

P2 may flounder (under the intended delays).

To avoid floundering – new predicates, new specification.

Initial queries sat(f, l
↑

Variables in f

)

Spec. requires l to be a list of true/false

Guided by the sufficient conditions for correctness & completeness

a logic program P3 ⊇ P2, correct & complete.
[Details  the paper]
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Towards better efficiency – brief

To prepare the intended control – new predicates.

E.g. another data representation, like
(v1, p1, v2, p2, s) for [p1-v1, p2-v2|s],
to block on v1, v2.

Specification (S0
1 , S1) extended  (S0

3 , S3).

Guided by the sufficient conditions for correctness & completeness
a logic program P3 built

correct & complete w.r.t. the new specification.
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Adding control to P3

• Delays – modifying the selection rule
:-block sat cl5(-,?,-,?,?)

• Two cases of pruning SLD-trees.
Skipping a rule of P3; implemented by ( . . . -> . . . ;. . . ).

Completeness preserved.
Case 1 – proof [technical report].
Case 2 – informal justification

Result: Prolog program [Howe&King] of 22 lines / 12 rules.
Implements DPLL with watched literals and unit propagation.

(partly)
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(Adding control, details)

Delays – modifying the selection rule
:-block sat cl5(-,?,-,?,?)

Pruning 1. Choosing one of two clauses dynamically.
Completeness preserved. [Proof → tech. report]

sat cl5(Var1, . . . ,Var2, . . .)← sat cl5a(Var1, . . . ,Var2, . . .).
sat cl5(Var1, . . . ,Var2, . . .)← sat cl5a(Var2, . . . ,Var1, . . .).

 
sat cl5(Var1, . . . ,Var2, . . .)←

nonvar(V ar1) → sat cl5a(Var1, . . . ,Var2, . . .)
; sat cl5a(Var2, . . . ,Var1, . . .).
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(Adding control, details 2)

Pruning 2. Removing a redundant part of SLD-tree.
(Do not work on a clause which is already true.)

Completeness preserved, informal justification.

sat cl5a(Var1, Pol1, , , )← Var1 = Pol1.
sat cl5a( , ,Var2, Pol2,Pairs)← sat cl3(Pairs ,Var2, Pol2). 
sat cl5a(Var1, Pol1,Var2, Pol2,Pairs)←

Var1 =Pol1 → true; sat cl3(Pairs ,Var2, Pol2).
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Conclusions, proving correctness & completeness
Proving correctness.
Method of [Clark’79] simpler

not weaker
than that of Bossi&Cocco [Apt’97].

··_ Neglected.

Proving completeness. Seldom considered. (E.g. not in [Apt’97].)

Our method: new notion of semi-completeness,
semi-completeness + termination ⇒ completeness.

Both methods
··̂ simple, natural, declarative (but termination),
··̂ correspond to common-sense reasoning about programs,
··̂ applicable in practice (maybe informally).

Ex.: An error in P1 (first version) found & located by a failed proof attempt.

Methods for programs with negation: [Drabent,Mi lkowska’05]
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Conclusions, approximate specifications

È Approximate spec’s crucial for
formal
precise

reasoning about programs.

Exact relations (defined by programs) often not known,
not easy to understand.

Ex.: Which set is defined by sat cl/1 in P1? In P2, P3?
Misunderstood by the author (first report) and some reviewers.

È Approximate spec’s useful for declarative diagnosis (DD).
Trouble: DD requires exact specifications.

Ex. Is append([a], b, [a|b]) correct?

Approximate spec’s should be used :

Diagnosing
incorrectness
incompleteness

– specification for
correctness
completeness
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Conclusions, approximate specifications 2

Transformational approaches seem inapplicable
to our example P1  P3,

as the same predicates define different sets in P1, P3.
have the same approximate specification

Interpretations as specifications

– “existential specifications” inexpressible. ··_
Ex.: We could not state that

for each satisfiable f some true instance fθ is computed.
We required all true instances.

Solution(?): Use theories as specifications.

22 / 25



Intro. Specification Correctness&. . . Programs Final Proving Approx. Transform. Declarative Practice Brief

Conclusions, approximate specifications 2

Transformational approaches seem inapplicable
to our example P1  P3,

as the same predicates define different sets in P1, P3.
have the same approximate specification

Interpretations as specifications

– “existential specifications” inexpressible. ··_
Ex.: We could not state that

for each satisfiable f some true instance fθ is computed.
We required all true instances.

Solution(?): Use theories as specifications.

22 / 25



Intro. Specification Correctness&. . . Programs Final Proving Approx. Transform. Declarative Practice Brief

Conclusions, declarative programming

Most of reasoning can be done
at declarative level / pure logic programs.

Abstracting from operational semantics,
thinking in terms of relations;
formally.

Separation “logic” – “control” works:

Reasoning related to operational semantics / efficiency
independent from that related to correctness & semi-completeness.

But: Pruning may spoil completeness.
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Conclusions, . . .

Claim: The presented approach can be used in practice,
maybe informally,

in programming and in teaching.

LP is not declarative unless
we have/use declarative means of reasoning about programs.
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Conclusions, summary

I Approximate specifications crucial
Approximate spec’s useful for declarative diagnosis

I Simple methods for proving correctness & completeness
declarative (but termination)
applicable in practice

I Most of reasoning can be done at declarative level
(pure logic programs)

Declarative properties
Operational properties

– reasoning independent

I Claim: Approach practically applicable maybe informally,

in programming and in teaching.

http://www.ipipan.waw.pl/~drabent
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